下学期九年级数学期末考试试卷
- 格式:doc
- 大小:327.50 KB
- 文档页数:3
2023——2024学年第一学期期末教学质量检测九年级数学试卷(人教版)注意事项:1、本试卷共八页,满分为120分,考试时间为120分钟.2、答卷前将密封线左侧的项目填写清楚。
三题号一二212223242526总分得分亲爱的同学,你好!今天是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力! 一、选择题(本大题共16个小题,1-6每小题2分,7-16每小题3分,共42分。
每小题后均给出了四个选项,请把最符合题意的选项序号填在题后的括号内。
)1.下面四个手机应用图标中,属于中心对称图形的是( )A. B. C. D.2.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.3.若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是( )A. B.C.D.4.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( )A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.有一根为05.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是( )A.(32﹣2x)(20﹣x)=570得分评卷人51318583B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=5706.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为( )A.30° B.60°C.90° D.120°7.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( )A.19cm2 B.16cm2C.15cm2 D.12cm28.若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为( )A.﹣2或3 B.﹣2或﹣3 C.1或﹣2或3 D.1或﹣2或﹣39.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3其中正确的有( )个.A.1 B.2 C.3 D.410.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是( )A.3 B.2.5C.2 D.111.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④12.如图,⊙O 的半径OD 垂直于弦AB ,垂足为点C ,连接AO 并延长交⊙O 于点E ,连接BE ,CE .若AB=8,CD=2,则△BCE 的面积为( )A .12B .15C .16D .1813.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB 、CD 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是( )A .2米B .2.5米C .2.4米D .2.1米14.已知二次函数y=ax 2+bx+c 的图象如右图,则一次函数y=ax﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是( )15.志远要在报纸上刊登广告,一块10cm×5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )B.A.C. D.A .540元B .1080元C .1620元D .1800元16.若△ABC 的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B 的度数相比( )A .增加了10%B .减少了10%C .增加了(1+10%)D .没有改变二、填空题(本大题共4个小题,每小题3分,共12分, 请把正确答案填在题后的横线上。
2023~2024学年第一学期期末调研试题卷九年级数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.已知a ,b ,c ,d 是成比例线段,且,,,则线段d 的长为( )A. B. C. D.2.左图为某几何体的三种视图,这个几何体可以是()A.B. C. D.3.解方程时,小明进行了相关计算并整理如下:x0.511.525.2513则该方程必有一个根满足()A. B. C. D.4.关于矩形的性质,下列说法不正确的是()A.四个角都是直角B.对角线互相垂直C.对角线相等D.是轴对称图形5.已知反比例函数,下列说法中正确的是()A.该函数的图象位于第一、三象限B.点在该函数图象上C.y 随x 的增大而增大D.该函数图象关于原点成中心对称6.柜子里有两双不同的鞋,如果从中随机取出2只,那么取出的鞋恰好是同一双的概率为()3cm a =2cm b =6cm c =2cm 3cm 4cm 5cm212150x x +-=21215x x +-15-8.75-2-1.52x <<1 1.5x <<0.51x <<00.5x <<6y x=-()2,3A.B. C.D.7.如图,四边形为平行四边形,E ,F 为边的三等分点,连接,,交点为G ,则等于()A. B. C. D.8.某商品原价为100元,连续两次降价后为81元,设平均每次降价的百分率为x ,则下列方程正确的是( )A. B.C. D.9.如图,矩形的四个顶点分别在直线,,,上,若直线且相邻两直线间距离相等.若,,则,之间的距离为()A.5B.C. D.10.如图,一组等腰三角形的底边均在x 轴的正半轴上,两腰的交点在反比例函数的图象上,且它们的底边都相等.若记,,…的面积分别为则的值为()13141516ABCD CD AF BE :EFG BAG S S △△1:91:41:31:2()2811100x +=()2100181x -=()1001281x -=()8112100x +=ABCD 1l 3l 4l 2l 1234l l l l ∥∥∥6AB =4BC =2l 3l 65125245()10y x x=>11OA B △122A A B △233A A B △101110121012A A B △1231012,,S S S S 1012SA.B. C. D.二、填空题:(每小题3分,共15分)11.如果,那么_______.12.已知关于x 的一元二次方程的一个根是1,则_______.13.一个口袋中装有红球和白球共10个,这些球除颜色外都相同,将口袋中的球摇匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现共有70次摸到红球,估计这个口袋中自球的个数为_______.14.如图,菱形中,对角线,相交于点O ,点E 为的中点,连接,若,则菱形的周长为_______.15.如图,已知点E ,F 分别为三角形纸片的边,上的点,将三角形纸片沿所在直线折叠,点B 的对应点恰好落在边上.已知,.若以,F ,C 为顶点的三角形与相似,则的长是______.三、解答题(本大题共8个小题,共75分)16.(10分)解方程:(1)(用因式分解法)(2)(用公式法)17.(9分)如图,一转盘被等分为三个区城,上面分别标有数字1,0,,转动转盘,指针停止后指向哪个区域,就得到该区域上的数字.(指针停在分界线上时,重新转动转盘,直到指向一个区域内部)(1)小明转动转盘一次,得到的数字是非负数的概率为_____;(2)小明和小红分别转动转盘一次,用树状图或列表的方法求两人得到相同数字的概率.1101211013120231202412a b =aa b=+22340x kx -+=k =ABCD AC BD AB OE 3.5OE =ABCD ABC AB BC ABC EF B 'AC 3AB AC ==4BC =B 'ABC △BF ()5454x x x +=+22980x x -+=1-18.(9分)已知点E 是边的中点,连接并延长交的延长线于点F ,连接,,且.(1)求证:四边形为矩形;(2)若,请直接写出的长.19.(9分)已知,关于x 的一元二次方程.(1)试说明:不论m 取何值时,该方程总有实数根;(2)若这个一元二次方程的一根大于2,另一根小于2,求m 的取值范围.20.(9分)如图,白鹭洲国家湿地公园广场有一灯柱,M 为光源.某兴趣小组为了测量灯柱的高度,在灯柱同侧竖立两根长度均为的标杆和.测得的影长等于,且点N ,B ,C 在同一条直线上.(1)请画出标杆的影子;(2)若,求灯柱的高度.21.(9分)据统计,摩托车、电动自行车、小汽车是导致交通事故死亡最多的车辆,摩托车、电动自行车驾乘人员死亡事故中约80%为颅脑损伤致死.为确保安全出行,交警提醒骑车出行必须佩戴头盔.某头盔品牌厂商在各大电商平台共有100个网店,一个网店平均每月销售1000个头盔.现准备多开一些网店以提高销售量,试验发现,每多开1个网店,每个网店头盔月销售量就会减少2个,但随着网店数量增加,运营成本也会增加,如果要使每月总销售量增加15.2%,且尽可能减少运营成本,那么应多开几个网店?22.(10分)已知一次函数与反比例函数的图象交于A ,B 两点,且点A 的坐标为.(1)求m 的值及反比例函数的解析式;(2)连接,,求的面积;(3)观察图象,请直接写出的解集.ABCD AD BE CD BD AF AD BF =ABDF 3CD ED ==BD ()2430x m x m -+++=MN MN 1.6m AB CD AB BC 3m CD CE 4m CE =MN 5y x =-+ky x=()4,m OA OB AOB △5kx x-+>23.(10分)如图1,四边形和四边形均为正方形,点E ,G 分则在,上,,分别为两正方形的对角线.(I )猜想:图1中的值为_______;(2)探究:将正方形绕点A 旋转到图2位置,连接,,判断的值是否保持不变?并说明理由.