向量的相似变换和对角化
- 格式:docx
- 大小:28.97 KB
- 文档页数:4
矩阵相似于对角矩阵的条件矩阵相似是线性代数中一个重要的概念,它描述了两个矩阵之间的一种关系,即它们有着相同的特征值和特征向量。
在实际应用中,矩阵相似性常常被用于矩阵的对角化,即将一个矩阵转化为对角矩阵的形式,以方便计算和分析。
本文将介绍矩阵相似于对角矩阵的条件及其应用。
一、矩阵相似的定义设A、B是两个n阶矩阵,若存在一个可逆矩阵P,使得P-1AP=B,则称A与B相似,记为AB。
其中,P-1表示P的逆矩阵。
矩阵相似是一种等价关系,即具有自反性、对称性和传递性。
具体而言,对于任意n阶矩阵A,有AA(自反性);若AB,则BA(对称性);若AB,BC,则AC(传递性)。
根据矩阵相似的定义,我们可以得出以下结论:- 相似矩阵具有相同的特征值和特征向量。
- 相似矩阵具有相同的秩、迹、行列式、特征多项式和伴随矩阵。
二、对角矩阵的定义对角矩阵是指只有对角线上有非零元素,其余元素均为零的矩阵。
例如:$$begin{bmatrix}a_1 & 0 & 00 & a_2 & 00 & 0 & a_3end{bmatrix}$$对角矩阵具有很多优良的性质,例如易于计算行列式、逆矩阵和幂等等。
三、相似于对角矩阵的条件一个矩阵A相似于对角矩阵的条件是存在一个可逆矩阵P,使得P-1AP=D,其中D为对角矩阵。
具体而言,相似于对角矩阵的条件有以下两个定理:定理1:设A为n阶矩阵,则A相似于对角矩阵的充分必要条件是A有n个线性无关的特征向量。
证明:若A相似于对角矩阵D,则A和D有相同的特征多项式和特征值。
设λ1,λ2,...,λk(k≤n)为A的所有不同特征值,对于每个特征值λi,都可以找到一个属于它的特征向量组成的集合Vi。
因此,A的所有特征向量的集合可以表示为V1∪V2∪...∪Vk,其中V1,V2,...,Vk两两之间线性无关。
由于A有n个特征向量,因此k=n,即A有n个线性无关的特征向量。
对角化的充要条件
可对角化的充要条件是n阶方阵存在n个线性无关的特征向量。
矩阵可对角化的充分条件:
第一:矩阵A为n阶方阵。
第二:充要条件是有n个线性无关的特征向量。
第三充分条件n个特征值互不相等也就是由特征值求出n个特征向量,组成变换矩阵P,P=(a1,a2,。
an),那么:P逆AP=主对角线为特征值的对角阵。
矩阵对角化的条件
有个线性无关的特征向量,可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。
如果一个方块矩阵A相似于对角矩阵,也就是说,如果存在一个可逆矩阵P使得P1AP是对角矩阵,则它就被称为可对角化的。
对角化的充分必要条件
有两条,其一是n阶方阵存在n个线性无关的特征向量,其二是如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重复次数。
可对角化矩阵
对合在实数上(甚至特征不是2 的任何域)是可对角化的,带有
1 和-1 在对角线上。
有限阶自同态(包括对合)是在复数,或域的特征不整除自同态的阶的任何代数闭合域(因为单位一的根是不同的)是可对角化的,带有单位根在对角线上。
这是循环群的表示理论的一部分。
投影是可对角化的,带有0 和1 在对角线上。
一、n 维向量的定义及运算一、n 维向量的定义及运算二、向量空间二、向量空间第一节方阵的特征值及其特征向量第二节相似矩阵第三节实对称阵的相似对角化一、方阵的特征值及其特征向量的概念一、方阵的特征值及其特征向量的概念二、方阵的特征值及其特征向量的计算二、方阵的特征值及其特征向量的计算三、方阵的特征值及其特征向量的性质三、方阵的特征值及其特征向量的性质对11=λ,解方程组0)1(=−x A E ,由⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−=−000110101211121112r A E , 所以A 的对应于特征值11=λ的全部特征向量为),0(111R k k k ka x ∈≠⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=111a .对22−=λ,解方程组0)2(=−−x A E ,由⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−−−−=−−0000001111111111112r A E 得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=101,01121a a ,所以A 的对应于特征值22−=λ的全部特征向量为:,,(10101111212111R k k k k a k a k x ∈⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=+=且不同时为零)对21=λ,解方程组0)2(=−x A E ,由⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−=−0001101012111211122r A E得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=111a .所以A 的对应于特征值21=λ的全部特征向量为 ),0(111R k k k ka x ∈≠⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==对132−==λλ,解方程组0)(=−−x A E , 由 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−−−−=−−000000111111111111r A E得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=101,01121a a ,所以A 的对应于特征值132−==λλ的全部特征向量为:R k k k k a k a k x ∈⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=+=21212211,(101011且不同时为零)推论1、方阵A 可逆Ù|A|≠0ÙA 的特征值全不为零。
