成都七中嘉祥外国语学校期末上期试题(1)
- 格式:pdf
- 大小:125.40 KB
- 文档页数:4
2023-2024学年四川省成都市锦江区嘉祥外国语学校七年级(上)期末数学试卷一、选择题(32分)1.(4分)几何体是由曲面或平面围成的.下列几何体面数最少的是( )A.B.C.D.2.(4分)肥皂泡膜是人眼能够分辨的最薄的东西之一,它的平均厚度约为700纳米,已知1纳米=10﹣9米,那么700纳米用科学记数法可表示为( )A.7×10﹣8B.7×10﹣7C.70×10﹣8D.0.7×10﹣7 3.(4分)下列事件中,最适宜采用全面调查的是( )A.调查南宁市中学生每天的阅读时间B.调查全国中学生对网络安全知识的了解程度C.对发射卫星的运载火箭零部件质量的检查D.调查某品牌手机电池的使用寿命4.(4分)若关于x的方程mx|m﹣1|+2=0是一元一次方程,则m的值为( )A.0B.1C.2D.0或25.(4分)下列能用平方差公式进行计算的式子,有( )个.①(a+2b)(a﹣2b);②(x2﹣1)(1+x2);③(﹣3s+2t)(3s+2t);④(2a+1)(﹣2a﹣1).A.1B.2C.3D.46.(4分)下列各式,计算正确的有( )个.①a0=1;②3﹣2=﹣9;③5.6×10﹣2=56;④;⑤x+x3=x4;⑥(﹣2x)3=﹣2x3.A.1B.2C.3D.47.(4分)班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一个不透明的袋子中放了若干个形状大小完全相同的白球,想请大家估计出袋中白球的个数.数学科代表小明是这样来估计的:他先往袋中放入10个形状大小与白球相同的红球,混匀后再从袋子中随机摸出20个球,发现其中有4个红球.根据小明的方法估计袋中白球有( )A.200个B.100个C.50个D.40个8.(4分)有理数a、b、c在数轴上的对应点的位置如图所示,下列式子:①|b|<|c|,②b+c<0,③a﹣c>0,④ac<0.其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(20分)9.(4分)已知﹣25的底数为a,指数为b,(﹣1)2的底数为c,幂为d,则(b﹣a)c+d = .10.(4分)定义一种新运算:,则当x=5时,3※x﹣5※x的结果为 .11.(4分)已知:x m﹣n=4,x n=,则x2m= .12.(4分)已知9n+1﹣32n=72,求n的值= .13.(4分)计算:= .三、解答题(48分)14.(16分)计算:(1)4xy(2x﹣xy)÷(﹣2xy)2;(2)(﹣ab2)3+ab3•(ab)2•(﹣2b)2;(3)32÷(﹣2)3+(2017﹣π)0+|﹣32+1|﹣()﹣2;(4)(3x﹣2)(2x﹣3)﹣(x﹣1)(6x+5).15.(6分)先化简,再求值:[(5m﹣n)(5m﹣n)﹣(5m+n)(5m﹣n)]÷(2n).其中,n=2.16.(8分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.17.(8分)若的积中不含x项与x3项.(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2003q2004的值.18.(10分)已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,求x的值;(2)若AP=3,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否发生变化?若不变化,求出这个定值,若变化,请说明理由.四、填空题(20分)19.(4分)过某个多边形一个顶点的所有对角线,将这个多边形分成9个三角形,这个多边形是 边形.20.(4分)某种商品的进价为每件80元,标价为每件120元,为了增加销量,商店准备打折销售,设商店打x折销售,若使利润率为20%,则x的值为 .21.(4分)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 .22.(4分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”.例如3=22﹣12,7=42﹣32,16=52﹣32,3,7,16就是三个智慧数.在正整数中,从1开始,第2024个智意数是 .23.(4分)如图,将长方形纸片的一角折叠,使顶点A落在F处,折痕为BC.作∠FBD 的平分线BE,则∠CBE的度数为 ;现将∠FBD沿BF折叠使BE、BD落在∠FBC的内部,且折叠后的BE交CF于点M,BD交CF于点N,若BN平分∠CBM,则∠ABC的度数为 .五、解答题(30分)24.(8分)实践与探索如图,边长为a的大正方形中有一个边长为b的小正方形,把图①中的阴影部分拼成一个长方形(如图②所示).(1)上述操作能验证的等式是 .(请选择正确的一个)A.a2﹣b2=(a+b)(a﹣b);B.a2﹣2ab+b2=(a﹣b)2;C.a2+ab=a(a+b);(2)请应用(1)中的等式完成下列各题:①20232﹣2024×2022;②计算:1002﹣992+982﹣972+⋯+42﹣32+22﹣12;③计算:(1﹣)×(1﹣)×(1﹣)×⋯×(1﹣)×(1﹣).25.(10分)松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲厂比乙厂要多用20天.在加工过程中,学校需付甲厂每天费用80元、付乙厂每天费用120元.