(3)延伸:若将正方形绕点A 旋转到图3位置,其中G ,E ,B 三点在一条直线上,延长交边于点H ,若,请直接写出正方形与正方形的边长.2023~2024学年第一学期期末调研试题九年级数学参考答案一、选择题(每题3分,共30分)题号12345678910答案CDBBDAABCC二、填空题(每小题3分,共15分)题号1112131415答案2328或2三、解答题(本大题共8个小题,共75分)ABCD AEFG AB AD AC AF FCEBAEFG BE FC FCEBAEFG AF CD BE =FH =AEFG ABCD 1312716.(1)解:原方程可变形为或,.(2)解:这里,,即,17.(9分)解:(1)(2)第一次第二次110共9种等可能的结果,其中两次数字相同的结果有3个,所以二人得到相同数字的概率.18.(9分)(1)证明:四边形是平行四边形,,,点E 为的中点,,又,四边形是平行四边形,又是矩形.()()54540x x x +-+=()()5410x x +-=540x +=10x -=∴145x =-21x =2a =9b =-8c = ()2249428170b ac -=--⨯⨯=>∴x =1x =2x =231-()1,1()0,1()1,1-()1,0()0,0()1,0-1-()1,1-()0,1-()1,1--13ABCD ∴AB DC ∥AB DC =∴EAB EDF∠=∠ AD ∴AE DE = AEB DEF ∠=∠∴()AEB DEF ASA ≌△△∴BE FE= AE DE=∴ABDF BF AD=∴ABDF(2)19.(9分)解:(1)由题可知:,,.即不论m 取何值,原方程有两个实数根.(2)解方程得,因为,,即.所以m 的取值范围是.20.(9分)解:(1)如图所示的影子为;(2)由题意可知,,.即设灯柱的高度为x m ,根据题意,得由,得即代入数据,化简得由,得即BD =1a =()4b m =-+3c m =+()()224443b ac m m -=-+-⨯+⎡⎤⎣⎦()220m =+≥∴()2430x m x m -+++=()422m m x +±+=∴11x =23x m =+12<∴32m +>1m >-1m >-CD CE MN NE ⊥AB NE ⊥CD NE ⊥90MNE ABC DCE ∠=∠=∠=︒MN ABC MNE ∠=∠MCN MCN ∠=∠ABC MNC △∽△AB BCx BC BN=+331.6xBN =-DCE MNE ∠=∠MEN MEN ∠=∠DCE MNE △∽△CD ECx EC BC BN=++代入数据,化简得,(m )答:灯柱的高度为.21.解:设应增加x 个网店,根据题意,得解得,,因为网店越多,运营成本增加越多,为减少运营成本x 取20 答:应增加20个网店.22.(10分)解:(1)点是直线与的交点,把,,代入得.,.(2)设一次函数的图象分别与x 轴,y 轴交于M ,N 两点由得,.由与得B 的坐标为(3)x 的取值范围为或.23.(10分)解:(1);471.6x BN =-∴34371.6 1.6x x -=-∴ 6.4x =MN 6.4m ()()()100021001001000115.2%x x -+=⨯⨯+120x =2380x = ()4,A m 5y x =-+ky x=∴4x =y m =5y x =-+451m =-+=∴414k =⨯=∴1m =4y x=5y x =-+5OM =5ON =5y x =-+4y x=()1,4AOB MON AOM BONS S S S =--△△△△111555151222=⨯⨯-⨯⨯-⨯⨯152=0x <14x <<FCEB=(2)①四边形与四边形是正方形,,即②正方形的边长为3,正方形的边长为.ABCD AEFG ∴45EAF BAC ∠=∠=︒FA ACAE AB==∴EAF CAE BAC CAE∠+∠=∠+∠CAF BAE∠=∠∴CAF BAE △∽△∴FC AC FAEB AB AE===AEFGABCD。
2023—2024学年度第一学期期末考试九年级数学试卷满分:150分考试时间:120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上)1.扬州某天的最高气温为4℃,最低气温为﹣10℃,则该日的气温极差为(▲)A .4℃B .6℃C .10℃D .14℃2.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,则点A 与⊙O 的位置关系是(▲)A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定3.若关于x 的一元二次方程x 2+bx +12=0的一个根是-2,则另外一个根为(▲)A .x =8B .x =6C .x =-6D .x =-84.下列说法正确的是(▲)A .有一种游戏的中奖概率是120,则做20次这样的游戏一定会有一次中奖B .数据6,8,7,0,﹣2的中位数是7C .抛掷一枚硬币10次,其中有7次正面朝上,则硬币正面朝上的概率为710D .若甲乙两组数据的平均数相等,方差分别为S 2甲=1,S 2乙=1.5,则甲的成绩比乙的稳定5.如图,AB 是⊙O 的直径,BD 与⊙O 相切于点B ,连接AD 与⊙O 于点C ,连接OC .若∠D =50º,则∠BOC 的度数为(▲)A .80ºB .85ºC .40ºD .70º第5题图第6题图第7题图第8题图6.如图,∠1=∠2,则下列各式中,不能说明△ABC ∽△ADE 的是(▲)A .∠D =∠BB .∠E =∠CC .AD AB =AEACD .AD AB =DEBC7.如图,抛物线y =ax 2与直线y =bx 的交点A 的横坐标是2,则关于x 的不等式ax 2+bx >0的解集是(▲)A.-2<x<0B.0<x<2C.x>2D.x<-28.如图,四边形ABCD是⊙O的内接四边形,BD是直径,AO⊥BD,AC=3,则四边形ABCD的面积为(▲)A.4B.4.5C.32D.35二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)9.若2x-5y=0,则y-xx+y=▲.10.如图,AB∥CD∥EF.若ACCE =12,BD=3,则DF的长为▲.11.用一个圆心角为150°,半径为12的扇形制作一个圆锥的侧面,则这个圆锥的底面半径为▲.12.七巧板是我国古代劳动人民的发明之一,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形飞镖游戏板,某同学向该游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是▲.第10题图第12题图第13题图第16题图13.如图,乐器上的一根弦AB长100cm,两个端点A、B固定在乐器板面上,支撑点C是线段AB的黄金分割点,AC>BC,则AC的长为▲cm.(5≈2.236,精确到0.1cm)14.若关于x的一元二次方程x2-6x+m=0有实数根,则m的最大值为▲.15.若抛物线y=(x-m)2+m-3的对称轴是直线x=2,则它的顶点坐标是▲.16.如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是▲个.17.将关于x的一元二次方程ax2+bx+c=0(a≠0)变形为ax2=-bx-c,就可以将关于x的二次多项式表示为x的一次多项式,从而达到“降次”的目的,又如ax3=ax2·x=(-bx-c)·x=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知2x2-x-2=0,则2x4-3x3+3x2的值为▲.18.已知二次函数y=ax2+bx+c(a<0)的对称轴是直线x=t,点P(1,m)、Q(3,n)在这个二次函数的图象上,若n<c<m,则t的取值范围是▲.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)用适当的方法解下列方程:(1)x2-5x+3=0(2)x(x-2)=-3x+620.(本题满分8分)为丰富学校的文化娱乐活动,某学校开展了插画、书法、剪纸等丰富多彩的社团活动,该校为了解参加社团活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如下两幅不完整的统计图①和图②.①②请根据相关信息,解答下列问题:(1)填空:a的值为▲,图①中m的值为▲,并补全条形统计图;(2)求统计的这组学生年龄数据的平均数、众数和中位数.21.(本题满分8分)今年春节档多部贺岁片上映.小亮和小丽准备分别从《志愿军2》、《射雕英雄传:侠之大者》、《热辣滚烫》、《传说》四部电影中随机选择一部观看.(1)小亮从这4部电影中,随机选择1部观看,则他选中《志愿军2》的概率为▲;(2)请用列表或画树状图的方法,求小亮和小丽恰好选择观看同一部电影的概率.22.(本题满分8分)某单位要兴建一个长方形的活动区(图中阴影部分),根据规划,活动区的长和宽分别为20m和16m,同时要在它四周外围修建宽度相等的小路.已知活动区和小路的总面积为480m2.(1)求小路的宽度;(2)某公司希望用200万元承包这项工程,该单位认为金额太高需要降价,通过两次协商,最终以128万元达成一致.若两次降价的百分率相同,求每次降价的百分率.第22题图23.(本题满分10分)如图,在△ABC中,点D、E分别在AB、AC上,且∠BCE+∠BDE=180°.(1)求证:△ADE∽△ACB;(2)连接BE、CD,求证:△AEB∽△ADC.第23题图24.(本题满分10分)电商小王为拓展销售渠道在抖音平台上对一款成本价为15元的商品进行直播销售,如果按每件20元销售,每天可卖出100件.通过市场调查,该商品售价每提高1元,日销售量减少4件.(1)当售价为何值时,每天销售盈利取值最大,最大值是多少?(2)小王热心公益事业,从每天的销售利润中捐出100元给希望工程,为了保证捐款后每天剩余利润不低于700元,试确定该商品销售单价的范围.25.(本题满分10分)如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)试判断直线CE与⊙O的位置关系,并说明理由;(2)若AE=1,CE=2,求⊙O的半径和AD的长.第25题图26.(本题满分10分)小明同学在学习过《对称图形---圆》、《图形的相似》两章内容后,结合所学的知识,想尝试解决以下尺规作图问题,聪明的你请帮助他完成.