线段的垂直平分线(教案)
- 格式:doc
- 大小:181.74 KB
- 文档页数:8
线段的垂直平分线教案一、教学目标1. 让学生理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质。
2. 培养学生运用线段的垂直平分线解决实际问题的能力。
3. 培养学生的观察能力、动手操作能力和团队协作能力。
二、教学重点与难点1. 教学重点:线段的垂直平分线的性质。
2. 教学难点:线段的垂直平分线的证明和应用。
三、教学准备1. 教师准备:教学课件、尺子、圆规、直尺、三角板等教学用具。
2. 学生准备:笔记本、铅笔、橡皮、三角板、直尺等学习用具。
四、教学过程1. 导入新课:通过回顾上一节课的内容,引导学生思考线段的垂直平分线的概念。
2. 讲解新课:(1)介绍线段的垂直平分线的定义;(2)讲解线段的垂直平分线的性质;(3)举例说明线段的垂直平分线在实际问题中的应用。
3. 课堂练习:让学生独立完成教材上的练习题,巩固所学知识。
4. 课堂小结:总结本节课的主要内容,强调线段的垂直平分线的性质和应用。
五、课后作业1. 请学生完成教材上的课后习题。
2. 请学生结合所学知识,运用线段的垂直平分线解决实际问题。
3. 教师对学生的作业进行批改,及时了解学生的学习情况,并进行反馈。
六、教学拓展1. 引导学生思考:线段的垂直平分线与线段的关系是什么?2. 讲解线段的垂直平分线的性质:垂直平分线上的点到线段的两个端点的距离相等。
3. 举例说明线段的垂直平分线在几何图形中的应用,如等腰三角形的性质。
七、实践操作1. 让学生用尺子和直尺画出一条线段的垂直平分线。
2. 让学生观察并解释线段的垂直平分线如何将线段分成两个相等的部分。
3. 引导学生思考:如何找到一个线段的垂直平分线?八、课堂讨论1. 提问:线段的垂直平分线在实际生活中有哪些应用?2. 让学生分组讨论,分享各自的想法和例子。
3. 教师总结并强调线段的垂直平分线在日常生活中的重要性。
九、复习巩固1. 通过PPT或黑板,回顾本节课的主要内容和知识点。
2. 进行课堂提问,检查学生对线段的垂直平分线的理解和掌握程度。
课题:《尺规作图》课题:《尺规作图》教学设计【课标要求】①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线。
②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。
③探索如何过一点、两点和不在同一直线上的三点作圆。
④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。
【教材分析】在尺规作图知识的学习过程中,教材设计了许多让学生经历尺规作图的活动,解决了一些简单的问题,如:七下作三角形,九上作等腰三角形,感受到尺规作图在数学中的一定作用,获得了从事尺规作图活动的一些数学活动经验;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
【学情分析】学生在七年级上册的学习中,教材(139页)介绍了如何用直尺和圆规作一条线段等于已知线段;在七年级下册的学习中,教材(77页)学习了用尺规作一个角等于已知角;九年级上册(27页)学习了用尺规作线段的垂直平分线、(34页)学习了作已知角的平分线。
学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为复习课的学习奠定了良好的知识基础。
【教学目标】中考基于“课标”而课标要求了四个基本作图,它们是作图的基础,是解决更为复杂的尺规作图的基础。
作为一节复习课不但要注重基础的扎实,而且还应注重它的运用。
为此,本节课的教学目标是:知识与技能:(1)再认识什么是尺规作图;经历四个基本作图的复习与巩固;学会利用基本图形作“三边”“两边及夹角”“两角及夹边”三角形;底边和底边上的高作等腰三角形;会作三角形的内切圆(内心)和外接圆(外心);(2)对尺规基本作图题,能写出已知,求作和作法或口头表述作法,并能正确作出图形(保留作图痕迹)(不要求写出证明过程)。
过程与方法:经历四个基本作图的复习与巩固,感受尺规作图的几何意义,规范学生的作图语言,积累一些尺规作图的方法与经验,感受数学的严谨性以及数学结论的确定性。