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,而乙工厂每天的生产速度也提高25%,乙工厂单独完成剩余部分.且乙工厂的全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲厂单独完成;方案二:由乙厂单独完成;方案三:按(2)问方式完成;并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.26.(12分)已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则①∠AOC+∠BOD= ;②∠BOC﹣∠AOD= .(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.2023-2024学年四川省成都市锦江区嘉祥外国语学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(32分)1.(4分)几何体是由曲面或平面围成的.下列几何体面数最少的是( )A.B.C.D.【分析】根据各个几何体的面的特征进行判断即可.【解答】解:长方体是由6个平面围成的,圆柱是一个曲面和两个平面围成的,圆锥是一个曲面和一个平面围成的,三棱柱是由5个平面围成的,∴面数最少的是圆锥.故选:C.【点评】本题考查了立体图形的相关知识,解题关键在于熟练掌握各几何体的模型.2.(4分)肥皂泡膜是人眼能够分辨的最薄的东西之一,它的平均厚度约为700纳米,已知1纳米=10﹣9米,那么700纳米用科学记数法可表示为( )A.7×10﹣8B.7×10﹣7C.70×10﹣8D.0.7×10﹣7【分析】根据科学记数法的一般形式为a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值小于1时,n是负整数.【解答】解:700纳米=700×10﹣9米=7×10﹣7米,故选:B.【点评】本题考查科学记数法的表示方法.表示时关键要正确确定a的值以及n的值.3.(4分)下列事件中,最适宜采用全面调查的是( )A.调查南宁市中学生每天的阅读时间B.调查全国中学生对网络安全知识的了解程度C.对发射卫星的运载火箭零部件质量的检查D.调查某品牌手机电池的使用寿命【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【解答】解:A、调查南宁市中学生每天的阅读时间,最适宜采用抽样调查,故A不符合题意;B、调查全国中学生对网络安全知识的了解程度,最适宜采用抽样调查,故B不符合题意;C、对发射卫星的运载火箭零部件质量的检查,最适宜采用全面调查,故C符合题意;D、调查某品牌手机电池的使用寿命,最适宜采用抽样调查,故D不符合题意;故选:C.【点评】本题考查了全面调查与抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.4.(4分)若关于x的方程mx|m﹣1|+2=0是一元一次方程,则m的值为( )A.0B.1C.2D.0或2【分析】根据一元一次方程的定义列出关于m的方程,求出m的值即可.【解答】解:由题意得,m≠0且|m﹣1|=1,解得m=2.故选:C.【点评】本题考查的是一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.5.(4分)下列能用平方差公式进行计算的式子,有( )个.①(a+2b)(a﹣2b);②(x2﹣1)(1+x2);③(﹣3s+2t)(3s+2t);④(2a+1)(﹣2a﹣1).A.1B.2C.3D.4【分析】关键平方差公式进行判断选择即可.【解答】解:①(a+2b)(a﹣2b)=a2﹣(2b)2,则能用平方差公式进行计算;②(x2﹣1)(1+x2)=(x2)2﹣12,则能用平方差公式进行计算;③(﹣3s+2t)(3s+2t)=(2t)2﹣(3s)2,则能用平方差公式进行计算;④(2a+1)(﹣2a﹣1)=﹣(2a+1)(2a+1)=﹣(2a+1)2,则不能用平方差公式进行计算,则能用平方差公式进行计算有3个,故选:C.【点评】本题考查了平方差公式,根据平方差公式逐一判断即可求解,熟练掌握平方差公式是解题的关键.6.(4分)下列各式,计算正确的有( )个.①a0=1;②3﹣2=﹣9;③5.6×10﹣2=56;④;⑤x+x3=x4;⑥(﹣2x)3=﹣2x3.A.1B.2C.3D.4【分析】根据零指数幂、负整数指数幂、合并同类项、有理数的乘方、积的乘方运算法则计算即可.【解答】解:①a0=1(a≠0),故原说法错误;②,故原说法错误;③5.6×10﹣2=0.056,故原说法错误;④,故原说法正确;⑤x与x3不能合并,故原说法错误;⑥(﹣2x)3=﹣8x3,故原说法错误;所以正确的有④,共1个;故选:A.【点评】本题考查了零指数幂、负整数指数幂、合并同类项、有理数的乘方、积的乘方,熟练掌握这些运算法则是解题的关键.7.(4分)班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一个不透明的袋子中放了若干个形状大小完全相同的白球,想请大家估计出袋中白球的个数.数学科代表小明是这样来估计的:他先往袋中放入10个形状大小与白球相同的红球,混匀后再从袋子中随机摸出20个球,发现其中有4个红球.根据小明的方法估计袋中白球有( )A.200个B.100个C.50个D.40个【分析】设估计袋中白球有x个,根据概率公式列出算式,再进行计算即可得出答案.