矩阵的相似性与对⾓化概要介绍相似矩阵、对⾓化以及⼀⼤堆性质.相似矩阵的定义从⼀节中,我们了解到每⼀个可逆矩阵都是⼀个可变换基的矩阵,每⼀个可变换基的矩阵也都是可逆的. 设 B 是向量空间V的⼀组基,T是V上的⼀个线性变换,A=B[T]B, 则T的所有基表⽰的集合是{B1[I]B⋅B[T]B⋅B[I]B1:B1is a basis of V}={S−1AS:S∈M n(F)is invertible}这恰是所有与A的相似的矩阵的集合,说明了相似矩阵正好就是单个线性变换的不同的基表⽰. 于是研究相似性可以看成是研究线性变换固有的性质或者是它们所有的基表⽰共有的性质。
与任何等价关系类似,相似性将集合M n分划成不相交的等价类。
每个等价类是M n中⼀个给定矩阵(这个类的⼀个代表元)相似的所有矩阵组成之集合。
⼀个等价类中所有的矩阵是相似的,不同等价类中的矩阵是不相似的,关键的结论是处于⼀个相似类中的矩阵共同享有许多重要的性质。
相似矩阵的性质相似矩阵有相同的特征多项式 **证明**:计算 \\begin{align\*} p\_B(t)&=\mathrm{det}(tI-B)=\mathrm{det}(tS^{-1}S-S^{-1}AS)=\mathrm{det}(S^{-1}(tI-A)S) \\\\ &=\mathrm{det}\\,S^{-1} \mathrm{det}(tI-A) \mathrm{det}S=( \mathrm{det}\\,S)^{-1}(\mathrm{det}\\,S) \mathrm{det}(tI-A)=\mathrm{det}(tI-A)=p\_{A}(t) \\end{align\*} 基于此有个简单的推论,对相似性来说,有相同的特征值是⼀个必要但⾮充分的条件,⽐如01 00与0000有相同的特征值但不相似。
### 对⾓矩阵的相似性由于对⾓矩阵特别简单且有很好的性质,我们乐于知道何种矩阵与对⾓矩阵相似. **证明**:假设k<n, 且="" n="" 元向量=""x(1)="",=""⋯="",x(k)="" 是线性⽆关的,⼜对每个="" i="1,"⋯,=""k="" 有="" ax(i)="λi x(i)." 设="" λ="diag(λ1,"λk),=""s1=""x(1)=""⋯=""x(k)="",="" 并选取任意⼀个="" s2=""∈=""m n,="" 使得="" s=""s1s2="" 是⾮奇异的.="" 计算="" \\begin{align\*}="" s^{-1}as="" &="S^{-1}"=""ax(1)⋯ax(k)as_2="S^{-1}" \lambda\_1="" x^{(1)}&\cdots&\lambda\_k="" x^{(k)}&as\_2\end{bmatrix}="" \\\\="" s^{-1}="" &s^{-1}as\_2\end{bmatrix}=""e_1=""⋯λ_k=""e_k=""s−1as_2="" \lambda="" c="" 0="" d="" \end{bmatrix},\quad="" \end{bmatrix}="S^{-1}AS\_2" \\end{align\*}="" 反过来,如果="" s="" 是⾮奇异的,s−1as=""且我们给分划=""s1s2,="" 其中="" m_{n,k},=""那么=""s_1=""的列就是线性⽆关的,且=""=""as1as2="AS=S"s1λ=""s1c+s2=""d.=""于是,as_1="S_1\Lambda,"所以=""的每⼀列都是=""a=""的特征向量。
三阶矩阵对角化步骤
三阶矩阵对角化是线性代数中的一个重要概念,它能够将一个三阶方阵通过相似变换转化为对角阵。
这个过程可以简化矩阵的计算和分析,因此在数学和工程领域有着广泛的应用。
要对一个三阶矩阵进行对角化,首先需要求出它的特征值和特征向量。
特征值是一个标量,而特征向量是一个非零向量,它满足方程A*v=λ*v,其中A是待对角化的矩阵,v是特征向量,λ是特征值。
接下来,我们需要求出矩阵的特征多项式。
特征多项式是一个关于λ的多项式,它的根就是矩阵的特征值。
求解特征多项式的方法可以是展开式法、判别式法等。
一旦求出了特征多项式,我们就可以得到特征值。
然后,我们需要求解每个特征值对应的特征向量。
通过将特征值代入方程A*v=λ*v,我们可以求解出特征向量。
特征向量可以通过高斯消元法、矩阵的零空间等方法求解。
我们将特征向量按列排列成一个矩阵P,将特征值按对角线排列成一个矩阵D。
那么对角化的结果就是A=P*D*P^-1。
其中,P是特征向量矩阵,D是特征值矩阵,P^-1是P的逆矩阵。
通过对角化,我们可以将一个复杂的三阶矩阵转化为一个对角矩阵,简化了矩阵的计算和分析。
对角化还可以帮助我们研究矩阵的性质和特征,为解决实际问题提供了便利。
