云南民族大学附属中学《动量守恒定律》测试题(含答案)
- 格式:doc
- 大小:1.26 MB
- 文档页数:30
动量守恒定律练习一、选择题1、关于系统动量守恒正确的说法是:A.只要系统所受的合外力的冲量为零,系统动量就守恒B.只要系统内有摩擦力,动量就不可能守恒C.系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒D.各物体动量的增量的矢量和一定为零2、ab两球在光滑的水平面上沿同一直线发生正碰,作用前动量Pa=10kgm/s,Pb=0,碰撞过程中,动量变化△P=-20kgm/s,则作用后Pb为:A.-20 kgm/s B.-10kgm/s C.20kgm /s D.10kgm/s3、两物体ma=2mb,中间有一压缩弹簧,放在光滑的水平面上,现由静止同时放开后一小段时间内:A.a的速率是b的一半B.a的动量大C.a的受力大D.系统总动量为零4、质量为m的子弹水平飞行击穿一块原静止在光滑水平面上质量为M的木块,在子弹穿透木块的过程中:A.m和M所受的冲量相等B.子弹和木块的速度的变化量相等C.子弹和木块的动量变化量大小相等D.子弹和木块作为系统的总动量守恒5、1kg的物体在距地面高5m处自由下落,落在正以5m /s沿光滑水平面匀速前进的砂车中,砂车质量为4kg,则当物体与车相对静止后,车速为:A.3m/s B.4m/s C.5m/s D.6m /s6、质量为m的小球A以速度v与质量为3m的静止小球B发生正碰后以v/2的速度被反弹回,则正碰后B球的速度大小是:A、v/6B、2vC、v/2 D、v/37、m的M碰撞前后的s-t图如图所示,由图可知:A.m:M=1: 3 B.m:M=3:1C.m:M=l:1 D、m:M=l:28、质量为m的人站在长为L的船M一端,系统原来静止。
当人从船一端走到另一端过程中,不计水的阻力A.人速度大,船后退的速度也大B.人突然停止,船也突然停止C.人突然停止时,船由于惯性仍在运动D.人从一端走到另一端时,船后退了mL/(M+m)9、如图所示,A、B两物体彼此接触静止于光滑的水平桌面上,物体A的上表面是半径为R的光滑圆形轨道,物体C由静止开始从A上圆形轨道的右侧最高点下滑,则有:A.A和B不会出现分离现象B.当C第一次滑到圆弧最低点时,A和B开始分离C.A将会在桌面左边滑出D.A不会在桌面上滑出10、如图所示,A、B两质量相等的物体静止在平板小车C上,A、B之间有一根被压缩的弹簧,A、B与平板车的上表面间的滑动摩擦力之比为3:2,地面光滑,当压缩弹簧突然释放后,则:A.A、B系统动量守恒B.小车向左运动C.A、B、C系统动量守恒D.小车向右运动二、填空题11、质量为m=70kg的人从质量为M=140kg的小船船头走到船尾。
2024届云南省民族大学附属中学高二物理第一学期期中学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、当直导线通以垂直纸面向外的恒定电流时,小磁针静止时指向正确的是( ) A.B.C.D.2、如图所示,甲、乙两人各站在静止小车的左右两端,车与地面之间无摩擦,当她俩同时相向运动时,发现小车向右运动。
下列说法不正确的是()A.乙的动量必定大于甲的动量B.乙对小车的冲量必定小于甲对小车的冲量C.甲、乙和车组成系统动量守恒D.甲、乙动量总和必定不为零3、如图所示,A、B是一个正点电荷电场中的一根电场线,在线上O点放一个自由的负电荷,它将沿电场线向B点运动,下列判断中哪些是正确的( )A .电场线由B 指向A ,该电荷作加速运动,其加速度越来越小B .电场线由B 指向A ,该电荷作加速运动,其加速度越来越大C .电场线由B 指向A ,该电荷作加速运动,其加速度大小的变化由题设条件不能确定D .电场线由A 指向B ,电荷作匀加速运动4、在电场中P 点放一个检验电荷q -,它所受的电场力为F ,则关于P 点电场强度E ,正确的说法是( )A .F E q=,方向与F 相同 B .若取走q -, P 点的电场强度0E =C .E 与检验电荷无关D .若检验电荷为2q -,则2FE q= 5、如图,光滑圆轨道固定在竖直面内,一质量为m 的小球沿轨道做完整的圆周运动.已知小球在最低点时对轨道的压力大小为N 1,在高点时对轨道的压力大小为N 2.重力加速度大小为g ,则N 1–N 2的值为A .3mgB .4mgC .5mgD .6mg6、如图,一物块在水平拉力F 的作用下沿水平桌面做匀速直线运动.若保持F 的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动.物块与桌面间的动摩擦因数为( )A .23B .36C .33D .32二、多项选择题:本题共4小题,每小题5分,共20分。
《动量守恒定律》单元测试题含答案(1) 一、动量守恒定律 选择题 1.如图所示,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,固定在水平面上,导轨弯曲部分光滑,平直部分粗糙,右端接一个阻值为R 的定值电阻,平直部分导轨左侧区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场。
质量为m 、电阻也为R 的金属棒从高为h 处由静止释放,到达磁场右边界处恰好停止。