问题背景:已知点P是四边形ABCD中AB边上一点,请用圆规和无刻度的直尺作出满足下列条件的点P.问题1.如图1,∠A=∠B=90°,△APD∽△BPC;问题2.如图2,∠A=∠B=90°,△ADP∽△BPC;问题3.如图3,∠A=∠B=45°,△ADP∽△BPC.(友情提醒:以上作图均不写作法,但需保留作图痕迹)图1图2图327.(本题满分12分)在矩形ABCD中,AB=3,AD=2,动点M从顶点D出发沿DA方向向点A运动,动点N从顶点C出发沿射线BC方向运动,动点M的速度是动点N速度的两倍,当点M运动到终点A时,两点同时停止运动,连接MN交边CD于点E.(1)如图1,点M、N在运动的过程中,请判断点E的位置是否发生变化,并说明理由;(2)如图2,连接BM ,当△BNM 是等腰三角形时,求CN 的长;(3)如图3,过点B 作MN 的垂线,垂足为点H ,直接写出点H 在运动过程中所经过的路径长.图1图2图328.(本题满分12分)二次函数y =ax 2+bx +c 的图像与x 轴交于A 、B 两点,与y 轴交于点C ,自变量x 与函数值y 的部分对应取值如下表:(1)请选择你喜欢的方法求二次函数y =ax 2+bx +c 表达式;(2)如图1,点D 为线段AC 的中点,点E 为线段O A 上任意一点,将线段DE 绕点D 顺时针旋转90º得到线段DF ,连接OF 、EF.①求△OEF 面积的最大值;②直接写出2AE +5EF 的最小值..图1备用图第28题图x ……-8-6-4-3-22……y ……-4-6-254-60……九年级数学答案试卷满分:150分考试时间:120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)题号12345678答案DCCDADAB二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.73-;10.6;11.5;12.21;13.61.8;14.9;15.()12-,;16.10;17.4;18.0.5<t <1.5.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)计算或化简(1)0352=+-x x解:…………………………2分,…………………………4分(2)x (x -2)=-3x +6解:…………………………2分…………………………4分(根据学生选择的方法酌情给分)20.(本题满分8分)解:(1)a 的值为50,(1分)图①中m 的值为30,(1分)补全条形统计图:12岁有15人,图略;(1分)(2)岁(2分)众数:14岁(1分)中位数:13.5岁(2分)21.(本题满分8分)(1);…………………2分(2)记《志愿军2》、《射雕英雄传:侠之大者》、《热辣滚烫》、《传说》分别为A 、B 、C 、D.∴P (恰好选择观看同一部电影)=…………………8分22.(本题满分8分)解:(1)设小路的宽度为x m ,根据题意得:(20+2x )(16+2x )=480,…………………2分整理得:x 2+18x ﹣40=0,解得:x 1=2,x 2=﹣20(舍去),…………………4分答:小路的宽度为2m ;(2)设每次降价的百分率为y ,根据题意,得:200(1﹣y )2=128,…………………6分解得:y 1=0.2,y 2=1.8(不合题意,舍去),0.2=20%,…………………8分答:每次降价的百分率为20%.23.(本题满分10分)证明:(1)∵∠BCE +∠BDE =180°,又∵∠ADE +∠BDE =180°,∴∠BCE =∠ADE ,…………………2分∵∠DAE =∠CAB ,∴△ADE ∽△ACB ;…………………5分(2)∵△ADE ∽△ACB ,∴AD :AC =AE :AB ,∴AD:AE=AC:AB,…………………7分又∵∠EAB=∠DAC,∴△AEB∽△ADC.…………………10分24.(本题满分10分)(1)解:设售价为x元,每天销售盈利为w元,根据题意得:()…………………3分当时,元…………………5分(2)由题可知;即:解一元二次方程:解得:…………………8分由二次函数图像可得商品销售单价的范围为…………………10分25.(本题满分10分)(1)CE是⊙O的切线.…………………1分证明:连接CO,∵CE⊥DF,∴∠CEF=90°∵OA=OC.∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC∥FD,∴∠CEF=∠OCE=90°∴半径OC⊥CE,∴CE是⊙O的切线;…………………4分(3)⊙O的半径为2.5,…………………7分AD的长为3.…………………10分26.(本题满分10分)第一问…………………3分第二问…………………3分第三问…………………4分27.(本题满分12分)(1)在矩形ABCD中,AD∥BC,则△MDE∽△NCE;DE:CE=MD:CN=2:1∴E的位置不会发生变化.……………3分(2)①时,作M,垂足为点F,则,设,易知,.∴,解得:,即;……………5分②(舍)理由:……………7分。
2023~2024学年度上期期末考试试题九年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
2.考生使用答题卡作答。
3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡规定的地方。
考试结束,监考人员只将答题卡收回。
4.选择题部分请使用2B铅笔填涂;非选择题部分请使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。
5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡清洁,不得折叠、污染、破损等。
A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.某几何体的三视图如图所示,则这个几何体是()A.圆锥B.正方体C.圆柱D.球2.若方程是关于的一元二次方程,则“□”中可以是()A.B.C.D.3.已知四条线段成比例,则下列结论正确的是()A.B.C.D.4.若表示平行四边形,表示矩形,表示菱形,表示正方形,它们之间的关系用下列图形来表示,正确的是()A.B.C.D.5.若关于的方程有实数根,则的取值范围是()A.B.C.D.6.如图,在平面直角坐标系中,矩形的顶点坐标分别是,.已知矩形与矩形位似,位似中心是原点,且矩形的面积等于矩形的面积的,则点的坐标是()A.B.C.或D.或7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是()A.关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B.关于“50个同学中,有2个同学生日相同”的试验C.关于“抛一枚质地均匀的硬币,正面朝上”的试验D.关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数的图象如图所示,关于下列说法:①常数;②的值随值的增大而减小;③若点为轴上一点,点为反比例函数图象上一点,则;④若点在反比例函数的图象上,则点也在该反比例函数的图象上.其中说法正确的是()A.①②③B.③④C.①④D.②③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.将方程化成一元二次方程的一般形式为_________.10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是_________.11.如图,小强自制了一个小孔成像的纸筒装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛应放在水平距离纸筒点处_________的地方.12.在平面直角坐标系中,一次函数的图象与反比例函数的图象如图所示,则当时,自变量的取值范围是_________.13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是_________.三、解答题(本大题共5个小题,共48分)14.解方程(本小题满分12分,每题6分)(1);(2).15.(本小题满分8分)如图,在正方形中,延长至点,使得,连接交于点.(1)试探究的形状;(2)求的度数.16.(本小题满分8分)2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂。
永城2023—2024学年上学期期末学业评价卷九年级数学(人教版)注意事项:1.本试卷共4页.三个大题.满分120分.考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效一、选择题(每小题3分,共30分)下列各小题均有四个选项,中只有一个是正确的.1.下列关系式中,是x 的反比剑函数的是()A .B .C .D .2.下面是4个有关航天领域的图标.中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.在一个不透明的袋子里装有红球.黄球共20个,其中红球有2个.这些球除颜色外其他都相同,随机摸出1个球.摸出的是红球的概率是()A.B .C .D .4.下列四条线段中.能与,,这三条线段组成比例线段的是()A .B .C .D .5.下列图象中.有可能是函数的图象的是()A .B .C .D .6.“绿色电力.与你同行”",我国新能源汽车销售量逐年增加,据统计,2022年新能源汽车年销售量为690万辆.预计2024年新能源汽车手销售量将达到1166万辆,设这两年新能源汽车销售量年平均增长率为x ,则所列方程正确的是()A .B .C .D .7.若关于x 的一元二次方程有实数根,则实数k 的取值范围是()A .B .C .D .1y x =-3y x =-35y x =22y x =-12151101202a =3b =c =11d =2d =36d =4d =2)0(y ax a a =+≠()269011166x +=()211661690x -=()269069011166x ++=()116612690x -=2420x x k -+=2k >2k ≥2k <2k ≤8.