三阶矩阵对角化是线性代数中的一个重要概念,通过求解特征值和特征向量,可以将一个三阶矩阵转化为对角矩阵。
这个过程可以简化矩阵的计算和分析,为解决实际问题提供了便利。
希望通过本文的介绍,读者能够对三阶矩阵对角化有一个更加深入的理解。
相似对角矩阵相似对角矩阵是指具有相同特征值的矩阵,它们之间可以通过一个可逆矩阵进行相似变换得到。
在线性代数中,相似对角矩阵是一种非常重要的概念,它在许多领域都有着广泛的应用。
首先,我们需要了解什么是特征值和特征向量。
给定一个n维方阵A,如果存在一个非零向量x满足Ax=kx,则称k为A的特征值,x为A对应于特征值k的特征向量。
通常情况下,矩阵会有多个不同的特征值和对应的特征向量。
接下来,我们来探讨相似对角矩阵的概念。
设A和B是两个n维方阵,并且存在一个可逆方阵P使得B=P⁻¹AP,则称A和B是相似的。
此时,A和B具有相同的特征值和特征向量,只是它们在不同基下表示而已。
那么如何判断一个矩阵是否为对角矩阵呢?如果一个n维方阵D满足D(i,j)=0 (i≠j) ,则称D为n维对角矩阵。
如果一个矩阵A与一个对角矩阵D相似,则称A是可对角化的。
现在我们来证明,如果两个矩阵A和B是相似的,则它们具有相同的特征值。
假设B=P⁻¹AP,其中P是可逆方阵。
那么对于任意的非零向量x,有:Bx=P⁻¹APx左右同时乘以P:PBx=APx令y=Px,则有:By=λy其中λ为特征值。
因此,B也具有特征值λ,并且与A具有相同的特征向量。
另外,如果一个矩阵A具有n个线性无关的特征向量,则它一定可以被对角化。
这是因为我们可以将这些特征向量组成一个可逆方阵P,使得P⁻¹AP=D为对角矩阵。
最后,我们来看一下相似对角矩阵在实际应用中的作用。
在物理学、工程学、金融学等领域中,许多问题都可以转化为求解一组线性方程组或者求解特定的矩阵特征值和特征向量问题。
而相似对角矩阵可以将原始问题转化为更加简单的形式,从而简化计算过程,提高计算效率。
总之,相似对角矩阵是一种非常重要的概念,它在许多领域都有着广泛的应用。
通过相似变换,我们可以将一个矩阵转化为更加简单的形式,从而更方便地进行计算和分析。
邯郸学院本科毕业论文题目线性变换“可对角化”的条件及“对角化”方法学生苏成杰指导教师张素梅教授年级2006 级专业数学与应用数学二级学院数学系(系、部)邯郸学院数学系2010年5月郑重声明本人的毕业论文是在指导教师张素梅老师的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.毕业论文作者(签名):年月日摘要通过从特征值、特征向量、特征子空间、不变子空间、最小多项式、特征多项式以及线性变换矩阵本身的结构特点等七个不同的角度去分析线性变换可对角化的条件,总结出了七个充要条件和四个充分条件.第二部分给出了利用特征向量将线性变换对角化的一般方法并赋予了典型例题加以具体说明,同时又就以上某些条件的等价关系进行了说明.关键词线性变换对角化条件特征值特征向量Linear transformation’s “diagonalizable”conditions and“diagonalization” methods Su Chengjie Directed by Professor. ZhangSumeiAbstract According to the characteristic number, characteristic vector, subspace, invariant subspace, minimal polynomial, characteristic polynomial and the linear transformation matrix itself we get seven different sufficient conditions and four different necessary conditions. The second part of the text will show a common method to diagonalization the linear transformation with characteristic number and characteristic vector and also there will be an example to make it clear and then the construction of the above conditions are discussed on equivalence relation.Key words Linear transformation Diagonalization Condition Characteristic number Characteristic vector目录摘要 (Ⅰ)外文页 (Ⅱ)1 引言 (1)2 线性变换及其矩阵表示 (1)2.1 线性变换的定义 (1)2.2 线性变换矩阵的定义 (1)3 数域P上的n维线性空间V上的线性变换σ可对角化的充要条件 (2)4 数域P上的n维线性空间V上的线性变换σ可对角化的充分条件 (6)5 复数域P上的n维线性空间V上的线性变换σ可对角化的充要条件 (8)6 线性变换对角化方法介绍 (9)7 对各条件之间的联系进行分析和总结 (11)参考文献 (11)致谢 (12)线性变换“可对角化”的条件及“对角化”方法1 引言线性变换是线性空间中的重要研究内容之一,过去我们把对线性变换的研究转化为了对矩阵的研究,这样极大地丰富了线性变换的研究内容,线性变换的对角化问题就是其中一例.