已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好,重力加速度为g ,则金属棒穿过磁场区域的过程中( )A .金属棒克服安培力做的功等于系统增加的内能B .金属棒克服安培力做的功为mghC .金属棒产生的电热为()12mg h d μ- D .金属棒在磁场中运动的时间为2222gh B L d R mgμ- 2.关于系统动量守恒的说法正确的是 ( )①只要系统所受的合外力为零,系统动量就守恒②只要系统内有摩擦力,动量就不可能守恒③系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒④系统如果合外力的冲量远小于内力的冲量时,系统可近似认为动量守恒A .①②③B .①②④C .①③④D .②③④3.质量为m 的箱子静止在光滑水平面上,箱子内侧的两壁间距为l ,另一质量也为m 且可视为质点的物体从箱子中央以v 0=2gl 的速度开始运动(g 为当地重力加速度),如图所示。
已知物体与箱壁共发生5次完全弹性碰撞。
则物体与箱底的动摩擦因数μ的取值范围是( )A .1247μ<< B .2194μ<< C .22119μ<< D .221311μ<< 4.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m + D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR Mm M m + 5.如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M ,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。
动量守恒定律及答案一.选择题(共32小题)1.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是()A.枪和弹组成的系统,动量守恒B.枪和车组成的系统,动量守恒C.因为枪弹和枪筒之间的摩擦力很大,使系统的动量变化很大,故系统动量守恒D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零2.静止的实验火箭,总质量为M,当它以对地速度为v0喷出质量为△m的高温气体后,火箭的速度为()A.B.﹣C.D.﹣3.据新华社报道,2018年5月9日凌晨,我国长征系列运载火箭,在太原卫星发射中心完或第274次发射任务,成功发射高分五号卫星,该卫星是世界上第一颗实现对大气和陆地综合观测的全谱段高光谱卫星。
最初静止的运载火箭点火后喷出质量为M的气体后,质量为m的卫星(含未脱离的火箭)的速度大小为v,不计卫星受到的重力和空气阻力。
则在上述过程中,卫星所受冲量大小为()A.Mv B.(M+m)v C.(M﹣m)v D.mv4.在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端(如图)。
在连续的敲打下,关于这辆车的运动情况,下列说法中正确的是()A.由于大锤不断的敲打,小车将持续向右运动B.由于大锤与小车之间的作用力为内力,小车将静止不动C.在大锤的连续敲打下,小车将左右移动D.在大锤的连续敲打下,小车与大锤组成的系统,动量守恒,机械能守恒5.设a、b两小球相撞,碰撞前后都在同一直线上运动。
若测得它们相撞前的速度为v a、v b,相撞后的速度为v a′、v b′,可知两球的质量之比等于()A.B.C.D.6.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg•m/s,B球的动量是6kg•m/s,A球追上B球时发生碰撞,则碰撞后A、B 两球的动量可能为()A.p A=0,p B=l4kg•m/sB.p A=4kg•m/s,p B=10kg•m/sC.p A=6kg•m/s,p B=8kg•m/sD.p A=7kg•m/s,p B=8kg•m/s7.质量为m1=2kg和m2的两个物体在光滑的水平面上正碰,碰撞时间不计,其χ﹣t(位移﹣时间)图象如图所示,则m2的质量等于()A.3kg B.4kg C.5kg D.6kg8.如图所示,光滑水平面上,甲、乙两个球分别以大小为v1=1m/s、v2=2m/s的速度做相向运动,碰撞后两球粘在一起以0.5m/s的速度向左运动,则甲、乙两球的质量之比为()A.1:1B.1:2C.1:3D.2:19.质量为1kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧沿木板上表面水平冲上木板,如图甲所示。
动量守恒定律练习题含答案及解析一、高考物理精讲专题动量守恒定律1. 水平放置长为 L=4.5m 的传送带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边缘恰于传送带右端 B 对齐;质量为 m 1=1kg的物块自传送带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摆动一个小角度即被取走。
2已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度 g 10m/s 2。