1.3 线段的垂直平分线 第1课时 线段的垂直平分线1.掌握线段垂直平分线的性质;(重点) 2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB =AC =10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,你能帮测量人员计算BC 的长吗?二、合作探究 探究点一:线段的垂直平分线的性质定理【类型一】 应用线段垂直平分线的性质定理求线段的长如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为()A .5cmB .10cmC .15cmD .17.5cm 解析:∵△DBC 的周长=BC +BD +CD =35cm ,又∵DE 垂直平分AB ,∴AD =BD ,故BC +AD +CD =35cm.∵AC =AD +DC =20,∴BC =35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】 线段垂直平分线的性质定理与全等三角形的综合运用如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD . 解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB =BF 即可.证明:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD .(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段的垂直平分线的判定定理如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .理由如下:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠F AD ,∠AED =∠AFD .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,DE =DF ,∴直线AD 垂直平分线段EF .方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.。
线段的垂直平分线(二)1.8 完全平方公式(一)●教学目标(一)教学知识点1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力训练要求1.经历探索完全平方公式的过程,进一步开展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感与价值观要求1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.●教学重点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.●教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.●教学方法自主探索法学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后到达合理、熟练地应用.●教具准备投影片四张第一张:试验田的改造,记作(§1.8.1 A)第二张:想一想,记作(§1.8.1 B)第三张:例题,记作(§1.8.1 C)第四张:补充练习,记作(§1.8.1 D)●教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡〞活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡〞活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1-25[师]你能用不同的方式表示试验田的面积吗?[生]改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.[生]也可以把试验田的总面积看成四局部的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过比照试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料说明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?(出示投影片§1.8.1 A)想一想:(1)(a+b)2等于什么?你能用多项式乘法法那么说明理由吗?