值得注意的是,并不是所有的线性变换都可以对角化,因此对线性变换可对角化的条件的研究是十分有价值的.本文从不同的角度分析了线性变换可对角化的条件并给出了相应的结论.2 线性变换及其矩阵表示2.1 线性变换的定义 定义2.1296]1[ 设V 是数域P 上的线性空间,若存在V 上的一个变换σ满足条件(1))()()(βαβασσσ+=+ V ∈∀βα, (2)αασσk k =)( V P k ∈∀∈∀α, 则称σ为V 的一个线性变换.2.2 线性变换矩阵的定义 定义2.2324]1[ 设n εεε,,,21Λ是数域P 上的n 维线性空间V 上的一组基,σ是V 中的线性变换,基向量的像可以被基线性表出:⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=.,,22112222112212211111n nn n n n nn n n a a a a a a a a a εεεεεεεεεεεεΛΛΛΛΛΛΛσσσ 用矩阵来表示就是A εεεεεεεεε),,,(),,,(),,,(212121n n n ΛΛΛ==σσσσ其中⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a aa a aa a a ΛM M M ΛΛ212222111211A , 则称A 为线性变换σ在基n ε,,ε,εΛ21下的矩阵.3 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件命题3.1 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是V 中存在由σ的特征向量组成的一组基.证明 必要性 设线性变换σ在基n εεε,,,21Λ下具有对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n λλλO21A 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n λλλσOΛΛ212121),,,(),,,(εεεεεε 这就是说n i i i i ,,2,1,Λ==εελσ.因此n εεε,,,21Λ就是σ的n 个线性无关的特征向量.充分性 如果V 中存在由σ的特征向量组成的一组基,显然在这组基下σ的矩阵是对角矩阵,即线性变换σ可以对角化.命题 3.2 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是V 可以分解成σ的n 个一维不变子空间的直和.引理3.2.1260]2[ 如果ξ是数域P 上的线性空间V 上的线性变换σ的一个特征向量,则ξ生成的子空间)(ξL 是σ的一维不变子空间.引理3.2.2 设σ是数域P 上的n 维线性空间V 上的线性变换,如果W 是σ的一维不变子空间,则W 中任何一个非零向量都是σ的特征向量.证明 设W 是σ的一维不变子空间,任取)(0αα≠∈W ,则α是W 的一组基.因为W 是σ的一维不变子空间所以W ∈ασ,从而αα0k =σ对某个P k ∈0成立,这表明α是σ的特征向量.下面证明命题3.2必要性 设σ可对角化,由命题3.1可知V 中存在由σ的特征向量组成的一组基n ααα,,,21Λ,因此)()()(21n L L L V ααα⊕⊕⊕=Λ.根据引理3.2.1有),,2,1)((n i L i Λ=α是σ的一维不变子空间.由此得线性空间V 可以分解成σ的n 个一维不变子空间的直和.充分性 设V 可以分解成σ的n 个一维不变子空间n W W W ,,,21Λ的直和n W W W V ⊕⊕⊕=Λ21在),,2,1(n i W i Λ=中取一组基i ε,据引理3.2.2得i ε是σ的特征向量.由于和n W W W ⊕⊕⊕Λ21是直和,所以n εεε,,,21Λ是n W W W V ⊕⊕⊕=Λ21的一组基,即线性空间V 中存在由线性变换σ的特征向量组成的一组基,由命题3.1可知线性变换σ可以对角化.命题3.3 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是σ的所有特征子空间的维数之和等于n .引理3.3.1251]2[ n 维线性空间V 上的线性变换σ的属于不同特征值m λλλ,,,21Λ的特征向量是线性无关的;线性变换σ的属于不同特征值m λλλ,,,21Λ的线性无关的特征向量组合在一起仍然线性无关.下面证明命题3.3必要性 设线性变换σ的所有不同特征值分别是m λλλ,,,21Λ,),,2,1(m i V i Λ=λ是属于特征值),,2,1(m i i Λ=λ的特征子空间,因为线性变换σ可对角化,由命题3.1知σ有n 个线性无关的特征向量,从而有m V V V V λλλ⊕⊕⊕=Λ21.所以)dim ()dim ()dim ()dim ()dim (2121m m V V V V V V V λλλλλλ+++=⊕⊕⊕=ΛΛ.其中)dim(V 表示线性空间V 的维数,下同.从上面的等式可以看出,线性变换σ的所有特征子空间的维数之和等于线性空间V 的维数n . 充分性 设线性变换σ的所有特征子空间的维数之和等于线性空间V 的维数n ,即∑===mi n V V i1)dim()dim(λ在m V V V λλλ,,,21Λ中各取一组基,把它们合起来供共有n 个向量.据引理3.3.1它们仍然线性无关,从而它们构成线性空间V 的一组基.