对于反比例函数,下列结论中错误的是( )A .图象位于第二,四象限B .图象关于y 轴对称C .当时,y 随x 的增大而增大D .若点在图象上,则点也一定在图象上9.如图,一个隧道的横截面是以O 为圆心的圆的一部分,点D 是中弦AB 的中点,CD 经过圆心O 交于点C ,若路面AB =6m ,此圆的半径OA 的长为5m ,则净高CD 的长为( )A .5mB .6m C.m D .9m10.如图,在△ABC 中,AC =BC ,AB =12,把△ABC 绕点A 逆时针旋转60°得到△ADE ,连接CD ,当时,AC 的长为( )A .B .10C .D 二、填空题(每小题3分,共15分)11.“海日生残夜,江春入旧年”.如图所记录的日出美景中,太阳与海天交界处可看成圆与直线,它们的位置关系是______.12.图1是装满了液体的高脚杯(数据如图),用去部分液体后,放在水平的桌面上如图2所示,此时液体AB =______.13.抛物线的部分图象如图所示,当时,x 的取值范围是______.()0k y k x=≤0x >(),a b (),a b --O O 133CD =2y ax bx c =++5y >14.小诚和爸爸搭乘长途汽车回老家过年,在小程序上购票时,系统自动将两人分配到同一排(如图是长途汽车座位示意图),则小诚和爸爸分配的座位恰好是邻座(过道两侧也视为邻座)的概率是______.15.如图,已知反比例函数,.点A 在y 轴的正半轴上,过点A 作直线轴,且分别与两反比例函数的图象交于点C 和点B ,连接OC ,OB .若△BOC 的面积为9,AC :AB =4:5,则______.三、解答题(本大题共8个小题,共75分)16.(10分)用适当的方法解下列一元二次方程:(1);(2).17.(8分)如图.在平面直角坐标系中,△ABC 的顶点均在正方形网络的格点上,已知点C 的坐标为.(1)以点O 为位似中心,在给出的网格内曲使与位似,并且点的坐标为;(2)与的相似比是______.18.(9分)如图.文文应用所学的三角形相关知识测量河南广播电视塔的高度,她站在距离塔底A 点120m 处的D 点.测得自己的影长DE 为0.4m ,此时该塔的影子为AC ,她测得点D 与点C 的距离为23m ,已知文文的身高DF 为1.6m .求河南广播电视塔AB 的高.(图中各点都在同一平面内.点A ,C ,D .E 在同一直线上)111(0)k y k x =≥222(0)k y k x=<BC x ∥12k k =()419x x x -=-26160x x --=()4,1-111A B C △111A B C △ABC △1C ()8,2-ABC △111A B C △19.(9分)如图,在平面直角坐标系中,直线与反比例函数在第一象限内的图象交于点.(1)求反比例函数的表达式;(2)直接写出当时,关于x的不等式的解集.20.(9分)掷实心球是2024年郑州巿高中阶段学校招生体育考试的抽考项目,如图1是一名男生投实心球,实心球的行进路线是—条抛物线,行进高度y (m )与水平距离x (m )之间的函数关系如图2所示,掷出时起点处高度为m ,当水平距离为5m 时,实心球行进至最高点4m 处.(1)求y 关于x 的函数表达式(不写x 的取值范围);(2)根据郑州市高中阶段学校招生体育考试评分标准(男生).在投掷过程中.实心球从起点到落地点的水平距离大于等于11.4m 时,此项考试得分为满分10分.请判断该男生在此项考试中是否能得满分,并说明理由.21.(10分)如图,AB 是的直径,点C ,D 是上位于直线AB 异侧的两点,,交CB 的延长线于点E .且BD 评分.(1)求证:DE 为的切线;213y x =-()0k y k x=≠()6,A a 0x >213k x x >-9649O O DE BC ⊥ABE ∠O(2)若,,①求DE 的长;②图中阴影部分的面积为______.22.(10分)如图,抛物线交x 轴于,两点,与y 轴交干点C .(1)求此抛物线的解析式;(2)已知P 为抛物线上一点(不与点B 重合),若点P 关于x 轴对称的点恰好在直线BC 上,求点P 的坐标.23.(10分)已知△ABC 与△DEC 都为等腰三角形,AB =AC ,DE =DC ,.(1)当n =60°时,①如图1,当点D 在AC 上时,BE 与AD 的数量关系是______;②如图2,当点D 不在AC 上时,BE 与AD 的数量关系是______.(2)如图3(点B 位于△CDE 的内部).当n =90°时,①探究线段BE 与AD 的数量关系,并说明理由;②当,时.请直接写出CE 的长.永城2023—2024学年上学期期未学业评价卷九年级数学(人教版)参考答案一、选择题(每小题3分,共30分)1.B 2.C 3.C 4.D 5.A 6.A 7.D 8.B 9.D 10.C二、填空题(每小题3分,共15分)11.相交12.4cm 13. 14. 15.-80三、解答题(本大题共8个小题,共75分)16.解:(1).60ABC ∠=︒4AB =2c y x bx =-++()1,0A -()2,0B 2y x b c =-++P 'BAC EDC n ∠=∠=AD BC ∥AB =7AD =04x <<12249x x x -=-,.,.(2).,.由此可得,,.17.解:(1)如图所示.(2)1:2.18.解:太阳光是平行光线,因此.由题意得,.,.m ,m ,(m ).m ,m ,,m .河南广播电视塔的高度为388m .19.解:(1)∵点在直线上,.249x =294x =132x =-232x =2616x x -=269169x x -+=+()2325x -=35x -=±18x =22x =-111A B C △BCA FED ∠=∠AB AC ⊥DF AC ⊥ABC DFE ∴△△∽AB DF AC DE∴=120AD = 23CD =97AC AD CD ∴=-=0.4DE = 1.6DF =1.6970.4AB ∴=388AB ∴=∴()6,A a 213y x =-26133a ∴=⨯-=即点A 的坐标为.点A 在反比例函数的图象上,.反比例函数的表达式为.(2)当时,关于x 的不等式的解集为.20.解:(1)设y 关于x 的函数表达式为.把代入表达式,得,解得..(2)该男生在此项考试中能得满分.理由:令,即,解得,(舍去).,该男生在此项考试中能得满分.21.(1)证明:连接OD .∵BD 平分,.,...,.∵点D 在上,DE 为的切线.(2)解:①如图,过点O 作,垂足为F .()6,3k y x=6318k =⨯=∴∴18y x=0x >213k x x >-06x <<()254y a x =-+960,49⎛⎫ ⎪⎝⎭()29605449a =-+449a =-24(5)449y x ∴=--+0y =()2454049x --+=112x =22x =-1211.4> ∴ABE ∠ABD DBE ∴∠=∠OD OB = ODB ABD ∴∠=∠ODB DBE ∴∠=∠OD BC ∴∥DE BC ⊥ OD DE ∴⊥O ∴O OF BC ⊥,.,..在Rt △OBF 中,由(1)得,,.四边形OFED 为矩形..②.22.解:(1)将,代入,得解得lc =2.抛物线的解析式为.(2)设直线BC 的解析式为.由(1)中得,点C 的坐标为.将,代入,得,解得,直线BC 的解析式为.设点的坐标为,∵点P 与点关于x 轴对称,点P 的坐标为.∵点P 在抛物线上,.解得,.又∵点P 不与点B 重合,..点P 的坐标为.4AB = 122B OB A ==∴60ABC ∠=︒ 30BOF ∴∠=︒112BF OB ∴==OF ===OD DE ∥DE BC ⊥90ODE E OFE ∴∠=∠=∠=︒∴DE OF ∴==2π3()1,0A -()2,0B 2y x bx c =-++10,420.b c b c --+=⎧⎨-++=⎩12b c =⎧⎨=⎩∴22y x x =-++y kx m =+22y x x =-++()0,2()2,0B ()0,2C y kx m =+202h m m +=⎧⎨=⎩12k m =-⎧⎨=⎩∴2y x =-+P '(),2a a -+P '∴(),2a a -222a a a -=-++∴12a =22a =-2a ∴=-2224a ∴-=--=-∴()2,4--23.解:(1)①,②(2)①.理由如下:当时,,∵,.△ABC 与△DEC 为等腰直角三角形..则,.,,....②CE 的长为.BE AD =BE AD=BE =90n =︒90BAC EDC ∠=∠=︒AB AC =DE DC =∴45ACB ABC DCE DEC ∴∠=∠=∠=∠=︒BC ==EC ==DC AC EC BC ∴==45DCE DCB ECB ∠=∠+∠=︒45ACB ACD DCB ∠=∠+∠=︒DCA ECB ∴∠=∠DCA ECB ∴△△∽AD DC BE EC ∴==BE ∴=。