求:( 1)碰撞后瞬间,小球受到的拉力是多大?( 2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2) 13.5J【解析】【详解】解:设滑块 m1与小球碰撞前一直做匀减速运动,根据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1 v ,说明假设合理m 1v 1 = 1 2滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,根据牛顿第二定律:F m 2 gm 2 v 22l小球受到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传送带运行距离为: S 1 vt 1 3m 滑块与传送带的相对路程为:X 1L X 1 1.5m设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为 t 2则根据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m 1 1v1 t 2=2m2 2因为 x m L ,说明假设成立,即滑块最终从传送带的右端离开传送带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传送带上的总时间为2t2在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程X 22vt212m因此,整个过程中,因摩擦而产生的内能是Q m1 g x1 x2=13.5J2.如图:竖直面内固定的绝缘轨道abc R=3 m的光滑圆弧段bc与长l=1.5 m的粗,由半径糙水平段 ab 在 b 点相切而构成, O 点是圆弧段的圆心,Oc 与 Ob 的夹角θ=37°;过 f 点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C 的匀强电场, Ocb 的外侧有一长度足够长、宽度 d =1.6 m 的矩形区域 efgh, ef 与 Oc 交于 c 点, ecf 与水平向右的方向所成的夹角为β(53 °≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3× 10-3 kg、电荷量 q=3× l0-3 C 的带正电小物体Q 静止在圆弧轨道上 b 点,质量 m1=1.5× 10-3 kg 的不带电小物体 P 从轨道右端 a 以 v0=8 m/s 的水平速度向左运动,P、 Q 碰撞时间极短,碰后 P 以 1 m/s 的速度水平向右弹回.已知P 与 ab 间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37° =0.6, cos37° =0.8,重力加速度大小g=10m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小 B1;(3)当区域 efgh 内所加磁场的磁感应强度为B2 =2T 时,要让物体Q 从 gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】 (1) F N 4.6 10 2 N (2) B1 1.25T(3) t 127s ,1900和21430 360【解析】【详解】解: (1)设 P 碰撞前后的速度分别为 v 1 和 v 1 , Q 碰后的速度为 v 2 从 a 到 b ,对,由动能定理得: 1212P- m 1gl2 m 1v 12m 1v解得: v 1 7m/s碰撞过程中,对 P , Q 系统:由动量守恒定律: m 1v 1 m 1v 1 m 2v 2取向左为正方向,由题意 v 11m/s,解得: v 24m/sb 点:对 Q ,由牛顿第二定律得: F Nm 2 g m 2 v 2 2R解得 : F N 4.6 10 2 N(2)设 Q 在 c 点的速度为 v c ,在 b 到 c 点,由机械能守恒定律:m 2 gR(1 cos )1m 2v c21m 2v 2 22 2解得: v c 2m/s进入磁场后: Q 所受电场力 F qE 3 10 2Nm 2 g ,Q在磁场做匀速率圆周运动由牛顿第二定律得:qv c B 1m 2v c2r 1Q 刚好不从 gh 边穿出磁场,由几何关系: r 1 d 1.6m解得: B 11.25T(3)当所加磁场 B 22T ,r2m 2v c1mqB 2要让 Q 从 gh 边穿出磁场且在磁场中运动的时间最长,则 Q 在磁场中运动轨迹对应的圆心角最大,则当 gh 边或 ef 边与圆轨迹相切,轨迹如图所示:d r2 设最大圆心角为,由几何关系得:cos(180)r2 解得:1272 m2运动周期: TqB2则 Q 在磁场中运动的最长时间:t T 127?2 m2 127 s360 360 qB2 360此时对应的角: 1 90 和2 1433.如图甲所示,物块A、 B 的质量分别是m A B=4.0kg 和 m =3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:①物块 C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1) 2kg( 2) 9J【解析】试题分析:①由图知, C 与 A 碰前速度为 v1= 9 m/s,碰后速度为v2= 3 m/s , C 与 A 碰撞过程动量守恒. m c 1 AC2v =( m + m ) v即 m c= 2 kg② 12 s 时 B 离开墙壁,之后A、 B、C 及弹簧组成的系统动量和机械能守恒,且当A、 C 与B的速度相等时,弹簧弹性势能最大(m A+ m C) v3=( m A+ m B+ m C) v4得E p= 9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、 v2同向运动,并发生对心碰撞,碰后 m2被右侧墙壁原速弹回,又与 m1碰撞,再一次碰撞后两球都静止.