换句话说,线性空间V 中存在由线性变换σ的特征向量构成的一组基,由命题3.1知线性变换σ可以对角化.命题3.4 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是线性变换σ在某一组基下的矩阵A 的最小多项式是P 上互素的一次因式的乘积.引理3.4.1 设A 是一个准对角矩阵⎪⎪⎭⎫⎝⎛=21A A A 并设1A 的最小多项式为1g (x ),2A 的最小多项式为2g (x ),那么A 的最小多项式为1g (x )和2g (x )的最小公倍式)](),([21x g x g .证明 记)](),([)(21x g x g x g =,首先0A A A =⎪⎪⎭⎫⎝⎛=)()()(21g g g 因此g(x )能被A 的最小多项式整除,其次,如果0A =)(h ,那么0A A A =⎪⎪⎭⎫ ⎝⎛=)()()(21h h h 所以0A 0A ==)(,)(21h h ,因而)(|)(),(|)(21x h x g x h x g .并由此得)(|)(x h x g .这样就证明了g(x )是A 的最小多项式.引理3.4.286]3[ 设n 维线性空间V 上的线性变换σ在某组基下的矩阵A 的最小多项式为)(x g ,它可以分解成一次因式的乘积s r s r r x x x x x x x g )()()()(2121---=Λ则V 可以分解成不变子空间的直和s V V V V ⊕⊕⊕=Λ21,其中},)(|{V x V i ri i ∈=-=ξ0ξE A ξ,s i ,,2,1Λ=.下证命题3.4根据引理3.4.1,条件的必要性是显然的,现在证明充分性.根据矩阵和线性变换之间的对应关系,定义任意线性变换σ的最小多项式为其对应矩阵A 的最小多项式.设线性变换σ的最小多项式为)(x g ,由)(x g 是数域P 上互素的一次因式的乘积,我们有∏=-=li i a x x g 1)()(由引理3.4.2可得l V V V V ⊕⊕⊕=Λ21其中},)(|{V a V i i ∈=-=ξ0ξE A ξ,这里E 表示单位矩阵.因此把l V V V ,,,21Λ各自的基合起来就是线性空间V 的基,而每个基向量都属于某个),,2,1(n i V i Λ=,因而是线性变换σ的特征向量.换句话说就是线性空间V 中存在由线性变换σ的特征向量构成的一组基,由命题3.1可得线性变换σ可对角化.命题3.5 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是对于线性变换σ的每个特征值λ都有等式:k r n =--)(A E λ(其中k 是λ的重数,A 表示线性变换σ在某一组基下的矩阵,)(A E -λr 表示矩阵A E -λ的秩,下同).证明 必要性 设λ是线性变换σ的任一特征值,且其重数为k ,由于σ可以对角化,所以属于特征值λ的线性无关的特征向量有k 个,从而齐次线性方程组0X A E =-)(λ的基础解系中含向量的个数为k .由参考文献[1]第142页定理8可知齐次线性方程组0X A E =-)(λ的基础解系中含向量的个数为)(A E --λr n所以有k r n =--)(A E λ.充分性 由于对线性变换σ的每个特征根λ有k r n =--)(A E λ (k 是λ的重数),所以齐次线性方程组0X A E =-)(λ的基础解系中含向量的个数为k ,即属于k 重特征值λ的线性无关的特征向量的个数为k ,从而线性变换σ共有n 个线性无关的特征向量,由命题3.1可知线性变换σ可以对角化.由上面的证明过程可知,条件:对于线性变换σ的每个特征值λ都有k r n =--)(A E λ(k 是λ的重数)也可改为线性变换σ的每个特征值λ的重数等于齐次线性方程组0X A E =-)(λ的基础解系所含向量的个数.或改为如果令r λλλ,,,21Λ是σ的所有不同特征值,则有n r n r i i =--∑=)]([1A E λ.或改为线性变换σ的每个特征值λ的特征子空间的维数等于λ的重数.4 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件命题4.1 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件是σ有n 个不同的特征值.证明 由于属于不同特征值的特征向量是线性无关的,且线性变换σ有n 个不同的特征值,所以线性变换σ有n 个线性无关的特征向量,它们构成V 的一组基,由命题3.1可知线性变换σ可对角化.命题4.2 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件是σ在某组基下的矩阵A 的特征多项式在数域P 内有n 个单根.证明 由于矩阵A 的特征多项式||)(A E -=λλf在数域P 上有n 个单根,从而线性变换σ有n 个不同的特征值,由命题4.1得线性变换σ可对角化.命题4.3 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件是σ在某组基下的矩阵A 为幂等矩阵)(2A A =.引理4.3.1130]3[ 幂等矩阵的特征根只能是0或1.下面证明命题4.3设线性变换σ在某组基下矩阵A 为幂等矩阵,且r r =)(A ,由引理4.3.1知线性变换σ的特征值是0或1,所以矩阵A 相似于对角矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=00110O OA 由于相似矩阵具有相同的秩,所以 )()(0A A r r =)()(0A E A E -=-r r又n r r =+-)()(00A A E ,所以rn r n r r -=-=+-)()()(A E A A E . 