青山区2023—2024学年度第一学期期末质量检测九年级数学试卷本试卷满分120分考试用时120分钟第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.经过有交通信号灯的路口,遇到绿灯,这个事件是()A.随机事件B.确定性事件C.不可能事件D.必然事件2.下列图形中是中心对称图形的是()A.B.C.D.3.解一元二次方程,配方后正确的是()A.B.C.D.4.在平面直角坐标系中,将抛物线向上平移一个单位长度,再向左平移一个单位长度,得到的抛物线的解析式为()A.B.C.D.5.已知的半径是,点P是直线l上一点,且.那么直线l与的公共点的个数是()A.0B.1C.2D.无法确定6.已知一元二次方程的两根分别为a,b,则的值()A.2B.C.D.7.如图,在中,,边在x轴上,,.将绕点O顺时针旋转,每次旋转,则第2023次旋转结束时,点B的坐标为()A.B...8.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,则三辆汽车经过这个十字路口时,至少有两辆车直行的概率为()A.B....从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间,这个函数图象如图所示.则小球从第到第的运动路径长为(A.20m B.30m10.抛物线与x是以为圆心,为半径的上一动点,为中点,则线段的长可能为(A.1B.二、填空题(共6小题,每小题接填写在答题卡的指定位置.11.点P(2,-1)关于原点成中心对称的点投中频率那么估计这名篮球运动员投篮一次投中的概率是.某商品原售价为.已知抛物线经过点,且满足.下列四个结论:抛物线的对称轴是;②同号;若,则不等式的解集;抛物线上的两个点,,当,且时,..(填写序号).如图,点为等边的边上的一个动点,,过点作于点,交边于点,当过,,三点的圆面积最小时,则.三、解答题(共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形.17.若关于x的一元二次方程有两个相等的实数根,求m的值及此方程的根.18.如图,在中,,将绕点A顺时针旋转得到,点C的对应点E恰好落在BC边的延长线上,求证:.19.有5张看上去无差别的卡片,上面分别写着1,2,3,4,5.(1)随机抽取1张卡片,则取出的卡片上数字为偶数的概率为______.(2)若一次性抽取两张卡片,请用画树状图法或列表法求两张卡片上的数字和为奇数的概率.20.如图,在中,,O为边上一点,过点C且经过边上的点D,.(1)求证:为的切线;(2)延长交于点E,连接,若且,求的半径.21.如图,是由边长为1的小正方形组成的的网格,每个小正方形的顶点叫做格点,过格点A,B,C,点D为与格线交点.仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题.(1)画圆心O,并过点B作的切线BE;(2)作弦,并在上画点G,使.22.某俱乐部购进一台如图1的篮球发球机,用于球员篮球训练.该发球机可以以不同力度发射出篮球,篮球运行的路线都是抛物线.出球口离地面高1米,以出球口为原点,平行于地面的直线为x轴,垂直于地面的直线为y轴,建立平面直角坐标系.力度变化时,抛物线的顶点在直线上移动,从而产生一组不同的抛物线(如图2).(1)若.①发球机发射出的篮球运行到距发球机水平距离为6m时,离地面的高度为1m.请直接写出该球在运行过程中离地面的最大高度;②若发球机发射出的篮球在运行过程中离地面的最大高度为3m,求该球运行路线的解析式,及此球落地点离发球机的水平距离;(2)球员小刚训练时发现:当篮球运行到离地面高度为1m至2.2m之间(包含端点)是最佳接球区间,若,直接写出当a满足什么条件时,距发球机水平距离12m的小刚在前后不挪动位置的前提下,能在最佳区间接到球.23.已知为两对角线的交点,直线过顶点,且绕点顺时针旋转,过点,分别作直线的垂线,垂足为点,.(1)如图1,若直线过点,求证:;(2)如图2,若,,求的度数;(3)如图3,若为菱形,,,,直接写出的长.24.已知抛物线与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)如图1,过点A作直线交抛物线于点P,连接、,若,求点P的坐标;(3)如图2,过点分别作直线交抛物线于点E、F,直线(,且)交抛物线于点G、H,点M、N分别为线段、的中点,若,求证:直线必经过一定点,并求该定点坐标.参考答案与解析1.A2.C3.D4.D5.C6.D7.C8.C9.C10.B11.(-2,1)12.0.5013.14.15.①②④16.##17.,解:∵关于x的方程有两个相等的实数根,∴,解得,,∴方程为,∴解得:.18.见解析证明:∵将绕点A顺时针旋转得到,∴,∴,.∵B,C,E三点在同一直线上,∴,∴为等边三角形,∴.∴,∴.19.(1)(2)(1)解:∵有5张看上去无差别的卡片,上面分别写着1,2,3,4,5,∴偶数卡片为,∴设取出的卡片上数字为偶数的结果为事件A.∴;(2)解:根据题意列表如下:,由上表可知,一次性抽取两张卡片,有20种等可能的结果,其中“两张卡片上数字和为奇数”的结果有12种.∴P(两张卡片上数字和为奇数).20.(1)见解析(2)(1)解:连接,,在和中,,∴,∴,∴,又∵为半径,∴为的切线;(2)解:∵,,∴为等腰直角三角形,∴,设,,则,,,在和中,和,即,解得:,∴的半径为.21.(1)见解析(2)见解析(1)解:∵过格点A,B,C,点D为与格线交点,∴取格点上的点A,B,H,C,连接,相交于点,即为圆心,∵直径的纵横比为,化简纵横比可为,即切线纵横比应为,∴取格点,连接交点即为点,连接即为切线,如下图所示:(2)解:连接,用无刻度直尺平移至点A画直线交于点,连接,作交于点,则,∴,22.(1)①4m;②,;(2)(1)解:①∵抛物线的顶点在直线上移动,,∴抛物线的顶点在直线上移动,∵抛物线,∴,∵发球机发射出的篮球运行到距发球机水平距离为6m时,离地面的高度为1m,∴此时抛物线与轴交点为,∴根据对称性:,∴该球在运行过程中离地面的最大高度为;②∵发球机发射出的篮球在运行过程中离地面的最大高度为3m,∴由(1)知:,即:,∴解得:,,∴该球运行路线的解析式为:,∴令,则,解得:或(舍),∴此球落地点离发球机的水平距离为;(2)解:若,∴,∴,整理得:,∴,∵篮球运行到离地面高度为1m至2.2m之间(包含端点)是最佳接球区间,又∵距发球机水平距离12m的小刚在前后不挪动位置的前提下,∴将代入中得:,解得:,∴将代入中得:,解得:,∴当时,距发球机水平距离12m的小刚在前后不挪动位置的前提下,能在最佳区间接到球.23.(1)证明见解析(2)(3)的长为(1)证明:点为两对角线的交点,,∵直线过顶点,过点分别作直线的垂线,垂足为点,,在和中,,,.(2)解:如图,连接,并延长交于点,,,,,,,又,,,在和中,,,,∴在中,,,,,∴在中,,,是等边三角形,.(3)解:如图,过点作于点,过点作于点,则四边形是矩形,,设,则,在中,,,在中,,即,解得,,,,即,是梯形的中位线,,即,解得,所以的长为7.24.(1),,(2)点P的坐标为或;(3)证明见解析;定点(1)解:抛物线与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,令,则,解得:,,,;令,则,;(2)解:由(1)可知,,,,,,,,如图,令直线与轴交于点,设点,直线的函数关系式为,则,解得:,直线的函数关系式为,令,则,,,,,,,,当时,解得;当时,解得,经检验,和是原方程的解,点P的坐标为或;(3)证明:点在直线上,,,直线,直线交抛物线于点E、F,联立,整理得:,,点M为线段的中点,,将代入直线,则,,同理可得:,设直线的解析式为,则,解得:,,,直线的解析式为,当时,,直线必经过一定点,该定点坐标为。
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
2023-2024学年北京市九年级数学第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,已知抛物线和直线.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个2.教育局组织学生篮球赛,有x 支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )A.B .C .D .3.下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。
B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。
C .某彩票中奖率为,说明买100张彩票,有36张中奖。
D .打开电视,中央一套正在播放新闻联播。
4.如图是我们学过的反比例函数图象,它的表达式可能是( )21y x 4x =-+2y 2x =()11452x x -=()11452x x +=()145x x -=()145x x +=36%A .B .C .D .5.下列图案中,是中心对称图形的是( )A .B .C .D .6.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为()A .1 cmB .7cmC .3 cm 或4 cmD .1cm 或7cm 7.已知关于的一元二次方程有两个相等的实数根,则锐角等于( )A .B .C .D .8.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A.B .C .D .9.下列关系式中,y 是x 的反比例函数的是( )A .y =4xB .=3C .y =﹣D .y =x 2﹣110.如图,⊙O 的直径长10,弦AB=8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM≤5B .4≤OM≤5C .3<OM <5D .4<OM <511.如图所示的工件的主视图是( )22y x =4y x =3y x =-3y x=-x 2cos 0x α+=α15 30 45 601325122542512y x 1xA .B .C .D .12.若△ABC ~△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为( )A .2:1B .1:2C .4:1D .1:4二、填空题(每题4分,共24分)13.若弧长为4π的扇形的圆心角为直角,则该扇形的半径为 .14.因式分解:_______;15.如图,在平面直角坐标系中,已知经过点,且点O 为坐标原点,点C 在y 轴上,点E 在x 轴上,A (-3,2),则__________.16.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.17.已知关于的方程的一个根为-2,则方程另一个根为__________.18.在中,,,在外有一点,且,则的度数是__________.三、解答题(共78分)19.(8分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.20.(8分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.()()2a b b a ---=A E B O C 、、、tan OBC ∠=x 230x mx m ++=ABC ∆AC BC =90C ∠=︒ABC ∆M MA MB ⊥AMC ∠AB B BC AB 25AB(1)如图①,在Rt △ABC 中,∠C =90°,AC >BC ,若Rt △ABC 是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC :AC :AB 的值.