【解答】解:设估计袋中白球有x个,根据题意得:=,解得:x=40经检验x=40是原方程的解,答:估计袋中白球有40个.故选:D.【点评】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.8.(4分)有理数a、b、c在数轴上的对应点的位置如图所示,下列式子:①|b|<|c|,②b+c<0,③a﹣c>0,④ac<0.其中正确的有( )A.1个B.2个C.3个D.4个【分析】根据数轴上点的特征可得c<0<b<a,且|b|<|c|<|a|,结合有理数加减法,乘法的运算法则逐项判断可求解.【解答】解:由数轴可知:c<0<b<a,且|b|<|c|<|a|,故①正确;∴b+c<0,故②正确;a﹣c>0,故③正确;ac<0,故④正确,故选:D.【点评】本题主要考查有理数的加减法,乘法,数轴,掌握数轴上点的特征是解题的关键.二、填空题(20分)9.(4分)已知﹣25的底数为a,指数为b,(﹣1)2的底数为c,幂为d,则(b﹣a)c+d= ﹣2 .【分析】根据有理数幂的概念,求出a,b,c,d,再代入代数式计算即可.【解答】解:由题意,得:a=2,b=5,c=﹣1,d=1,∴(b﹣a)c+d=(5﹣2)×(﹣1)+1=﹣2;故答案为:﹣2.【点评】本题考查代数式求值,有理数幂.解题的关键是理解有理数的幂的概念.10.(4分)定义一种新运算:,则当x=5时,3※x﹣5※x的结果为 15 .【分析】当x=5时,3※x﹣5※x=3※5﹣5※5=3×5﹣(5﹣5),计算即可得出结论.【解答】解:∵,∴当x=5时,3※x﹣4※x=3※5﹣5※5=3×5﹣(5﹣5)=15,故答案为:15.【点评】本题考查了代数式的求值,解题的关键是理解题意,应用新定义计算.11.(4分)已知:x m﹣n=4,x n=,则x2m= 4 .【分析】直接利用同底数幂的除法运算法则化简,进而结合幂的乘方运算法则求出答案.【解答】解:∵x m﹣n=4,∴x m÷x n=4,∵x n=,∴x m=2,则x2m=(x m)2=4.故答案为:4.【点评】此题主要考查了同底数幂的除法运算以及幂的乘方运算,正确掌握运算法则是解题关键.12.(4分)已知9n+1﹣32n=72,求n的值= 1 .【分析】根据72=9×8,而9n+1﹣32n=9n×8,得出9n=9,从而得出n的值.【解答】解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=1.故答案为:1.【点评】主要考查了幂的乘方与积的乘方,本题能够根据已知条件,结合72=9×8,将9n+1﹣32n变形为9n×8,是解决问题的关键.13.(4分)计算:= 1 .【分析】首先利用平方差公式可得2016×2018=20172﹣1,再化简分母进而可得答案.【解答】解:原式===1,故答案为:1.【点评】此题主要考查了平方差公式,关键是掌握(a+b)(a﹣b)=a2﹣b2.三、解答题(48分)14.(16分)计算:(1)4xy(2x﹣xy)÷(﹣2xy)2;(2)(﹣ab2)3+ab3•(ab)2•(﹣2b)2;(3)32÷(﹣2)3+(2017﹣π)0+|﹣32+1|﹣()﹣2;(4)(3x﹣2)(2x﹣3)﹣(x﹣1)(6x+5).【分析】(1)根据整式的乘法和积的乘方以及整式的除法法则解答即可;(2)根据积的乘方和整式的混合计算解答即可;(3)根据有理数的混合计算和0指数幂解答即可;(4)根据多项式的乘法解答即可.【解答】解:(1)4xy(2x﹣xy)÷(﹣2xy)2=(8x2y﹣4x2y2)÷4x2y2=;(2)(﹣ab2)3+ab3•(ab)2•(﹣2b)2=﹣a3b6+ab3•a2b2•4b2=﹣a3b6+4a3b7;(3)32÷(﹣2)3+(2017﹣π)0+|﹣32+1|﹣()﹣2=32÷(﹣8)+1+|﹣9+1|﹣4=﹣4+1+8﹣4=1;(4)(3x﹣2)(2x﹣3)﹣(x﹣1)(6x+5)=6x2﹣13x+6﹣6x2+x+5=﹣12x+11.【点评】此题考查整式的混合计算,关键是根据整式的乘法和积的乘方以及整式的除法法则解答.15.(6分)先化简,再求值:[(5m﹣n)(5m﹣n)﹣(5m+n)(5m﹣n)]÷(2n).其中,n=2.【分析】先计算括号内的,再计算除法,然后把代入化简后的结果,即可求解.【解答】解:原式=[(5m﹣n)(﹣2n)]×=(﹣10mn+2n2)×=﹣5m+n,当时,原式=﹣5×+2=1+2=3.【点评】本题主要查了整式的混合运算—化简求值,解题的关键是整式整式是混合运算法则.16.(8分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.【分析】(1)按乙错误的说法得出的系数的数值求出a,b的值;(2)把a,b的值代入原式求出整式乘法的正确结果.【解答】解:(1)(2x﹣a)(3x+b)=6x2+2bx﹣3ax﹣ab=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10.(2x+a)(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab=2x2﹣9x+10.∴,∴;(2)(2x﹣5)(3x﹣2)=6x2﹣4x﹣15x+10=6x2﹣19x+10.【点评】此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,是常考题型,解题时要细心.17.(8分)若的积中不含x项与x3项.