于是齐次线性方程组0X A E =-)(的基础解系所含向量的个数为n )(A E --r =r r n n =--)(.又因为r r =)(A ,故齐次线性方程组0AX X A E =-=-)0(的基础解系所含向量的个数为r n r n -=-)(A .于是线性变换σ共有n r n r =-+)(个线性无关的特征向量,它们构成V 的一组基,由命题3.1可得线性变换σ可对角化.另外,如果线性变换σ在某一组基下的矩阵A 满足E A =2或)(2P k k ∈=A A ,由以上的证明过程可知线性变σ同样可以对角化.命题4.4 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件是线性变换σ在某组基下矩阵A 为下三角矩阵,且),,2,1,,(n j i j i a a jj ii Λ=≠≠(其中ii a 为主对角线上元素).证明 因为A 是一个下三角矩阵,所以A 的特征多项式为|λA E -|=∏=-n i ii a1(λ),又由于),,2,1,,(n j i j i a a jj ii Λ=≠≠,从而A 的特征多项式有n 个不同的根),,2,1(n i a ii Λ=,即线性变换σ有n 个不同的特征值,由命题4.1可得线性变换σ可对角化.5 复数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件命题5.1 复数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是σ在某组基下的矩阵A 的最小多项式无重根.证明 由命题3.4可知σ可对角化的等价条件是σ在某组基下的矩阵A 的最小多项式是P 上互素的一次因式的乘积,而当P 是复数域时这个条件就等价于A 的最小多项式无重根,从而命题成立.另外不难证明如果A 的特征多项式无重根,则线性变换σ可对角化.命题5.2 复数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是对σ的每个特征值i λ均有m i r r i i ,,2,1,)()(2Λ=-=-A E A E λλ.证明 必要性 因线性变换σ可对角化,故A 的最小多项式)(λf 无重根,即A 的任一特征根i λ只能是)(λf 的单根.于是)(λf 与(i λλ-2)的最大公因式是i λλ-,由最大公因式的性质知,有多项式][)(),(λλλP v u ∈使 EA E A A A A i i ii v f u v f u λλλλλλλλλ-=-+-=-+22))(()()())(()()(.因 0A =)(f ,故 E A E A A i i v λλ-=-2))((.所以r (E A i λ-)≤2)(E A i r λ-但2)(E A i r λ-≤)(E A i r λ-,故有)(E A i r λ-=m i r i ,,2,1,)(2Λ=-E A λ.充分性 由命题5.1知,只需证明A 的最小多项式无重根,用反证法.假设线性变换σ的某个特征根i λ是最小多项式)(λf 的重根,可设)()()(2λλλλg f i -=,因多项式)()(λλλg i -的次数低于)(λf 的次数,故0A E A ≠-)()(g i λ,但0A A E A ==-)()()(2f g i λ所以)(A g 中必存在非零的列向量0X 使0X E A 0X E A =-≠-020)()(i i λλ.这就是说,齐次线性方程组0X E A =-)(i λ与0X E A =-2)(i λ有不同解,故2)()(E A E A i i r r λλ-≠-.这与2)()(E A E A i i r r λλ-=-矛盾.故)(λf 无重根,从而线性变换σ可对角化.6 线性变换对角化方法介绍命题6.162]4[ 设数域P 上的n 维线性空间V 中的线性变换σ有m 个不同的特征值,它们分别为)(,,,21n m m ≤λλλΛ,且其对应有n 个线性无关的特征向量为n ααα,,,21Λ,A 为线性变换σ的矩阵.如果令),,,(21n αααP Λ=则有⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n λλλO 211AP P . 上述命题就是将一个线性变换的矩阵变成一个其主对角线上全为其特征值的对角矩阵的具体方法.例298]6[ 数域P 上的n 维线性空间V 中的线性变换σ在某组基下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=533242111A试将其对角化.解 矩阵A 的特征多项式)6()2(533242111||)(2--=-----=-=λλλλλλλA E f 令 0)6()2()(2=--=λλλf得6,2321===λλλ.所以线性变换σ的特征值为6,2321===λλλ.当2=λ时,由,)2(0X A E =-求得属于特征值2=λ的线性无关的特征向量为T T )1,0,1(,)0,1,1(21=-=αα.当6=λ时,由,)6(0X A E =-求得属于特征值6=λ的线性无关的特征向量为T )3,2,1(3-=α.再令⎪⎪⎪⎭⎫ ⎝⎛--==310201111),,(321αααP可求得⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=-4141414143432121211P 则有⎪⎪⎪⎭⎫ ⎝⎛=-6221AP P .