(2)如图②,△ABC 是⊙O 的内接三角形,AB >AC ,∠BAC =45°,S △ABC =,将△ABC 绕点A 逆时针旋转45°得到△ADE ,点B 的对应点为D ,AD 与⊙O 交于点M ,若△ACD 是“匀称三角形”,求CD 的长,并判断CM 是否为△ACD的“匀称中线”.21.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a 的值为 ;(2)求C 等级对应扇形的圆心角的度数;(3)获得A 等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.22.(10分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.ABC 90C ∠=︒10AB =8AC =AB A 90︒AD EFG ABC CB EF D(1)求的大小;(2)求的长.23.(10分)如图,把Rt △ABC 绕点A .逆时针旋转40°,得到在Rt △ABʹCʹ,点Cʹ恰好落在边AB 上,连接BBʹ,求∠BBʹCʹ的度数.24.(10分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+ 1.(1)若从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7, 11, 19, 23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,25.(12分)(1)计算: (2)化简:26.已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵当y 1=y 2时,即时,解得:x=0或x=2,1∠AE 201224((18--+-⨯--2291(1)693x x x x -⋅+-++2x 4x 2x -+=∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -直线的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,,解得.∴使得M=2的x 值是1或.∴④错误.综上所述,正确的有②③2个.故选B .2、A 【分析】先列出x 支篮球队,每两队之间都比赛一场,共可以比赛x (x-1)场,再根据题意列出方程为.【详解】解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为,故选:A .本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3、B【解析】A 、掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B 、从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C 、某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时,趋近的一个数并不能说买100张该种彩票就一定能中36张奖,故此选项错误;D 、中央一套电视节目有很多,打开电视有可能正在播放中央新闻也有可能播放其它节目,故本选项错误.故选B .4、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A 、为二次函数表达式,故A 选项错误;B 、为反比例函数表达式,且,经过第一三象限,符合图象,故B 选项正确;21y x 4x =-+2y 2x =()221y x 4x x 24=-+=--+2x 4x 2-+=12x 2x 2=+=-2+()11452x x -=()11452x x -=12120k >22y x =4y x=0k >C 、为反比例函数表达式,且,经过第二四象限,不符合图象,故C 选项错误;D 、为一次函数表达式,故D 选项错误.故答案为B .本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.5、C【解析】根据中心对称图形的概念即可得出答案.【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.6、D【分析】分AB 、CD 在圆心的同侧和异侧两种情况求得AB 与CD 的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF-OE=1cm ;当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,∵AB ∥CD,3y x=-0k <3y x =-∴OF ⊥CD ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF+OE=7cm .故选D .本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.7、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D .本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.8、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A .cos αx 2cos 0x α-+=2(41cos 0α-⨯⨯=1cos 2α=α60 1325本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.9、C【分析】根据反比例函数的定义逐一判断即可.【详解】A 、y =4x 是正比例函数;B 、=3,可以化为y =3x ,是正比例函数;C 、y =﹣是反比例函数;D 、y =x 2﹣1是二次函数;故选:C .本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.10、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A .本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.11、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B .12、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B .此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据扇形的弧长公式计算即可,【详解】∵扇形的圆心角为90°,弧长为4π,∴,即4π=,则扇形的半径r=1.y x1x O OM AB ⊥OM 3OM =OM OA OM 5OM =OM 35OM ≤≤ABC A B C '''V ABC A B C '''V r l 180n π=90•180r π故答案为1考点:弧长的计算.14、(a-b )(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a -b )2+(a -b )=(a -b )(a -b +1),故答案为:(a -b )(a -b +1)此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、【解析】分别过A 点作x 轴和y 轴的垂线,连接EC ,由∠COE =90°,根据圆周角定理可得:EC 是⊙A 的直径、,由A 点坐标及垂径定理可求出OE 和OC ,解直角三角形即可求得.【详解】解:如图,过A 作AM ⊥x 轴于M ,AN ⊥y 轴于N ,连接EC ,∵∠COE =90°,∴EC 是⊙A 的直径,∵A (−3,2),∴OM =3,ON =2,∵AM ⊥x 轴,AN ⊥y 轴,∴M 为OE 中点,N 为OC 中点,∴OE =2OM =6,OC =2ON =4,∴=.本题主要考查了同弧所对的圆周角相等、垂径定理和锐角三角函数定义,熟练掌握定理是解本题的关键.16、3或1.2【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,23∠=∠OBC CEO tan OBC ∠tan OBC ∠42tan 63∠===OC CEO OE∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为1.2或3.本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.17、1【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24120x x --=122,6x x =-=18、、【分析】由,可知A 、C 、B 、M 四点共圆,AB 为圆的直径,则是弦AC 所对的圆周角,此时需要对M 点的位置进行分类讨论,点M 分别在直线AC 的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果.【详解】解:∵在中,,,∴∠BAC =∠ACB =45°,∵点在外,且,即∠AMB =90°∵∴A 、C 、B 、M 四点共圆,①如图,当点M 在直线AC 的左侧时,,∴;②如图,当点M 在直线AC 的右侧时,∵,∴,故答案为:135°或45°.本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A 、C 、B 、M 四点共圆.三、解答题(共78分)19、米【分析】根据坡度的定义可得,求出AB ,再根据勾股定理求135︒45︒90C ∠=︒MA MB ⊥AMC ∠ABC ∆AC BC =90C ∠=︒M ABC ∆MA MB ⊥180∠+∠=︒AMB C 180∠+∠=︒AMC ABC 180********∠=︒-∠=︒-︒=︒AMC ABC AC AC =45∠=∠=︒AMC ABC 25BC AC =AB =【详解】∵坡顶离地面的高度为20米,坡面的坡度为即, ∴米由勾股定理得答:坡面的长度为米.