求第一次碰后 m1球速度的大小 .【答案】 【解析】设两个小球第一次碰后 m 1 和 m 2 速度的大小分别为和 ,由动量守恒定律得:( 4 分)两个小球再一次碰撞, (4 分)得:( 4 分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5. 如图所示,一辆质量M=3 kg 的小车 A 静止在光滑的水平面上,小车上有一质量 m=l kg的光滑小球 B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为 L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
《动量守恒定律》单元测试题含答案 一、动量守恒定律 选择题1.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量P A =9kg•m/s ,B 球的动量P B =3kg•m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( )A .P A ′=10kg•m/s ,PB ′=2kg•m/sB .P A ′=6kg•m/s ,P B ′=4kg•m/sC .P A ′=﹣6kg•m/s ,P B ′=18kg•m/sD .P A ′=4kg•m/s ,P B ′=8kg•m/s2.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m ,原来静止在光滑的水平面上。
今有一个可以看做质点的小球质量也为m ,以水平速度v 从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。
关于这个过程,下列说法正确的是( )A .小球滑离小车时,小车又回到了原来的位置B .小球滑到小车最高点时,小球和小车的动量不相等C .小球和小车相互作用的过程中,小车和小球系统动量始终守恒D .车上曲面的竖直高度若高于24v g,则小球一定从小车左端滑下 3.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 4.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽5.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR vB L =B .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L-= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L -= 6.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J7.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J8.如图,固定的光滑斜面倾角θ=30°,一质量1kg 的小滑块静止在底端A 点.在恒力F 作用下从沿斜面向上作匀加速运动,经过时间t =2s ,运动到B 点,此时速度大小为v 1,到B 点时撤去F 再经过2s 的时间,物体运动到AB 的中点C ,此时速度大小为v 2,则以下正确的是A .v 2=2v 1B .B 点到C 点的过程中,物体动量改变量为2kg·m/sC .F =7ND .运动过程中F 对小滑块做功28J9.如图所示,两滑块A 、B 位于光滑水平面上,已知A 的质量M A =1k g ,B 的质量M B =4k g .滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v =5m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用(整个过程弹簧没有超过弹性限度),直至分开.则( )A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =10.如图所示,A 是不带电的球,质量0.5kg A m =,B 是金属小球,带电量为2210C q -=+⨯,质量为0.5kg B m =,两个小球大小相同且均可视为质点。