(2)(a-b)2等于什么?你是怎样想的.(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)[生]用多项式乘法法那么可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2 (1)[师]上面的几何解释和代数推导各有什么利弊?[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a+b)2=a2+2ab+b2,受到了条件限制:a>0且b>0;代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.[师]同学们分析得很有道理.接下来,我们来完成第(2)问.[生]也可利用多项式乘法法那么,那么(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.[生]我是这样想的,因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b〞代替公式中的“b〞,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.[师生共析](a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2↓↓↓↓ ↓ ↓(a +b)2=a2+2·a ·b + b2=a2-2ab+b2.于是,我们得到又一个公式:(a-b)2=a2-2ab+b2(2)[师]你能用语言描述上述公式(1)、(2)吗?[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.2.应用、升华出示投影片(§1.8.1 B)[例1]利用完全平方公式计算:(1)(2x-3)2;(2)(4x+5y)2;(3)(mn-a)2.分析:利用完全平方公式计算,第一步先选择公式;第二步,准确代入公式;第三步化简.解:(1)方法一:[例2]利用完全平方公式计算(1)(-x+2y)2;(2)(-x -y)2;(3)(x+y -z)2;(4)(x+y)2-(x -y)2;(5)(2x -3y)2(2x+3y)2.分析:此题需灵活运用完全平方公式,(1)题可转化为(2y -x)2或(x -2y)2,再运用平方差公式;(2)题需转化为(x+y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x+y)-z ]2(或[x+(y -z)]2、[(x -z)+y ]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.解:(1)方法一:(-x+2y)2=(2y -x)2=4y 2-4xy+x 2;方法二:(-x+2y)2=[-(x -2y)]2=(x -2y)2=x 2-4xy+4y 2.(2)(-x -y)2=[-(x+y)]2=(x+y)2=x 2+2xy+y 2.(3)(x+y -z)2=[(x+y)-z ]2=(x+y)2-2(x+y)·z+z 2=x 2+y 2+z 2+2xy -2zx -2yz.(4)方法一:(x+y)2-(x -y)2=(x 2+2xy+y 2)-(x 2-2xy+y 2)=4xy.方法二:(x+y)2-(x -y)2=[(x+y)+(x -y)][(x+y)-(x -y)]=4xy.(5)(2x -3y)2(2x+3y)2=[(2x -3y)(2x+3y)]2=[4x 2-9y 2]2=16x 4-72x 2y 2+81y 4.Ⅲ.随堂练习课本1.计算: (1)(21x -2y)2;(2)(2xy+51x)2; (3)(n+1)2-n 2.解:(1)(21x -2y)2=(21x)2-2·21x·2y+(2y)2=41x 2-2xy+4y 2(2)(2xy+51x)2=(2xy)2+2·2xy·51x+(51x)2=4x 2y 2+54x 2y+251x 2(3)方法一:(n+1)2-n 2=n 2+2n+1-n 2=2n+1.方法二:(n+1)2-n 2=[(n+1)+n ][(n+1)-n ]=2n+1.Ⅳ.课后作业1.课本习题1.13的第1、2、3题.2.阅读“读一读〞,并答复文章中提出的问题.Ⅴ.活动与探究甲、乙两人合养了n 头牛,而每头牛的卖价恰为n 元.全部卖完后两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后剩下缺乏十元,轮到乙拿去,为了平均分配,甲应该补给乙多少元钱?