至此已将线性变换对角化,其对角化的矩阵为⎪⎪⎪⎭⎫ ⎝⎛=6220A .从上面的解题过程可以看出,线性变换对角化的过程实际上就是求解特征值与特征向量的过程.换句话说就是求得一组基,使线性变换在这组基下的矩阵为对角矩阵.显然这组基中的每一个向量都是线性变换的特征向量,而对角矩阵主对角线上元素都是其对应特征值.从而不难理解线性变换的矩阵对角化后并没有改变线性变换本身,它只是在另一组基下的矩阵.7 对各条件之间的联系进行分析和总结通过对以上各种条件进行分析和总结可以看出,线性变换可对角化的条件虽然有很多,但从本质上说它们其实是一致的.例如,线性变换σ可对角化的充要条件“σ有n 个线性无关的特征向量”与“线性空间V 上的线性变换σ的所有特征子空间的维数之和等于n ”其实就是同一问题的不同表述:有“线性变换σ有n 个线性无关的特征向量”就必然有“线性变换σ的所有特征子空间的维数之和等于n ”.反过来,如果“线性变换σ的所有特征子空间的维数之和等于n ”则必有“σ有n 个线性无关的特征向量”.所以,抓住问题的本质有助于真正理解和掌握线性变换可对角化的条件及对角化方法.参考文献:[1] 王萼芳 ,石生明.高等代数[M].北京:高等教育出版社,2005[2] 丘维声.高等代数[M].北京:高等教育出版社,2001[3] 钱芳华. 高等代数方法选讲[M].桂林:广西师范大学出版社,1991[4] 程云鹏 .矩阵论[M].西安:西北工业大学出版社,2001[5] 钱吉林.高等代数题解精粹[M].北京:中央民族大学出版社,2005[6] 唐忠明.高等代数[M].南京:南京大学出版社,2000[7] Y.Q.Guo,K.P.Shum and G.T.Xu.Linear Algebra[M].Beijing:Science Press ,2008致谢在此篇毕业论文划上句号之际,我郑重地向我的指导教师张素梅老师表示我最诚挚的感谢!衷心地感谢她的关心、指导和教诲.在张老师的精心引导下,几经修改和完善我终于完成了毕业论文,从她身上我获得了太多的文化和知识,更汲取了诸多纯朴而伟大的高尚品德.我在撰写毕业论文期间的工作自始至终都是在张老师的全面、具体指导下进行的.老师渊博的学识、民主而严谨的作风,使我受益匪浅.张老师谦逊的学术作风和高尚的人格品德将永远激励我前行!最后还要感谢我的同学和朋友四年来对我的关心和帮助.。
标题:相似对角化与合同变换之关联在数学的海洋中,矩阵理论是一块重要的大陆。
其中,相似对角化与合同变换是两个核心概念,它们在矩阵理论中的地位犹如江河中的水车,推动着整个理论体系的发展与运作。
要深刻理解这两个概念,我们需要从它们的源头出发,逐步探寻它们之间的内在联系。
首先,让我们来解析“相似对角化”这一概念。
如果存在一个可逆矩阵P,使得通过P的相似变换后,矩阵A能够变为对角矩阵D,即P^-1AP=D,那么我们称矩阵A是可相似对角化的。
对角矩阵D上的每一个非零元素,都是矩阵A的特征值,而矩阵P的列向量则是对应于这些特征值的一组线性无关的特征向量。
可以看出,相似对角化揭示了矩阵的内在性质——特征结构。
紧接着,我们再探讨“合同变换”。
合同变换是指存在一个可逆矩阵C,使得C^TAC=B,这里B通常是一个对角矩阵,其对角线上的元素是矩阵A的特征值。
不同于相似变换,合同变换除了基的变换外还涉及度量的改变。
在合同变换下,矩阵A的几何性质如长度、角度等可能会发生变化,但其特征值保持不变。
因此,合同变换更多地关注矩阵的外在表现——它在空间中的作用效果。
那么,相似对角化和合同变换之间又是如何相互关联的呢?事实上,这两种变换都是围绕特征值和特征向量展开的。
在特定条件下,它们可以实现从原始矩阵到简化后的对角矩阵的转换。
具体来说,当矩阵A是一个对称矩阵时,我们可以通过正交相似变换将它对角化,这里的正交矩阵既是相似变换的矩阵P,也是合同变换的矩阵C。
这意味着对于对称矩阵而言,相似对角化和合同变换是一致的。
然而,对于非对称矩阵,这两种变换则表现出不同的特点。
非对称矩阵也可以通过相似变换对角化,但所需的可逆矩阵P不再是正交的;同时,它也可以通过合同变换得到对角化,但此时需要的可逆矩阵C通常是实对称的。
在这种情况下,相似对角化侧重于代数性质的研究,而合同变换则偏向于保持几何性质的稳定。
此外,这两种变换在实际应用中也有着不同的优化方向。
矩阵相似对角化的条件一、前言矩阵相似对角化是研究矩阵理论中的一个重要问题。
在数学、物理和工程学科中,矩阵相似对角化有着广泛的应用。
本文将从定义、性质与条件三个方面探讨矩阵相似对角化的相关条件。
二、定义矩阵相似对角化是将一个矩阵通过相似变换转化为对角矩阵的过程。
相似变换是指存在一个可逆矩阵P,使得相似变换前的矩阵A与相似变换后的矩阵B之间存在如下关系:B=P^-1AP其中,A与B是相似矩阵,P是相似变换矩阵。
三、性质1. 相似矩阵具有相同的特征值设A与B是相似矩阵,其相似变换矩阵为P,则有:|B-λE|=|P^-1AP-λE|=|P^-1AP-P^-1λEP|=|P^-1||A-λE||P|=0因此,相似矩阵A与B具有相同的特征多项式,从而具有相同的特征值。
2. 相似矩阵的特征向量基相同设A与B是相似矩阵,其相似变换矩阵为P,则有:AP=PB设x是A的特征向量,则有Ax=λx。
将其代入上式得:P^-1APx=P^-1PBx即B(Px)=λ(Px),从而Px是B的特征向量。
因此,相似矩阵A与B的特征向量基是相同的。