《动量守恒定律》测试题(含答案)一、动量守恒定律 选择题1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( )A .全过程中墙对A 的冲量大小为p02A B E m mB .物体B 的最大速度为p02A E mC .弹簧长度最长时,物体B 的速度大小为p02B A BB E m m m m +D .弹簧长度最长时,弹簧具有的弹性势能p p0E E > 2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 3.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m4.如图所示,光滑绝缘的水平面上M 、N 两点有完全相同的金属球A 和B ,带有不等量的同种电荷.现使A 、B 以大小相等的初动量相向运动,不计一切能量损失,碰后返回M 、N 两点,则A .碰撞发生在M 、N 中点之外B .两球同时返回M 、N 两点C .两球回到原位置时动能比原来大些D .两球回到原位置时动能不变5.在光滑水平面上,有两个小球A 、B 沿同一直线同向运动(B 在前),已知碰前两球的动量分别为pA =10 kg·m/s 、pB =13 kg·m/s ,碰后它们动量的变化分别为ΔpA 、ΔpB .下列数值可能正确的是( )A .ΔpA =-3 kg·m/s 、ΔpB =3 kg·m/sB .ΔpA =3 kg·m/s 、ΔpB =-3 kg·m/sC .ΔpA =-20 kg·m/s 、ΔpB =20 kg·m/sD .ΔpA =20kg·m/s 、ΔpB =-20 kg·m/s6.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g ,下列说法正确的是A .物体第一次滑到槽底端时,槽的动能为3mgh B .物体第一次滑到槽底端时,槽的动能为6mgh C .在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D .物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h 处7.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==8.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B .小球在槽内运动的B 至C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒9.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽10.如图所示,在光滑的水平杆上套有一个质量为m 的滑环.滑环上通过一根不可伸缩的轻绳悬挂着一个质量为M 的物块(可视为质点),绳长为L .将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆;若滑环不固定时,仍给物块以同样的水平冲量,则( )A .给物块的水平冲量为2M gLB .物块上升的最大高度为mL m M+ C .物块上升最高时的速度为2m gL m M + D .物块在最低点时对细绳的拉力3Mg11.如图所示,小球A 质量为m ,系在细线的一端,线的另一端固定在O 点,O 点到光滑水平面的距离为h .物块B 和C 的质量分别是5m 和3m ,B 与C 用轻弹簧拴接,置于光滑的水平面上,且B 物块位于O 点正下方.现拉动小球使细线水平伸直,小球由静止释放,运动到最低点时与物块B 发生正碰(碰撞时间极短),反弹后上升到最高点时到水平面的距离为16h .小球与物块均视为质点,不计空气阻力,重力加速度为g ,则( )A .碰撞后小球A 反弹的速度大小为2ghB .碰撞过程B 物块受到的冲量大小2m ghC .碰后轻弹簧获得的最大弹性势能15128mgh D .小球C 的最大速度大小为5216gh 12.质量为m 、半径为R 的小球,放在半径为3R 、质量为3m 的大空心球内,大球开始静止在光滑水平面上。
《动量守恒定律》单元测试题含答案一、动量守恒定律 选择题1.在光滑的水平桌面上有等大的质量分别为M =0.6kg ,m =0.2kg 的两个小球,中间夹着一个被压缩的具有E p =10.8J 弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。
现突然释放弹簧,球m 脱离弹簧后滑向与水平面相切、半径为R =0.425m 的竖直放置的光滑半圆形轨道,如图所示。
g 取10m/s 2。
则下列说法正确的是( )A .球m 从轨道底端A 运动到顶端B 的过程中所受合外力冲量大小为3.4N·sB .弹簧弹开过程,弹力对m 的冲量大小为1.8N·sC .若半圆轨道半径可调,则球m 从B 点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D .M 离开轻弹簧时获得的速度为9m/s2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 3.如图甲所示,一轻弹簧的两端与质量分别为99m 、200m 的两物块A 、B 相连接,并静止在光滑的水平面上,一颗质量为m 的子弹C 以速度v 0射入物块A 并留在A 中,以此刻为计时起点,两物块A (含子弹C )、B 的速度随时间变化的规律如图乙所示,从图象信息可得( )A .子弹C 射入物块A 的速度v 0为600m/sB .在t 1、t 3时刻,弹簧具有的弹性势能相同,且弹簧处于压缩状态C .当物块A (含子弹C )的速度为零时,物块B 的速度为3m/sD .在t 2时刻弹簧处于自然长度4.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g5.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 26.