(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2003q2004的值.【分析】(1)将原式根据多项式乘以多项式法则展开后合并同类项,由积中不含x项与x3项可知x项与x3项的系数均等于0,可得关于p、q的方程组,解方程组即可;(2)由(1)中p、q的值得pq=﹣1,将原式整理变形成(﹣2p2q)2+(3pq)﹣1+p2003q2004再将p、q、pq的值代入计算即可.【解答】解:(1)(x2+px﹣)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx﹣x2+x﹣q=x4+(p﹣3)x3+(q﹣3p﹣)x2+(pq+1)x﹣q,∵积中不含x项与x3项,∴,解得:p=3,q=﹣;(2)∵p=3,q=﹣,∴pq=﹣1,∴(﹣2p2q)2+(3pq)﹣1+p2003q2004=(2×3)2﹣+(﹣)×(﹣1)2003=36﹣+=36.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项、漏字母、有同类项的合并同类项,解题的关键是正确求出p,q的值.18.(10分)已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,求x的值;(2)若AP=3,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否发生变化?若不变化,求出这个定值,若变化,请说明理由.【分析】(1)由AP=BP,可知P在A、B之间,则AP=x﹣(﹣1),BP=3﹣x,即x﹣(﹣1)=3﹣x,计算求解即可;(2)由题意知,AP=|x﹣(﹣1)|,即|x﹣(﹣1)|=3,计算求解即可;(3)由题意知,点P表示的数为5+3t,B点表示的数为3+2t,点A表示的数为﹣1﹣t,则BP=2+t,AP=6+4t,根据4BP﹣AP=2,进行作答即可.【解答】解:(1)∵AP=BP,∴P在A、B之间,则AP=x﹣(﹣1),BP=3﹣x,∴x﹣(﹣1)=3﹣x,解得,x=1,∴x的值为1;(2)由题意知,AP=|x﹣(﹣1)|,∵AP=3,∴|x﹣(﹣1)|=3,即x﹣(﹣1)=3,或x﹣(﹣1)=﹣3,解得x=2或x=﹣4;(3)4BP﹣AP的值不会随着t的变化而变化;理由如下:由题意知,点P表示的数为5+3t,B点表示的数为3+2t,点A表示的数为﹣1﹣t,∴BP=5+3t﹣(3+2t)=2+t,AP=5+3t﹣(﹣1﹣t)=6+4t,∴4BP﹣AP=4(2+t)﹣(6+4t)=2,∴4BP﹣AP的值不会随着t的变化而变化,定值是2.【点评】本题考查了在数轴上表示有理数,数轴上两点之间的距离.正确的表示数轴上两点之间的距离是解题的关键.四、填空题(20分)19.(4分)过某个多边形一个顶点的所有对角线,将这个多边形分成9个三角形,这个多边形是 十一 边形.【分析】根据n边形对角线公式,可得答案.【解答】解:设多边形是n边形,由对角线公式,得,n﹣2=9.解得n=11,故答案为:十一.【点评】本题考查了多边形对角线,n边形过一个顶点的所有对角线公式是(n﹣2)条.20.(4分)某种商品的进价为每件80元,标价为每件120元,为了增加销量,商店准备打折销售,设商店打x折销售,若使利润率为20%,则x的值为 8 .【分析】由售价﹣进价=利润列方程,即可解得答案.【解答】解:根据题意得:120×﹣80=80×20%,解得x=8,∴x的值为8;故答案为:8.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意,列出一元一次方程解决问题.21.(4分)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 ±4 .【分析】将2a+2b看作整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.【解答】解:∵(2a+2b+1)(2a+2b﹣1)=63,∴(2a+2b)2﹣12=63,∴(2a+2b)2=64,2a+2b=±8,两边同时除以2得,a+b=±4.【点评】本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.22.(4分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”.例如3=22﹣12,7=42﹣32,16=52﹣32,3,7,16就是三个智慧数.在正整数中,从1开始,第2024个智意数是 2701 .【分析】如果一个数是智慧数,就能表示为两个正整数的平方差,设两个数分别为k+1,k,其中k≥1,且k为整数,即智慧数=(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1,因为k为正整数,因而k+1和k﹣1就是两个自然数.要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个正整数的和与差.【解答】解:设两个数分别为k+1,k,其中k≥1,且k为整数.则(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1.设两个数分别为k+1,k﹣1,其中k≥1,且k为整数.则(k+1)2﹣(k﹣1)2=(k+1+k ﹣1)(k+1﹣k+1)=4k,k=2时,4k=8,∴除4外,所有能被4整除的偶数都是智慧数.