[过程]因牛n 头,每头卖n 元,故共卖得n 2元.令a 表示n 的十位以前的数字,b 表示n 的个位数字.即n=10a+b,于是n 2=(10a+b)2=100a 2+20ab+b 2=10×2a(5a+b)+b 2.因甲先取10元,而乙最后一次取钱时缺乏10元,所以n 2中含有奇数个10元,以及最后剩下缺乏10元.但10×2a(5a+b)中含有偶数个10元,因此b 2中必含有奇数个10元,且b<10,所以b 2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b 2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下缺乏10元).[结果]甲比乙多拿了4元,为了平均分配甲必须补给乙2元.●板书设计1.8. 完全平方公式(一)一、几何背景试验田的总面积有两种表示形式:①a 2+2ab+b 2②(a+b)2比照得:(a+b)2=a 2+2ab+b 2二、代数推导(a+b)2=(a+b)(a+b)=a2+2ab+b2(a-b)2=[a+(-b)]2=a2-2ab+b2三、例题讲例例1.利用完全平方公式计算:(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2四、随堂练习(略)●备课资料一、杨辉杨辉,中国南宋时期杰出的数学家和数学教育家.在13世纪中叶活动于苏杭一带,其著作甚多.他著名的数学书共五种二十一卷.著有?详解九章算法?十二卷(1261年)、?日用算法?二卷(1262年)、?乘除通变本末?三卷(1274年)、?田亩比类乘除算法?二卷(1275年)、?续古摘奇算法?二卷(1275年).杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和开展,有的还编成了歌诀,如九归口诀。
5.3 简单的轴对称图形第2课时线段垂直平分线的性质教学内容第2课时线段垂直平分线的性质课时1核心素养目标1、在经历探索线段的轴对称的性质的过程,进一步体验轴对称的特征,发展空间观念2、探索垂直平分线的基本性质,掌握线段垂直平分线的尺规作图方法,进一步在实际应用中体会等腰三角形的有关性质.知识目标1.理解线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.教学重点理解线段垂直平分线的性质和判定.教学难点能运用线段垂直平分线的性质和判定解决实际问题.教学准备课件教学过程主要师生活动设计意图一、复习导入二、探究新知三、当堂练习,巩固所学一、温习旧知,导入新知什么样的图形叫做轴对称图形?师生活动:教师提问,学生积极回答:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.教师追问:线段是轴对称图形吗?二、小组合作,探究概念和性质知识点一:线段垂直平分线的性质在纸片上画一条线段AB,然后对折AB,使A,B两点重合,设折痕与AB的交点为O. 你发现了什么?师生活动:学生通过观察与测量得出AO = BO. 学生积极讨论,教师引导学生总结:归纳总结线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线(简称中垂线).议一议如图,点C是线段AB垂直平分线上的一点,AC和BC相等吗?师生活动:学生独立画图并思考,通过测量可得AC=BC.教师追问:改变点C的位置,结论还成立吗?小组交换数据并交流.设计意图:回顾轴对称图形的知识,使这几节课内容更加具有连贯性,再讨论线段是否为轴对称图形,引出了本节课的研究内容,起到铺垫作用.设计意图:在学生讨论线段的对称轴特点的基础之上,教科书给出了线段垂直平分线的概念对于此概念的理解,应建立在学生充分实践及思考的基础之上. 教学和评价时,教师可以让学生回顾这一操作过程,并说明自己在操作过程中获得的结论以及所得结论的理由.事实上,线段还有另外一条对称轴,即线段所在的直线,但不要求学生掌握.设计意图:鼓励学生进行讨论与交流,也可以利用多媒体演示,以加强对线段的中垂线性质的理解.学生可以利用折叠重合或全等三角形加以说明.设计意图:锻炼学生作图能力,尺规作图不要求学生写作法,但学生应能说学生发现结论不变,因此教师引导学生总结:线段垂直平分线上的点到这条线段两个端点的距离相等.典例精析例1 利用尺规,作线段AB的垂直平分线.已知:线段AB.求作:AB的垂直平分线.