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A.283mv223mv B.2mv232mvC.212mv232mv D.223mv256mv7.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( )A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/sB.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/sC.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/sD.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s8.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t和02t时刻相对于出发点的位移分别是1x和2x,速度分别是1v和2v,合外力从开始至ot时刻做的功是1W,从t至2t时刻做的功是2W,则A.215x x=,213v v=B.1221,95x x v v==C.2121,58x x W W==D.2121,39v v W W==9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m的小球以平行斜面向上的初速度1v,当小球回到出发点时速率为2v。
一、选择题1.(0分)[ID:127087]如图所示,轻质弹簧下端悬挂一个小球,将小球下拉一定距离后由静止释放(并未超过弹簧的弹性限度),小球上下振动,不计空气阻力,则在连续两次经过平衡位置的过程中,小球()A.动量的变化量为零B.所受重力做的功不为零C.所受重力的冲量不为零D.所受弹簧弹力的冲量为零2.(0分)[ID:127085]木块放在光滑水平面上,一颗子弹水平射入木块中,子弹受到的平均阻力为f,射入深度为d,此过程中木块位移为s,则()A.子弹损失的动能为fs B.木块增加的动能为fsC.子弹动能的减少等于木块动能的增加D.子弹、木块系统产生的热量为f(s+d)3.(0分)[ID:127081]如图所示,某探究小组的同学们利用课外活动时间在一起做探究实验:将一物块放在光滑水平面上,用一水平恒力F拉物块。
第一次水平恒力F作用时间t,第二次作用时间2t(水平恒力作用期间物块未离开水平面)。
第一次物块离开水平面后落在地面上P点,则()A.第二次物块仍落在P点B.第二次物块落地瞬间重力的功率大C.第二次物块落地过程重力的冲量大D.第二次物块落在地面上原水平位移的2倍处4.(0分)[ID:127069]人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了()A.减小地面对人的冲量B.减小人的动量的变化C.增加地面对人的冲击时间D.增大人对地面的压强5.(0分)[ID:127067]在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为p A=12kg·m/s、p B=13kg·m/s,碰后它们的动量变化分别为Δp A、Δp B,下列数值可能正确的是()A.Δp A=-3kg·m/s、Δp B=3kg·m/s B.Δp A=3kg·m/s、Δp B=-3kg·m/sC.Δp A=-24kg·m/s、Δp B=24kg·m/s D.Δp A=24kg·m/s、Δp B=-24kg·m/s6.(0分)[ID :127057]一只质量为1.4kg 的乌贼吸入0.1kg 的水,静止在水中。
《动量守恒定律》单元测试题含答案一、动量守恒定律选择题1.如图所示,在同一水平面内有两根足够长的光滑水平平行金属导轨,间距为L=20cm,电阻不计,其左端连接一恒定电源,电动势为E,内阻不计,两导轨之间交替存在着磁感应强度为B=1T、方向相反的匀强磁场,同向磁场的宽度相同。
闭合开关后,一质量为m=0.1kg、接入电路的阻值为R=4Ω的导体棒恰能从磁场左边界开始垂直于导轨并与导轨接触良好一直运动下去,导体棒运动到第一个磁场的右边界时有最大速度,为5m/s,运动周期为T=21s,则下列说法正确的是()A.E=1VB.导体棒在第偶数个磁场中运动的时间为2TC.相邻两磁场的宽度差为5 mD.导体棒的速度随时间均匀变化2.如图,在光滑水平面上放着质量分别为2m和m的A、B两个物块,弹簧与A、B栓连,现用外力缓慢向左推B使弹簧压缩,此过程中推力做功W。
然后撤去外力,则()A.从撤去外力到A离开墙面的过程中,墙面对A的冲量大小为2mWB.当A离开墙面时,B的动量大小为2mWC.A离开墙面后,A的最大速度为8 9 W mD.A离开墙面后,弹簧的最大弹性势能为2 3 W3.如图所示,长木板A放在光滑的水平面上,质量为m=4kg的小物体B以水平速度v0=2m/s滑上原来静止的长木板A的表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图乙所示,取g=10m/s2,则下列说法正确的是( )A.木板A获得的动能为2JB.系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m4.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m-- C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --5.