∴4k(k≥2且k为整数)均为智慧数;除1外,所有的奇数都是智慧数;除4外,所有能被4整除的偶数都是智慧数;这样还剩被4除余2的数,特殊值2,6,10都不是智慧数,也就是被4除余2的正整数都不是智慧数,推广到一般式,证明如下:∵假设4k+2是智慧数,那么必有两个正整数m和n,使得4k+2=m2﹣n2,∴4k+2=2(2k+1)=(m+n)(m﹣n)①,∵m+n和m﹣n这两个数的奇偶性相同,∴等式①的右边要么是4的倍数,要么是奇数,而左边一定是偶数,但一定不是4的倍数.可左、右两边不相等.所以4k+2不是智慧数,即被4除余2的正整数都不是智慧数.∴把从1开始的正整数依次每4个分成一组,除第一组有1个智慧数外,其余各组都有3个智慧数,而且每组中第二个不是智慧数,又∵(2024﹣1)÷3=674……1,∴第2024个智慧数在1+674+1=676(组),并且是第1个数,即675×4+1=2701.故答案为:2701.【点评】本题考查了新定义智慧数以及平方差公式的运用,解题关键是根据题目条件挖掘素材,得到方法,本题属于基础题,难度不大,题中文字较多,很多学生不喜欢这样的文字题,解决该类型题时,只要仿照文中给定的办法即可得出结论.23.(4分)如图,将长方形纸片的一角折叠,使顶点A落在F处,折痕为BC.作∠FBD 的平分线BE,则∠CBE的度数为 90° ;现将∠FBD沿BF折叠使BE、BD落在∠FBC 的内部,且折叠后的BE交CF于点M,BD交CF于点N,若BN平分∠CBM,则∠ABC 的度数为 67.5° .【分析】由折叠知∠ABC=∠FBC=∠ABF,由BE平分∠FBD知∠FBE=∠FBD,由∠ABF+∠FBD=180°可得答案;设∠DBE=∠EBF=x.构建方程求出x,即可解决问题.【解答】解:由折叠知∠ABC=∠FBC=∠ABF,∵BE平分∠FBD,∴∠FBE=∠FBD,∵∠ABF+∠FBD=180°,∴∠ABF+∠FBD=90°,即∠FBC+∠FBE=90°,∴∠CBE=90°,如图,设∠DBE=∠EBF=x.∵∠FBD′是由∠FBD沿BF翻折得到,∴∠MBF=∠MBN=x,∵BN平分∠CBM,∴∠CBN=∠MBN=x,∴∠CBF=3x,∵△CBF是由△CBA翻折得到,∴∠ABC=∠CBF=3x,∵∠ABF+∠FBD=180°,∴8x=180°,∴x=22.5°,∴∠ABC=3x=67.5°,故答案为:90°,67.5°.【点评】本题属于几何变换综合题,考查了翻折变换,角的计算等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.五、解答题(30分)24.(8分)实践与探索如图,边长为a的大正方形中有一个边长为b的小正方形,把图①中的阴影部分拼成一个长方形(如图②所示).(1)上述操作能验证的等式是 A .(请选择正确的一个)A.a2﹣b2=(a+b)(a﹣b);B.a2﹣2ab+b2=(a﹣b)2;C.a2+ab=a(a+b);(2)请应用(1)中的等式完成下列各题:①20232﹣2024×2022;②计算:1002﹣992+982﹣972+⋯+42﹣32+22﹣12;③计算:(1﹣)×(1﹣)×(1﹣)×⋯×(1﹣)×(1﹣).【分析】(1)分别表示图1和图2中阴影部分的面积即可得出答案;(2)①利用平方差公式化简计算即可;②利用平方差公式将原式转化为1+2+3+…+99+100即可.③利用平方差公式将解答即可.【解答】解:(1)图1中阴影部分的面积为两个正方形的面积差,即a2﹣b2,图2中的阴影部分是长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),所以有a2﹣b2=(a+b)(a﹣b),故答案为:A;(2)①20232﹣2024×2022=20232﹣(2023+1)(2023﹣1)=20232﹣(20232﹣1))=20232﹣20232+1=1;②∵1002﹣992=(100+99)(100﹣99)=100+99,982﹣972=(98+97)(98﹣97)=98+97,…,22﹣12=(2+1)(2﹣1)=2+1,∴原式=100+99+98+97+…+4+3+2+1=5050.③(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)=(1+)(1)(1)(1﹣)(1)(1﹣)…×(1+)(1﹣)(1+)(1﹣)=…×==.【点评】本题考查平方差公式、完全平方公式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.25.(10分)松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲厂比乙厂要多用20天.在加工过程中,学校需付甲厂每天费用80元、付乙厂每天费用120元.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,而乙工厂每天的生产速度也提高25%,乙工厂单独完成剩余部分.且乙工厂的全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲厂单独完成;方案二:由乙厂单独完成;方案三:按(2)问方式完成;并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.【分析】(1)设这批校服共有x件,则可知甲厂需天,乙厂需要天,单独加工这批产品甲厂比乙厂要多用20天,根据题意找出等量关系,根据此等量关系列出方程求解即可.(2)可设甲工厂加工a天,则乙工厂共加工(2a+4)天,根据题意找出等量关系,根据此等量关系列出方程求解即可.