考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.20、(1)① “匀称中线”是BE ,它是AC 边上的中线,②BC :AC :AB;(2)CDa ,CM 不是△ACD 的“匀称中线”.理由见解析.【分析】(1)①先作出Rt △ABC 的三条中线AD 、BE 、CF ,然后利用匀称中线的定义分别验证即可得出答案;②设AC =2a ,利用勾股定理分别把BC,AB 的长度求出来即可得出答案.(2)由②知:AC :AD :CD ,设AC ,则AD =2a ,CD ,过点C 作CH ⊥AB ,垂足为H,利用的面积建立一个关于a 的方程,解方程即可求出CD 的长度;假设CM 是△ACD 的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC 的三条中线AD、BE 、CF ,∵∠ACB =90°,∴CF =,即CF 不是“匀称中线”.又在Rt △ACD 中,AD >AC >BC ,即AD 不是“匀称中线”.∴“匀称中线”是BE ,它是AC 边上的中线,②设AC =2a ,则CE =a ,BE =2a ,在Rt △BCE 中∠BCE =90°,∴BC ,在Rt △ABC 中,AB ,∴BC :AC :AB (2)由旋转可知,∠DAE =∠BAC =45°.AD =AB >AC ,B BC AB 2525BC AC =2025AC =50AC =AB ==AB :2:7:2ABC 12AB AB ≠==:2:2a =∴∠DAC =∠DAE +∠BAC =90°,AD >AC ,∵Rt △ACD 是“匀称三角形”.由②知:AC :AD :CD设AC,则AD =2a ,CD ,如图②,过点C 作CH⊥AB ,垂足为H ,则∠AHC =90°,∵∠BAC =45°,∴ ∵解得a =2,a =﹣2(舍去),∴判断:CM 不是△ACD 的“匀称中线”.理由:假设CM 是△ACD 的“匀称中线”.则CM =AD =2AM =4,AM =2,∴又在Rt △CBH 中,∠CHB =90°,CH ,BH =4,∴即这与∠AMC =∠B相矛盾,∴假设不成立,2CH AH ===11222ABC S AB CH a ==⨯= CD ==tan AC AMC AM ∠===tan tan CH B AMC BH ===≠∠B AMC∠≠∠∴CM 不是△ACD 的“匀称中线”.本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.21、(1)8 ;(2);(3)【分析】(1)根据D 等级的人数除以其百分比得到班级总人数,再乘以B 等级的百分比即可得a 的值;(2)用C 等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为 人,B 等级的人数为 人,故a 的值为8;(2)∴C 等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P (一男一女) 答:恰好选中一男一女参加比赛的概率为.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 的结果数目m ,然后利用概率公式计算事件A的概率为.也考查了统计图.22、(1);(2)【分析】(1)根据旋转的性质可求得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)根据平移的性质及同角的余角相等证得∠DAE=∠CAB ,进而证得△ADE ∽△ACB ,利用相似的性质求出AE 即可.【详解】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB ,∴∠ABD=∠ADB=45°,∵△EFG 是由△ABC 沿CB 方向平移得到,∴AB ∥EF ,∴∠1=∠ABD=45°;(2)由平移的性质得,AE ∥CG ,∴∠EAC=180°-∠C=90°,144︒121230%40÷=4020%8⨯=16360144 40⨯︒=︒ 144︒61122==12m n45︒12.5AE =∴∠EAB+∠BAC=90°,由(1)知∠DAB=90°,∴∠DAE+∠EAB=90°,∴∠DAE=∠CAB ,又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,∴∠ADE=∠ACB ,∴△ADE ∽△ACB ,∴,∵AC=8,AB=AD=10,∴AE=12.5.本题为平移的性质,旋转的性质,相似三角形的判定与性质的综合考查,熟练掌握基础的性质与判定是解题的关键.23、20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB .∴∠ABBʹ==70°.∴∠BBʹCʹ=90°-70°=20°.本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.24、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解: (1) 因为7, 11, 19, 23共有4个数,其中素数7只有1个,所以从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是,故答案为. (2)由题意画树状图如下:AD AE AC AB=00180402-14231414由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.25、(1)1;(2)【分析】(1)根据实数的混合运算法则计算即可;(2)根据分式的运算法则计算即可.【详解】解:(1)原式=2+ =1; (2).本题考查了实数的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.26、y =1(x ﹣1)1+1.【分析】根据题意设抛物线解析式为y =a (x ﹣1)1+1,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y =a (x ﹣1)1+1,把(3,10)代入得a (3﹣1)1+1=10,解得a =1,所以抛物线解析式为y =1(x ﹣1)1+1.本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.82123P ==43x x +-201222()(18--++⨯--11--1442291(1)693x x x x -⋅+-++()()()2334•33x x x x x +-+=+-43x x +=-。
准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。
A ..C ...下列方程是一元二次方程的是(.2x y +=211x x +=2.5cm3cm A.B.A.1个16.如图,在矩形中,一点,将矩形沿折叠,使点则折痕的长为 .三、解答题(一):(本大题共共24分)17.解方程:(1);ABCD ABCD FH FH 210210x x ++=19.如图,矩形的对角线,相交于点线于点.(1)求证:.(2)若,四、解答题(二):(本大题共20.某学校为扎实推进劳动教育,部分学生的劳动积分(积分用图.ABCD AC BD E AC CE =120BOC ∠=︒CE(1)统计表中_________,C (2)学校规定劳动积分大于等于该学校“劳动之星”大约有多少人;(3)A 等级中有两名男同学和两名女同学,学校从(1)几秒后与(2)设的面积为,若存在,求出m =PCQ △ABC V CPQ V 1S :2:5S S =(1)分别求反比例函数和一次函数的表达式;(2)请直接写出当(3)横纵坐标均为整数的点叫整点,我们把(不含边界)记作区域24.综合探究(1)当点为中点时,求点的坐标,并直接写出与对角线的关系;(2)如图2,连接.①与是否相似?请说明理由;②的周长是否有最小值,若有,请求出最小值;若没有,请说明理由.③当平分时,直接写出的值.x E AC F EF BC CD AFE △ABC V CDE V CD ACO ∠k轴,轴,,,AH y ⊥AH x ∴∥ AB y ∥AH AB ∴⊥ABO BOH OHA HAB ∴∠=∠=∠=∠∵四边形是矩形,∴∴四边形是矩形,∴,ABCD A ADC C ∠=∠=∠=ADGH 6HG AD ==(2)解:①与连接、,∴,将代入得,将代入得,,AFE △ABC V BC AD ()4,3A -22345BC =+=3y =k y x =x =4x =-k y x =123,44k k AF AE +∴=+=1212AF k AE AB AC +∴==如图,此时,点D 在线段又,,,即∵矩形中,90CAD ACB ∠=︒-∠= 90ADC BAC ∠=∠=︒ ACD BCA ∴∽△△AC CD ∴=4CD =ABOC AC OB ∥∴,∴为等腰直角三角形,∴,∴直线与轴的交点坐标为:∴同理可得:直线解析式为:45DCO ∠=︒COG V 3OG OC ==CD x CD。
图A B
C
D E
九年级下学期数学期末考试试卷
____班 姓名_______
一、
1. 方程x 2
=x 的解是
A. x=0
B. x=1
C. x=±1
D. x=1, x=0 2.如果一元二次方程2
12270x
x ++=的两个根是12,x x ,那么12x x +的值
A. -6
B. -12
C. 12
D. 27 3.下列描述不属于定义的是
A .两组对边分别平行的四边形是平行四边形
B .正三角形是特殊的三角形
C .在同一平面内三条线段首尾相连得到的图形是三角形
D .含有未知数的等式叫做方程 4.下列命题是假命题的是
A. 平行四边形的对角相等
B. 等腰梯形的对角线相等
C. 对角线互相垂直的四边形是菱形
D. 两条对角线相等的平行四边形是矩形 5. 下列说法中正确的是
A .所有的等腰三角形都相似
B .所有的菱形都相似
C .所有的矩形都相似
D .所有的等腰直角三角形都相似 6.如图1:点O 是等边△ABC 的中心,
A ′、
B ′、
C ′分
别是OA ,OB ,OC 的中点,则△ABC 与△A ′B ′C ′是位 似三角形,此时,△A ′B ′C ′与△ABC 的位似比、位 似中心分别为 A .