如图,质量分别为m A 、m B 的两个小球A 、B 静止在地面上方,B 球距地面的高度h =0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t =0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小为g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是( )A .B 球第一次到达地面时的速度为4m/sB .A 、B 球在B 球向上运动的过程中发生碰撞C .B 球与A 球碰撞后的速度为1m/sD .P 点距离地面的高度0.75m6.关于系统动量守恒的说法正确的是 ( )①只要系统所受的合外力为零,系统动量就守恒②只要系统内有摩擦力,动量就不可能守恒③系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒④系统如果合外力的冲量远小于内力的冲量时,系统可近似认为动量守恒A .①②③B .①②④C .①③④D .②③④7.质量为m 的箱子静止在光滑水平面上,箱子内侧的两壁间距为l ,另一质量也为m 且可视为质点的物体从箱子中央以v0=2gl的速度开始运动(g为当地重力加速度),如图所示。
云南民族大学附属中学《动量守恒定律》测试题(含答案)一、动量守恒定律 选择题1.如图所示,长木板A 放在光滑的水平面上,质量为6kg m =的小物体B 以水平速度02m/s v =滑上原来静止的长木板A 的上表面,由于A 、B 间存在摩擦,A 、B 速度随时间变化情况如图乙所示,取210m/s g =,则下列说法正确的是( )A .木板A 与物体B 质量相等B .系统损失的机械能为6JC .木板A 的最小长度为1mD .A 对B 做的功与B 对A 做的功绝对值相等2.如图所示,两滑块A 、B 位于光滑水平面上,已知A 的质量M A =1k g ,B 的质量M B =4k g .滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v =5m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用(整个过程弹簧没有超过弹性限度),直至分开.则( )A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =3.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽4.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2g=10m/s ,则( )A .物块滑上小车后,系统动量守恒和机械能守恒B .增大物块与车面间的动摩擦因数,摩擦生热不变C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24sD .若要保证物块不从小车右端滑出,则0v 不得大于5m/s5.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v gμ 6.如图,固定的光滑斜面倾角θ=30°,一质量1kg 的小滑块静止在底端A 点.在恒力F 作用下从沿斜面向上作匀加速运动,经过时间t =2s ,运动到B 点,此时速度大小为v 1,到B 点时撤去F 再经过2s 的时间,物体运动到AB 的中点C ,此时速度大小为v 2,则以下正确的是A .v 2=2v 1B .B 点到C 点的过程中,物体动量改变量为2kg·m/sC .F =7ND .运动过程中F 对小滑块做功28J 7.质量为m 的箱子静止在光滑水平面上,箱子内侧的两壁间距为l ,另一质量也为m 且可视为质点的物体从箱子中央以v 0=2gl 的速度开始运动(g 为当地重力加速度),如图所示。
已知物体与箱壁共发生5次完全弹性碰撞。
则物体与箱底的动摩擦因数μ的取值范围是( )A .1247μ<< B .2194μ<< C .22119μ<< D .221311μ<< 8.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大小为gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是A .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B .摩擦力对物体产生的冲量大小为202E q k μ C .摩擦力所做的功18W mgH = D .物体与墙壁脱离的时刻为gH t =9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m 的小球以平行斜面向上的初速度1v ,当小球回到出发点时速率为2v 。
小球在运动过程中除重力和弹力外,另受阻力f (包含摩擦阻力),阻力f 大小与速率成正比即f kv =。
则小球在斜面上运动总时间t 为( )A.12sinv vtgθ+=⋅B.12sinv vtgθ-=⋅C.1212sin2mv mvtv vmg kθ+=+⋅+D.1212sin2mv mvtv vmg kθ-=+⋅-10.如图所示,一轻质弹簧固定在墙上,一个质量为m的木块以速度v0从右侧沿光滑水平面向左运动并与弹簧发生相互作用。