(3)应分为三种情况讨论:①由甲厂单独加工;②由乙厂单独加工;③按(2)问方式加工,分别比较三种情况下,所耗时间和花费金额,求出即省钱,又省时间的加工方案.【解答】解:(1)设这批校服共有x件,由题意得:﹣=20,解得:x=960.答:这批校服共有960件;(2)设甲工厂加工a天,则乙工厂共加工(2a+4)天,依题意有(16+24)a+24×(1+25%)(2a+4﹣a)=960,解得a=12,2a+4=24+4=28.故乙工厂共加工28天;(3)①由甲厂单独加工:需要耗时为960÷16=60天,需要费用为:60×(10+80)=5400元;②由乙厂单独加工:需要耗时为960÷24=40天,需要费用为:40×(120+10)=5200元;③由两加工厂共同加工:需要耗时为28天,需要费用为:12×(10+80)+28×(10+120)=4720元.所以,按方案三方式完成既省钱又省时间.【点评】本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程.对于要求最符合要求类型的题目,应将所有方案,列出来求出符合题意的那一个即可.26.(12分)已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则①∠AOC+∠BOD= 150° ;②∠BOC﹣∠AOD= 30° .(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.【分析】(1)①将∠AOC+∠BOD拆分、转化为∠COD+∠AOB即可得;②依据∠BOC =∠AOB﹣∠AOC、∠AOD=∠COD﹣∠AOC,将原式拆分、转化为∠AOB﹣∠COD计算可得;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,只需表示出∠AOD即可得出答案,而∠AOD在OD与OA相遇前、后表达式不同,故需分OD与OA相遇前后即0<t≤20和20<t≤36两种情况求解;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,再分①射线OE、OF在射线OB同侧,在直线MN同侧;②射线OE、OF在射线OB异侧,在直线MN同侧;③射线OE、OF在射线OB异侧,在直线MN异侧;④射线OE、OF在射线OB同侧,在直线MN异侧;四种情况分别求解.【解答】解:(1)①∠AOC+∠BOD=∠AOC+∠AOD+∠AOB=∠COD+∠AOB=60°+90°=150°;②∠BOC﹣∠AOD=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC﹣∠COD+∠AOC=∠AOB﹣∠COD=90°﹣60°=30°;故答案为:150°、30°;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,∴∠MOC﹣∠AOD=(8t﹣60)°;②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,∴∠MOC﹣∠AOD=(2t+60)°;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,①0<n°≤150°时,如图4,射线OE、OF在射线OB同侧,在直线MN同侧,∵∠BOF=[90°﹣(n﹣60°)]=(150﹣n)°,∠BOE=(90﹣n)°=(180﹣n)°,∴∠EOF=∠BOE﹣∠BOF=15°;②150°<n°≤180°时,如图5,射线OE、OF在射线OB异侧,在直线MN同侧,∵°,∠BOE=(90﹣n)°=(180﹣n)°,∴∠EOF=∠BOE+∠BOF=15°;③180°<n°≤330°时,如图6,射线OE、OF在射线OB异侧,在直线MN异侧,∵°,°,∴∠EOF=∠DOF+∠COD+∠COE=165°;④330°<n°≤360°时,如图7,射线OE、OF在射线OB同侧,在直线MN异侧,∵∠DOF=[360﹣(n﹣150)]°=(510﹣n)°,°,∴∠EOF=∠DOF﹣∠COD﹣∠COE=15°;综上,∠EOF=15°或165°.【点评】本题主要考查角的计算,解题的关键是掌握角的和差计算、角平分线的定义及分类讨论思想的运用.。
2024届四川省成都市嘉祥外国语学校八年级数学第一学期期末综合测试试题 注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.将直线y =-x +a 的图象向下平移2个单位后经过点A (3,3),则a 的值为( )A .-2B .2C .-4D .82.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则△ABC 的面积为( )A .5B .60C .45D .303.下列计算中,①()325ab ab =;②()323639xy x y =;③325236x x x ⋅=;④()()224c c c -÷-=-不正确的有() A .3个 B .2个 C .1个 D .4个4.用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设( )A .直角三角形的每个锐角都小于45°B .直角三角形有一个锐角大于45°C .直角三角形的每个锐角都大于45°D .直角三角形有一个锐角小于45°5.下列计算正确的是( )A .33(2)2a a -=-B .22()()a b a b b a ---=-C .222()a b a b +=+D .336()()--=a a a6.