师生活动:学生独立思考,学生代表发言说明作图过程,教师通过PPT或者教具操作展示如下:作法:1.分别以点A和B为圆心,以大于12AB的长为半径作弧,两弧相交于点C和D;2. 作直线CD.直线CD就是线段AB的垂直平分线.对于学生不同但合理的方法,教师都应予以肯定.做一做利用尺规作如图所示的△ABC的重心.师生活动:教师提示:三角形的三条中线交于一点,这点称为三角形的重心.学生独立思考,学生代表上台展示,教师引导学生说明作图过程及依据,然后予以适当的评价,预测结果如图.典例精析例2 如图,DE是AC的垂直平分线,AB=12厘米,BC=10厘米,则△BCD的周长为() A.22 厘米B.16 厘米C.26 厘米D.25 厘米师生活动:学生独立思考,学生代表发言,教师引导学生阐述解题思路,如:解析:根据线段垂直平分线的性质得CD=AD,故△BCD的周长为DC+BD+BC=AD+BD+BC=AB+BC=12+10=22 (厘米).明其中的道理,即以操作和理解为主,提高学生语言表达能力.设计意图:回顾三角形的重心,使知识相互串联,然后利用作线段的垂直平分线的方法作图,提高学生作图能力.设计意图:通过练习加强学生对线段垂直平分线的性质的理解与应用.设计意图:让学生在问题的引导下,理解作图过程的合理性,提高作图能力.设计意图:考查学生对线段垂直平分线的性质的运用.设计意图:强化与线段垂直平分线的性质有关的证明和计算的技巧.设计意图:通过练习加强学生对线段垂直平分线的性质的理解与应用,强化说理、表达能力.设计意图:考查与线段垂直平分线的性质有关的证明和计算.设计意图:考查线段垂直平分线性质的实际运用,以及垂直平分线的作图能力.例3如图,某地由于居民增多,要在公路l边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站C建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?师生活动:学生独立思考,学生代表发言,教师引导学生简单说明画图过程与理由,并给予适当的评价与完善.解析:连接AB,作AB的垂直平分线交直线l于O,交AB于E.因为EO是线段AB的垂直平分线,所以点O到A,B的距离相等.所以这个公共汽车站C应建在O点处,才能使到两个小区的路程一样长.针对训练1. 如图,直线CD是线段AB的垂直平分线,点P为直线CD上的一点,且P A = 5,则线段PB的长为( )A. 6B. 5C. 4D. 3师生活动:学生独立思考,学生代表发言,教师给予适当的评价.2. 如图,AB是△ABC的一条边,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB = 8 cm,BD = 6 cm,那么EA=_____cm,DA =_____cm.师生活动:学生独立思考,学生代表发言,教师引导学生简单说明解答过程,并给予适当的评价.3. 如图,DE是△ABC的边AB的垂直平分线,交AB、BC于D、E,若AC = 4,BC = 5,求△AEC的周长.师生活动:学生独立思考,学生代表板书,教师与其余同学给予适当的评价与完善板书.解:因为DE是△ABC边AB的垂直平分线,所以EB = EA.所以△AEC的周长为AC + CE + EA = AC + CE + EB= AC + BC = 4 + 5 = 9.三、当堂练习,巩固所学1. 如图,在△ABC中,BC = 8 cm,边AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18 cm,则AC的长是cm.2. 如图,AD△BC,BD = DC,点C在AE的垂直平分线上,AB,AC,CE的长度有什么关系?AB + BD与DE有什么关系?3.如图,A,B,C三点表示三个工厂,现要建一供水站,使它到这三个工厂的距离相等,请在图中标出供水站的位置P,并说明理由.板书设计线段垂直平分线的性质线段垂直平分线上的点到这条线段的两个端点的距离相等.课后小结教师与学生一起回顾本节课所学的主要内容,梳理知识框架.教学反思本课时探索线段的轴对称性. 教科书以操作性活动以及“你发现了什么”的问题引人线段的轴对称性,学生在回答“线段是轴对称图形”后,建议要求其说明线段的对称轴的特点,为下面给出垂直平分线的定义做铺垫.。
《线段的垂直平分线》教案一、教学目标1. 让学生理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质。