3. 两个矩阵同时相似于一个对角矩阵设A、B和C是三个相似矩阵,其相似变换矩阵分别为P、Q和R,则有:B=Q^-1AQ, C=R^-1AR因此,有:C=(R^-1Q)Q^-1AQ(R^-1Q)^-1也就是说,A、B和C同时相似于对角矩阵。
四、条件矩阵相似对角化的条件具有如下几个方面:1. 矩阵可对角化如果一个矩阵能够对角化,那么就存在一个矩阵P,使得A=PDP^-1,其中D是对角矩阵。
这意味着,A具有n个线性无关的特征向量。
2. 矩阵相似于对角矩阵如果A相似于对角矩阵D,那么相似变换矩阵P的列向量应该是A的特征向量。
3. 不同特征值的特征向量线性无关如果A的不同特征值的特征向量线性无关,那么就存在P,使得A=PDP^-1,其中D是对角矩阵。
这是因为,在这种情况下,就有n个线性无关的特征向量可以组成相似变换矩阵P的列向量。
矩阵的相似与对角化矩阵是线性代数中非常重要的概念之一,它在各个领域都有广泛的应用。
在研究矩阵的性质时,相似和对角化是两个重要的概念。
本文将介绍矩阵的相似和对角化以及它们在数学和实际问题中的意义。
一、矩阵的相似矩阵的相似是指对于两个矩阵A和B,若存在一个可逆矩阵P,使得P^-1AP = B,则称矩阵A和B相似。
其中,P被称为相似变换矩阵。
相似的概念可以帮助我们判断矩阵之间是否具有一些相似的性质。
在矩阵相似的条件下,它们具有以下几点性质:1. 相似矩阵具有相同的特征值:设A和B是相似矩阵,若c是A的特征值,则c也是B的特征值。
2. 相似矩阵具有相同的特征多项式:特征多项式是一个与矩阵相关的特征方程,相似矩阵的特征多项式相同。
3. 相似矩阵具有相同的迹和行列式:设A和B是相似矩阵,它们的迹和行列式相等。
相似的概念在矩阵的分析和计算中具有重要的作用。
通过相似变换,我们可以简化矩阵的计算和求解问题。
而且,相似关系也有助于我们研究矩阵的特征值和特征向量,进一步分析矩阵的性质和应用。
二、矩阵的对角化对角化是指将一个矩阵通过相似变换,转化为一个对角矩阵的过程。
对角矩阵是一种特殊的矩阵,它的非对角元素都为0。
对于一个n阶方阵A,若存在一个可逆矩阵P,使得P^-1AP = D,其中D是一个对角矩阵,则称A可对角化。
对角化的过程可以表示为A = PDP^-1。
其中,D是由A的特征值按对角线排列而成的对角矩阵。
一个矩阵是否可以对角化,与它的特征值和特征向量密切相关。
对角化的条件如下:1. 若矩阵A具有n个线性无关的特征向量,即A的特征向量的个数等于n,则A可对角化。
2. 若矩阵A的特征向量的个数少于n,则A不可对角化。
对角化的概念在数学和实际问题中都具有广泛的应用。
通过对角化,我们可以将一个复杂的矩阵简化为一个对角矩阵,从而更容易进行计算和分析。
对角化还有助于我们研究矩阵的性质和应用,比如求解线性方程组、计算幂矩阵等。
向量的相似变换和对角化
在向量的研究中,相似变换和对角化都是非常重要的概念。
相
似变换是一种通过矩阵相乘使得两个矩阵拥有相同的特征值的变换,而对角化则是将一个矩阵变换成对角矩阵的过程。
这篇文章
将讨论这两个概念的基本原理、应用以及相关定义。
一、相似变换的定义与性质
相似变换是指将一个矩阵 A (n阶)通过一系列的矩阵变换 P ,即 A' = P-1AP ,使得它与另一个拥有相同特征值的矩阵 B 相似
(即 A' 和 B有相同的特征多项式)。
这里的矩阵 P 即为相似变换
矩阵,通常都可以通过 A 和 B 的特征向量和特征值求得。
相似变换有以下两个基本性质:
1. 相似变换保持矩阵的行列式、秩、特征值和特征向量不变。
2. 对于任意两个矩阵 A、B ,如果它们的相似变换矩阵 P 存在,则 P 可逆,即 P-1 存在。
二、相似变换的应用
相似变换在矩阵和向量等领域中应用广泛,常见应用有:
1. 矩阵的对角化:若一个矩阵 A 相似于对角矩阵 D ,即 A=P-1DP,则矩阵 A 可以通过相似变换 P 对角化,从而更好的理解和研究它的特性。
2. 矩阵的相似识别:通过相似变换,可以将一个矩阵 A 与另一个已知矩阵 B 相似,从而判断它们是否拥有相似的特征,常用于矩阵的求逆、等价化简等问题。
3. 矩阵的变换:相似变换矩阵 P 可以看成一个对矩阵 A 进行的线性变换,从而产生新的矩阵 A' 。
通过不同的相似变换,可以产生多个不同的矩阵,进而找到一些特殊的矩阵规律。
三、对角化的定义与性质
对于一个 n 阶矩阵 A ,如果存在一个可逆矩阵 P ,使得 A'=P-1AP 是一个对角矩阵,则称 A 可对角化。
这里的对角矩阵 D 是一
个只有对角线元素非零,其他元素均为零的矩阵。
对角化的过程是通过寻找矩阵 A 的 n 个线性无关的特征向量,将这些特征向量构成的矩阵作为相似变换矩阵 P ,得到对角矩阵 D 的过程。
对角化有以下几个性质:
1. 所有实对称矩阵都可以通过正交相似变换对角化。
2. 可对角化矩阵的特征多项式可以通过对角矩阵中所有的对角线元素来求得。
3. 可对角化矩阵必定拥有 n 个线性无关的特征向量。
四、对角化的应用
对角化在各种领域中都有广泛应用,常见应用有:
1. 矩阵的简化:对角化矩阵变化为对角矩阵以后,可以看到矩阵中的所有元素。
这一过程可以使得矩阵的特性更加清晰可见,简化矩阵的运算。
2. 带同样矩阵的线性方程组:在求解带有同样矩阵的线性方程
组时,对角化可以帮助我们找到方程组的基础解系。
3. 特征值和特征向量:对角化过程中的特征向量是矩阵本身的
重要信息,很多问题都可以通过求矩阵的特征值和特征向量来解决,比如求矩阵的迹、行列式等。
总结:
向量的相似变换和对角化是相对较深的向量基础知识,它们可
以帮助我们更好地理解和运用矩阵和向量的概念,通常在矩阵变换、线性方程组解法、特征值和特征向量的求解等方面应用广泛。