下列各式中,是最简二次根式的是( )A .0.2B .18C .49D .21x +7.如图,在△ABC 中,∠BAC =90°,AD 是△ABC 的高,若∠B =20°,则∠DAC =( )A .90°B .20°C .45°D .70°8.下列各组图形中,是全等形的是( )A .两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形9.每个网格中均有两个图形,其中一个图形关于另一个图形轴对称的是()A.B.C.D.10.已知x2+2mx+9是完全平方式,则m的值为()A.±3 B.3 C.±6 D.611.我国民间,流传着许多含有吉祥意义的图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”“禄”“寿”“喜”,其中是轴对称图形的有几个()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是( )A.DC=DE B.∠AED=90°C.∠ADE=∠ADC D.DB=DC二、填空题(每题4分,共24分)⊥于D.若A(4,0),B(m,3),C(n,-5),则AD BC=______.13.如图,直线BC经过原点O,点A在x轴上,AD BC14.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,−3),B(4,−1).(1)若P(p,0)是x 轴上的一个动点,则△PAB 的最小周长为___________(2)若C(a,0),D(a+3,0)是x 轴上的两个动点,则当a=___________时,四边形ABDC 的周长最短;15.化简:2(321)-=_________.16.在等腰三角形中,有一个角等于40°,则这个等腰三角形的顶角的外角的度数为___17.点11A y -(,),2(3)B y ,是直线(0)y kx b k =+<上的两点,则12y y -_______0(填“>”或“<”).18.直角坐标平面上有一点P (﹣2,3),它关于y 轴的对称点P ′的坐标是_____.三、解答题(共78分)19.(8分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y (米)与时间x (分钟)的对应关系如图所示,请结合图象解答下列问题: (1)起点A 与终点B 之间相距 m .(2)分别求甲、乙两支龙舟队的y 与x 函数关系式;(3)甲龙舟队出发多少时间时两支龙舟队相距200米?20.(8分)如图,已知△ABC ,利用尺规..,根据下列要求作图(保留作图痕迹,不写作法),并根据要求填空: (1)作∠ABC 的平分线BD 交AC 于点D ;(2)作BD 的垂直平分线交AB 于E ,交BC 于F ;(3)在(1)、(2)条件下,连接DE ,线段DE 与线段BF 的关系为 .21.(8分)为了适应网购形式的不断发展,某邮政快递公司更新了包裹分拣设备后,平均每名邮递员每天比原先要多分拣60件包裹,而且现在分拣550件包裹所需要的时间与原来分拣350件包裹所需时间相同,问现在平均每名邮递员每天分拣多少件包裹?22.(10分)如图,点C 在线段AB 上,A B ∠=∠,AC BE =,AD BC =,F 是DE 的中点.(1)求证:CF DE ⊥;(2)若20ADC ∠=︒,80DCB ∠=︒,求CDE ∠的度数.23.(10分)(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是 度; ②如图②,D ,E 分别是边AC ,BA 延长线上的点且AE=CD ,BD 与EC 的延长线交于点F ,此时∠BFE 的度数是 度; (2)如图③,在△ABC 中,AC=BC ,∠ACB 是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,AE=CD ,BD 与EC 的延长线交于点F ,若∠ACB=α,求∠BFE 的大小.(用含α的代数式表示).24.(10分)解答下列各题:(1)计算:()()()2233221x x x x x -++--+(2)分解因式:244mx mx m ++.25.(12分)已知,求的值.26.如图:等边ABC ∆中,BC AC 、上,且AE CD =,AD BE 、相交于点P ,连接PC .(1)证明ABE CAD ∆≅∆.(2)若CPD PBD ∠=∠,证明PCE ∆是等腰三角形.参考答案一、选择题(每题4分,共48分)1、D【分析】先根据平移规律得出平移后的直线解析式,再把点A (3,3)代入,即可求出a 的值.【题目详解】解:将直线y =-x +a 向下平移1个单位长度为:y =-x +a −1.把点A (3,3)代入y =-x +a −1,得-3+a−1=3,解得a =2.故选:D .【题目点拨】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y =kx +b 向左平移m 个单位,是y =k (x +m )+b , 向右平移m 个单位是y =k (x -m )+b ,即左右平移时,自变量x 左加右减;②y =kx +b 向上平移n 个单位,是y =kx +b +n , 向下平移n 个单位是y =kx +b -n ,即上下平移时,b 的值上加下减.2、D【分析】在Rt △ABC 中,根据勾股定理可求得BC 的长,然后根据三角形的面积公式即可得出结论.