2. 培养学生运用线段的垂直平分线解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队协作能力。
二、教学内容1. 线段的垂直平分线的定义2. 线段的垂直平分线的性质3. 线段的垂直平分线的判定4. 线段的垂直平分线的应用三、教学重点与难点1. 重点:线段的垂直平分线的定义、性质和应用。
2. 难点:线段的垂直平分线的判定。
四、教学方法1. 采用问题驱动法,引导学生主动探究线段的垂直平分线的性质。
2. 运用实例分析法,让学生通过实际问题体会线段的垂直平分线在几何中的应用。
3. 采用小组讨论法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入:通过生活中的实例,如剪刀剪纸、尺子测量等,引出线段的垂直平分线概念。
2. 新课讲解:讲解线段的垂直平分线的定义、性质和判定。
3. 实例分析:分析实际问题,运用线段的垂直平分线解决问题。
4. 小组讨论:让学生分组讨论,探索线段的垂直平分线在实际问题中的应用。
5. 课堂小结:总结本节课的主要内容和知识点。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学策略1. 运用多媒体课件,直观展示线段的垂直平分线的性质和判定。
2. 设计丰富多样的教学活动,激发学生的学习兴趣。
3. 注重个体差异,针对不同程度的学生提供不同程度的辅导。
4. 创设问题情境,培养学生解决问题的能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况:检查学生课后作业的完成质量,评估学生对知识的掌握程度。
3. 小组讨论:评价学生在小组讨论中的表现,包括沟通能力、团队协作能力等。
八、教学实践活动1. 制作线段的垂直平分线手工作品,展示线段的垂直平分线的性质。
2. 开展线段长度测量比赛,提高学生运用线段的垂直平分线解决问题的能力。
线段垂直平分线教案第一节:教学目标1. 理解线段垂直平分线的定义和性质。
2. 掌握如何使用尺规作线段垂直平分线。
3. 能够应用线段垂直平分线解决相关几何问题。
第二节:教学重点1. 理解线段垂直平分线的概念和性质。
2. 学习如何使用尺规作线段垂直平分线。
第三节:教学难点1. 应用线段垂直平分线解决相关几何问题。
第四节:教学准备1. 教学用具:直尺、圆规、铅笔、课程教材。
第五节:教学过程1. 导入引入线段垂直平分线的概念:线段垂直平分线是指将一条线段垂直平分为两个相等的部分的直线。
2. 讲解2.1 定义和性质讲解线段垂直平分线的定义和性质,重点强调线段垂直平分线将线段等分成两部分且垂直。
2.2 尺规作线段垂直平分线简要讲解如何使用尺规作线段垂直平分线的步骤:(1) 以线段的一个端点为圆心,任意半径作一个圆。
(2) 使用圆规,以该线段的另一个端点为定点,在圆上作两个弧交点。
(3) 使用直尺连接两个交点,得到的线段即为线段垂直平分线。
3. 演示和示范在黑板上演示如何使用尺规作线段垂直平分线,并进行示范。
4. 练习与巩固4.1 基础练习:练习使用尺规作线段垂直平分线,要求学生掌握基本的步骤与技巧。
4.2 拓展练习:引导学生应用线段垂直平分线解决相关几何问题,培养学生的综合分析和解决问题的能力。
5. 知识拓展介绍其他几何中使用线段垂直平分线的应用,如证明两条线段垂直等等。
6. 总结与反思简要总结线段垂直平分线的定义和性质,回顾尺规作线段垂直平分线的步骤。
鼓励学生思考和分享在解决相关问题中的经验和感悟。
第六节:教学延伸1. 资源推荐推荐相关几何学习资源,如图书、网站、视频等,帮助学生进一步巩固和扩展相关知识。
2. 拓展探究引导学生对线段垂直平分线进行进一步探究,如证明线段垂直平分线的存在唯一性、线段垂直平分线与其他几何元素的关系等。
第七节:教学评价1. 听课评价观察学生对课堂内容的理解和反应情况,记录学生的问题和疑惑。