设相互作用的过程中弹簧始终在弹性限度范围内,那么,到弹簧恢复原长的过程中弹簧对木块冲量I的大小和弹簧对木块做的功W的大小分别是()A.I=0,W=mv02B.I=mv0,22mv W=C.I=2mv0,W=0 D.I=2mv0,22mv W=11.如图所示,一辆质量M=3kg的小车A静止在光滑的水平面上,A上有一质量m=1kg的光滑小球B,将一左端固定于A上的轻质弹簧压缩并锁定,此时弹簧的弹性势能E p=6J,B 与A右壁距离为l。
解除锁定,B脱离弹簧后与A右壁的油灰阻挡层(忽略其厚度)碰撞并被粘住,下列说法正确的是()A.碰到油灰阻挡层前A与B的动量相同B.B脱离弹簧时,A的速度为1m/sC.B和油灰阻挡层碰撞并被粘住,该过程B受到的冲量大小为3N·sD.整个过程B移动的距离为3 4 l12.光滑水平面上有一静止木块,质量为m的子弹水平射入木块后木穿出,子惮与木块运动的速度图象如图所示。
由此可知()A .木块质量是2mB .子弹进入木块的深度为002v t C .木块所受子弹的冲量为014mv D .子弹射入木块过程中产生的内能为2014mv 13.三个完全相同的小球a 、b 、c ,以相同的速度在光滑水面上分别与另外三个不同的静止小球相撞后,小球a 被反向弹回,小球b 与被碰球粘合在一起仍沿原方向运动,小球c 恰好静止.比较这三种情况,以下说法中正确的是( )A .a 球获得的冲量最大B .b 球损失的动能最多C .c 球克服阻力做的功最多D .三种碰撞过程,系统动量都是守恒的14.如图所示,质量是2g m =的子弹,以1300m/s v =的速度射入固定的、厚度是5cm l =的木板,射穿后的速度是2100m/s v =.假设阻力是恒定的,它能够射穿同种材料制成的A .固定的、厚度是6cm 的木板B .固定的、厚度是7cm 的木板C .放在光滑水平面上的质量为8g M =,沿速度方向长度为4cm 的木块D .放在光滑水平面上的质量为8g M =,沿速度方向长度为3cm 的木块15.如图所示,水平面(纸面)内有两条足够长的平行光滑金属导轨PQ 、MN ,导轨电阻不计,间距为L ;导轨之间有方向竖直向下(垂直于纸面向里)、大小为B 的匀强磁场;金属杆ab 、cd 质量均为m ,电阻均为R ,两杆静止在水平导轨上,间距为s 0。
t =0时刻开始金属杆cd 受到方向水平向右、大小为F 的恒定外力作用。
t =t 0时刻,金属杆cd 的速度大小为v ,此时撤去外力F ,下列说法正确的是( )A .t =t 0时刻,金属杆ab 的速度大小为0Ft v m- B .从t =0到t =t 0时间内,流过金属杆ab 的电荷量为0Ft BL C .最终两金属杆的间距为00222FRt s B L +D .最终两金属杆的间距为0022FRt s B L+ 16.如图所示,光滑水平直轨道上有三个质量均为m =3kg 静止放置的物块A 、B 、C ,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计)。
若A 以v 0=4m/s 的初速度向B 运动并压缩弹簧(弹簧始终在弹性限度内),当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动。
假设B 和C 碰撞时间极短,则以下说法正确的是( )A .从A 开始运动到弹簧压缩最短时A 的速度大小为2m/sB .从A 开始运动到弹簧压缩最短时C 受到的冲量大小为4N·sC .从A 开始运动到A 与弹簧分离的过程中整个系统损失的机械能为3JD .在A 、B 、C 相互作用过程中弹簧的最大弹性势能为16J17.如图所示,水平面上固定着两根足够长的平行导槽,质量为2m 的U 形管恰好能在两导槽之间自由滑动,一质量为m 的小球沿水平方向,以初速度0v 从U 形管的一端射入,从另一端射出。
已知小球的半径略小于管道半径,不计一切摩擦,下列说法正确的是( )A .该过程中,小球与U 形管组成的系统机械能守恒B .小球从U 形管的另一端射出时,速度大小为03vC.小球运动到U形管圆弧部分的最左端时,速度大小为03vD.从小球射入至运动到U形管圆弧部分的最左端的过程中,平行导槽受到的冲量大小为063mv18.质量均为m的两个小球A B,用轻弹簧连接,一起放在光滑水平面上,小球A紧靠挡板P,如图所示。
给小球B一个水平向左的瞬时冲量,大小为I,使小球B向左运动并压缩弹簧,然后向右弹开。
弹簧始终在弹性限度内。
取向右为正方向,在小球B获得冲量之后的整个运动过程中,对于A B,及弹簧组成的系统,下列说法正确的是()A.系统机械能和动量均守恒B.挡板P对小球A的冲量为大小2IC.挡板P对小球A做的功为2 2I mD.小球A离开挡板后,系统弹性势能的最大值为2 4 I m19.如图所示,质量为M的长木板A静止在光滑的水平面上,有一质量为m的小滑块B 以初速度v0从左侧滑上木板,且恰能滑离木板,滑块与木板间动摩擦因数为μ.下列说法中正确的是A.若只增大v0,则滑块滑离木板过程中系统产生的热量增加B.若只增大M,则滑块滑离木板过程中木板所受到的冲量减少C.若只减小m,则滑块滑离木板时木板获得的速度减少D.若只减小μ,则滑块滑离木板过程中滑块对地的位移减小20.四个水球可以挡住一颗子弹!如图所示,是央视《国家地理》频道的实验示意图,直径相同(约30cm左右)的4个装满水的薄皮气球水平固定排列,子弹射入水球中并沿水平线做匀变速直线运动,恰好能穿出第4个水球,气球薄皮对子弹的阻力忽略不计。