12
, 点A ′ B .2,点A C .
12
,点O D .2,点O
7.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是 A .c=
A
a sin B .c=
A a cos C .c=A a tan ⋅ D .c=A
a
tan
8. 计算: 0
20202sin30
4cos 30tan 45+-的值等于
A .4
B .
C .3
D .2
9. 学校评选出30名优秀学生,要选5名代表参加全市优秀学生表彰会,已经确定了1名代表,
则剩余学生参加全市优秀学生表彰会的概率是 A.
6
1
B.
152 C.29
5 D.
29
4
10. 准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片
放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是 A.
31 B.41 C.51 D.6
1 二、耐心填一填,一锤定音 (每小题3分, 满分18分) 11. 方程0322
=--x x 变为b a x =+2
)(的形式是____________ .
12.定理“等腰梯形的对角线相等”的逆定理
是_____________________________________________.
13. 在ABC 中,∠C=0
90,若a=4,b=3,则sinA=____________. 14. 如果两个相似三角形的相似比为2:3, 那么这两个 相似三角形的面积比为_______________.
15. 如图2: △ABC 中,D,E 分别在AB 、AC 上,且DE 与BC 不
平行,请填上一个适当的条件:__________________可得△ADE ∽△ABC 16. 张洁和曾巧两个同学的生日在同一个月的概率是____________ .
三、细心想一想,慧眼识金 (第17、18题各5分,第19 题6分,满分16分)
17. 已知关于x 的一元二次方程5x 2
+kx -10=0一个根是-5,求k 的值及方程的另一个根.
18.如图3,某同学身高1.6米,由路灯下向前步行4米,发现自己的影子长有2米,问此路灯有多高? C
19.从1,2,3这三个数字中任意取出一个、两个或三个可以构成不同的一位数、两位数或三位数,所有这些数中均无重复数字(如22,311等为有重复数字的数). (1)列举所有可能出现的结果. (2)出现奇数的概率是多少?
四、用心做一做,马到成功 (每小题5分,满分10分)
20、如图4,梯形ABCD 中,AD ∥BC,AB=DC,P 为梯形ABCD 外一点,PA 、PD 分别交线段BC 于点E 、F,且PA=PD.
(1)写出图中三对你认为全等的三角形(不再添加辅助线); (2)选择你在(1)中写出的全等三角形中的任意一对进行证明.
图4
21. 如图5,BE 是△ABC 中∠ABC 的平分线.DE ∥BC ,若AE =3,AD =4,AC =5,求DE 的长.
五、综合用一用,再接再厉(每小题6分,满分12分)
22.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子.镜子的长与宽的
比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.如果制作这面镜子共花了195元,求这面镜子的长和宽. 23.如图6,直升飞机在资江大桥AB 的上方P 点处,此时飞机离地面的高度PO=450米,且A 、B 、
O 三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB .
六、探究试一试,超越自我 (第24题6分,第25题8分,满分14分)
24. 已知 α为锐角,关于x 的一元二次方程0tan 3232=+-αx x 有两个相等的实数
根.
(1)求锐角α; (2) 求方程的根.
25.如图7,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M 、N 分别在边AD 、BC 上
运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E 、F . (1)求梯形ABCD 的面积;
(2)设AE =x,用含x 的代数式表示四边形MEFN 的面积.
(3)试判断四边形MEFN 能否为正方形,若能,求出正方
形MEFN 的面积;若不能,请说明理由.
图7
图5
A
B
C
D
E
1 2
_
F _
E _
P _ D
_ C
_
B _ A
C D A
B
E
F N
M
O
B
A
45图6
2010年下学期期末考试九年级数学参考答案 一、(每小题3分, 满分30分) 二、(每小题3分, 满分18分)
11、(x-1)2
=4 12、对角线相等的梯形是等腰梯形 13、5
4 14、4:9
15、∠ ADE =∠ C,或∠ AED=∠ B 或
AB
AE
=
AC
AD , 任选一种情况均可 16、
12
1 三、(第17、18题各6分,第19 题8分,满分20分)
17、 k=23 (2分) 5
2
2=x (4分)
18、△CDE ∽△ABE , (2分) 则 BE
DE AB CD =
,即4226.1+=AB ,AB=4.8米 (4分) 19、(1)所有可能出现的结果: 一位数3个:1、2、3; 两位数6个:12、13、21、23、31、32;
三位数6个:123、132、213、231、312、321. (6分)
(2)出现奇数的概率为
3
2
(2分)
四、(每小题8分, 满分16分)
20、(1)△ABE ≌△DCF ,△ABP ≌△DCP ,△PBE ≌△PCF ,△PBF ≌△PCE 任写三种情况均可
(3分)
(2)证明过程 略 (5分) 21、先证DE =DB (3分) 再求DB =3
8
(5分) 五、(每小题8分, 满分16分)
22、设长方形镜子的宽为x m , 则长为2x m, 则1954563021202
=+⨯+⨯x x (4
分)
即05682
=-+x x 解得5.0),(25.421=-=x x 舍去 答略 (4
分)
23、 30,45PAO PBO ∠=︒∠=︒,tan 30,tan 45PO PO
OA OB
=︒=︒ ,(4分)
450
tan 30OA ∴==︒
450450tan 45OB =
=︒,
1)()AB OA OB m ∴=-= 答略 (4分)
六、(第24题8分,第25题12分,满分20分) 24、(1)0tan 34)32(2=⨯⨯--=∆
α,解得1tan =α,∴045=α; (4分)
(2) 013232
=+-x x ,解得3
321=
=x x . (4分) 25、(1)分别过D 、C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .易证
四边形DGHC 为矩形,∴GH =DC =1.又可证△AGD ≌△BHC .
∴ AG =BH =3. 在Rt △AGD 中,AG =3,AD =5, ∴
DG =4.
∴
162
4
7)(1=⨯+=
ABCD S 梯形. (4分)
(2)易证四边形MEFN 为矩形, △MEA ≌△NFB , △MEA ∽△DGA ∴ AE =BF . 设AE =x ,则EF =7-2x .∴DG ME AG AE =
. ME =x 3
4
. ∴
x x x x EF ME S MEFN 3
2838)2(7342+-=-=
⋅=矩形. (4分) (3)能.四边形MEFN 为正方形,则ME =EF . 由(2)知,AE =x ,EF =7-2x ,ME =
x 3
4
. ∴
=34x
7-2x .解得10
21=
x .∴ EF =51427=-x <4. ∴25196
5142
=⎪⎭
⎫ ⎝⎛=MEFN
S 正方形. (4分)
A
B
E F G H。