§1.3.1 线段的垂直平分线(教案)郑州市第三十一初级中学荆飞教学分析【教材分析】在七年级我们曾经学习过轴对称和轴对称图形,本章将继续学习一些有关轴对称和轴对称图形的性质和证明.以前的学习过程,主要是发展学生的合情推理,而这一章的内容将要求学生从演绎推理的角度对问题进行证明.另外,在整个初中阶段,学生主要接触图形的四种运动状态,而本章将对轴对称和轴对称图形进行深入研究,本节课的线段的垂直平分线就是一个轴对称图形非常重要的一个数学模型.【我的思考】学生对于掌握定理及定理的证明并不存在太大的困难,这是因为在七年级“生活中的轴对称”中学生已经有了一定的基础.但是对于定理的逆定理的掌握应该是比较困难的,所以对逆定理研究时应该给学生留出更多的时间和空间去理解思考和感受.【学习目标】1、证明线段垂直平分线的性质定理,探索并证明线段垂直平分线的判定定理,进一步发展推理能力.2、能运用线段垂直平分线的性质定理和判定定理解决简单的几何问题.3、经历“探索-发现-猜想-证明”的过程,进一步体会证明的必要性,增强证明意识和能力.【教学重、难点】重点:写出线段垂直平分线的性质定理的逆定理.难点:两者在应用上的区别及各自的作用.【教学准备】1、分配学习小组(建议2人一组),明确每个人的任务.2、预习本节课的内容.P M N CB A 【教学过程】一、 巧妙设疑,引入新课【设计说明:本环节主要利用学生学习过的线段的垂直平分线,将此思考头一天布置给学生,让学生提前思考提出解决方案,并总结结论,在上课时进行小组内的交流,共享.从而能有效地引起学生的研究兴趣.】问题1:我们曾经利用折纸的办法得到线段的垂直平分线,那么线段垂直平分线的性质是什么?师生活动:将此思考头一天布置给学生,让学生提前思考并提出解决方案,在上课时展示.问题2:你能尝试证明这个结论吗?请画出图形,写出已知和求证,并写出证明过程,与你的同伴交流.师生活动:此时学生可能提出了一个问题:要证明“线段垂直平分线上的点到线段两端点的距离相等”,可线段垂直平分线上的点有无数多个,需要一个一个依次证明吗?何况不能一个一个依次证明呢?此时教师应鼓励学生思考,想办法来解决此问题.师:如果一个图形上的每一点都具有某种性质,那么只需在图形上任取一点作代表,就可以了,所以我们只需在线段垂直平分线上任取一点代表即可,因为线段垂直平分线上的点都具有相同的性质.二、 新知探究活动一:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两个端点的距离相等已知:直线AB MN ⊥,垂足为C ,且BC AC =,P 是MN 上的任意一点.求证:PB PA =证明:AB MN ⊥PM N C B A 90=∠=∠∴PCB PCAPC PC BC AC ==,)(SAS PCB PCA ∆≅∆∴PB PA =∴(全等三角形的对应边相等)师:总结证明线段平分线的性质定理后,你能给出它的符号语言吗?生:∵ 点P 在线段AB 的垂直平分线上 ∴ PA=PB师:那么通过线段垂直平分线的性质定理学习,对我们有哪些新的方法应用呢?生:这个结论可以用来证明两条线段相等。
设计意图:学生独立思考后,请两位同学分别上台讲解证明过程,体现学生自主解决问题的能力,最后学生纠错,教师引导,直至规范。
引导学生结合图形用几何语言叙述线段垂直平分线的性质定理。
进一步加深对其理解和应用能力。
活动二:线段垂直平分线的逆定理(判定定理):师:上节课我们认识学习了命题和真命题,你能写出上面这个定理的逆命题吗?它是真命题吗?生:逆命题:到线段两个端点的距离相等的点在这条线段的垂直平分线上.师:当我们写出逆命题时,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.让我们一起找到它们的条件与结论。
给出图形生:己知:PA=PB, 求证: 点P 在AB 的垂直平分线上.师:同学们可以前后小组为单位讨论一下如何证明点在垂直平分线上,需要辅助线帮助吗?并思考你还有没有别的解法?设计意图:教师引导学生从不同的角度对该命题进行证明.为线段垂直平分线的逆定理证明做铺垫。
之后学生先独立完成证明过程后,教师在白板上投屏展示其作品给与评价。
生1:取AB 的中点C ,过PC 作直线.90180)(,,,=∠=∠∴=∠+∠∠=∠∴∆≅∆∴===PCB PCA PCB PCA PCBPCA SSS BPC PCA CB AC PC PC BP AP即AB PC ⊥∴点P 在AB 的垂直平分线上.生2:过P 点作APB ∠的角平分线.PC PC BPC APC BP AP =∠=∠=,,)(SAS BPC APC ∆≅∆∴PCB PCA BC AC ∠=∠=∴,(全等三角形的对应边相等,对应角相等)又 180=∠+∠PCB PCA ∴ 90=∠=∠∴PCB PCA∴点P 在AB 的垂直平分线上.生3:过P 作线段AB 的垂直平分线PC .90,=∠=∠=PCB PCA CB AC∴点P 在AB 的垂直平分线上.三种证法由学生表述后,师生共同分析:一般情况下,过P 作线段AB 的垂直平分线PC 是不可能实现的,所以第三个同学的证法是错误的.设计意图:通过多种方法的对比,培养学生的分类讨论思想.总结定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.三、 典型例题例1 已知:如图,在ABC ∆中,AC AB =,O 是ABC ∆内一点,且OC OB = 求证:直线AO 垂直平分线段BC .解法一:BCAO ACAB CAOBAO SSS ACO ABO AOAO OCOB ACAB 垂直平分线段△△∴=∠=∠∴≅∴=== )(解法二:证明:AC AB =∴点A 在BC 的垂直平分线上.(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)同理,点O 在BC 的垂直平分线上.∴直线AO 是线段BC 的垂直平分线.(两点确定一条直线)设计意图:引导学生分析证明方法,学生动手证明,写出证明过程。
例题可以加强学生对线段垂直平分线性质定理的逆定理的进一步认识,使学生感受到两点确定一条直线在本定理中的应用。
师:通过证明线段垂直平分线的逆定理,我们得到今天的第二个新知识点,那么它的几何语言怎么书写呢?生:∵PA=PB∴点P 在AB 的垂直平分线上师:线段垂直平分线的判定定理如何应用呢?生:可以判定垂直和线段平分师:对,这个结论是经常用来证明点在直线上(或直线经过某一点)的根据.设计意图:引导学生结合图形用几何语言叙述线段垂直平分线的判定定理。
进一步加深对其理解和应用能力。
活动三:线段垂直平分线的点在线段的垂直平分线上(判定定理)师:那么线段垂直平分线上的点有什么特点呢?请同学们观看微课。
微课展示环节:总结:线段的垂直平分线可以看作是到线段的两个端点的距离相等的所有点的集合.师:遇见一点到线段的两个端点距离相等,要联想到这个点在这条线段的垂直平分线上. 设计意图:通过上面的例题和微课讲解,让学生进一步认识到线段垂直平分线的判定定理的应用,巩固提高本课新知的作用,也培养学生解决综合问题的能力四、提升能力例2 已知:如图 ,在 △ABC 中,AB = AC ,O 是△ABC 内一点,且 OB = OC.求证:直线 AO 垂直平分线段BC .证明:∵ AB = AC , ∴ 点 A 在线段 BC 的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).同理,点 O 在线段 BC 的垂直平分线上.∴ 直线 AO 是线段 BC 的垂直平分线(两点确定一条直线).教师活动:多媒体展示题目,在学生自主探究后明晰答案.学生活动:独立思考,书写,两位同学上讲台展示.设计说明:分析学生的学情,有的题目采取自主独立完成,有的题目要求学生通过小组合作学习的方式来完成,这样通过解题问题方式的多样化,调动学生的学习兴趣,形成良好的学习效果.四、 归纳小结,认知升华教师活动:1、本节课你学习了哪些新知识?2、在数学思想或方法上,你有什么感悟?A B CO3、你还有什么困惑吗?学生活动:畅所欲言,说出自己对这节课学习的感受和收获.【设计说明:主要是从三个方面进行思考,分别是知识、数学思想方法和小组建设的问题.】五、分层作业必做作业:课本P23 习题1.7知识技能1、2、3、4选做作业:如图,DF DE ,分别是ABD ∆和ACD ∆的高,且DF DE =.求证:AD 垂直平分EF .【设计说明:给学生有余力的学生提出一些可以进一步发展能力的题目.】六、教学反思在本节课中,所介绍的定理实际是在七年级曾经探索过的命题,如线段垂直平分线的性质定理,作为探索活动的自然延续和必要发展,我们作为老师要善于引导学生从问题出发,根据观察、实验的结果,先得出猜想,然后再进行证明,要求学生掌握证明的基本要求和方法,注意数学思想方法的强化和渗透.本节课我采用“引导—探索式”教学方法,整节课以学生观察、思考、发现为主。
作为课堂的组织者和引导者,我通过复习七年级折纸找三角形垂直平分线引入新课,让学生主动思考探索证明方法,激发他们的求知欲望。
整节课突出以下特点:(1)合情推理与演绎相结合,通过教学综合实践活动让学生印象深刻,提高教学效果。
(2)教学目标明了,目标明确设计巧妙,围绕一个核心展开整节课活动环节紧凑,学生记忆生动。
(3)概念夯实深入,重视学生在概念认知过程中教学经验的形成,通过两个探索活动引导学生从多角度了解线段垂直平分线的性质,然后一系列强化训练,让学生能充分理解和掌握本课所学知识。
总之,本节课抓住教学内容重点,学生学习过程紧凑,相信本节课学生可以熟练掌握垂直平分线相关性质,也能为以后的学习打下夯实基础。