【题目详解】解:∵AB =13,AC =12,∠C =90°,∴BC =5,∴△ABC 的面积=12×12×5=30, 故选:D .【题目点拨】本题考查了勾股定理以及三角形的面积,掌握基本性质是解题的关键.3、A【分析】直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.【题目详解】解:①()3236ab a b =,故此选项错误,符合题意; ②()3236327xy x y =,故此选项错误,符合题意;③325236x x x ⋅=,故此选项正确,不符合题意;④()()()2242c c c c -÷-==-,故此选项错误,符合题意;故选:A【题目点拨】此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键. 4、A【解题分析】分析:找出原命题的方面即可得出假设的条件.详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A .点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.5、B【分析】分别根据对应的法则逐一分析即可【题目详解】解:A. 33(2)8-=-a a ,故本选项不符合题意; B. 22()()()(+)=---=----a b a b b a b a b a ,故本选项符合题意;C. 222()2ab++=+a b a b ,故本选项不符合题意;D. 336()()--=-a a a ,故本选项不符合题意;故选:B【题目点拨】本题考查了积的乘方、平方差公式、完全平方公式、同底数幂的乘法等知识点,能正确求出每个式子的值是解此题的关键.【分析】根据最简二次根式的概念对每个选项进行判断即可.【题目详解】A 5==,不是最简二次根式,此选项不正确;B =C 23=,不是最简二次根式,此选项不正确;D ,不能再进行化简,是最简二次根式,此选项正确;故选:D .【题目点拨】本题考查了最简二次根式,熟练掌握概念是解题的关键.7、B【分析】先根据高线和三角形的内角和定理得:90,90DAC BAD BAD B ∠+∠=︒∠+∠=︒,再由余角的性质可得结论.【题目详解】90BAC ∠=︒90DAC BAD ∴∠+∠=︒∵AD 是△ABC 的高90ADB BAD B ∴∠=∠+∠=︒20DAC B ∴∠=∠=︒故选:B .【题目点拨】本题考查了直角三角形两锐角互余、三角形的内角和定理等知识点,熟记三角形的相关概念是解题关键. 8、B【解题分析】试题解析:A 、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形; B 、腰对应相等的两个等腰直角三角形,符合AAS 或ASA ,或SAS ,是全等形;C 、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D 、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B .【题目点拨】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.【分析】根据轴对称定义:如果一个图形沿某条直线对折能与另一个图形重合,那么这两个图形关于这条直线成轴对称进行分析即可.【题目详解】A、其中一个图形不与另一个图形成轴对称,故此选项错误;B、其中一个图形与另一个图形成轴对称,故此选项正确;C、其中一个图形不与另一个图形成轴对称,故此选项错误;D、其中一个图形不与另一个图形成轴对称,故此选项错误;故选:B.【题目点拨】本题主要考查了轴对称,关键是掌握轴对称定义.10、A【分析】将原式转化为x2+2mx +32,再根据x2+2mx +32是完全平方式,即可得到x2+2mx +32=(x±3)2,将(x±3)2展开,根据对应项相等,即可求出m的值.【题目详解】原式可化为x2+2mx+32,又∵x2+2mx+9是完全平方式,∴x2+2mx+9=(x±3)2,∴x2+2mx+9= x2±6mx+9,∴2m=±6,m=±3.故选A.【题目点拨】此题考查完全平方式,掌握运算法则是解题关键11、C【分析】根据轴对称图形的概念即可确定答案.【题目详解】解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,共3个轴对称图形,故答案为C.【题目点拨】本题考查了轴对称图形的定义,掌握轴对称图形的定义是解答本题的关键.12、D【分析】证明△ADC≌△ADE,利用全等三角形的性质即可得出答案.【题目详解】在△ADC和△ADE中,∵AE ACCAD EAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△ADE(SAS),∴DC=DE,∠AED=∠C=90°,∠ADE=∠ADC,故A、B、C选项结论正确,D选项结论错误.故选:D.【题目点拨】本题考查了全等三角形的判定与性质,注意掌握全等三角形的判定定理及全等三角形的性质,对于选择题来说,可以运用排除法得解.二、填空题(每题4分,共24分)13、32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=1.【题目详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S △AOC =12AO•OF=12×4×5=10, ∴S △AOB +S △AOC =6+10=16,∵S △ABC =S △AOB +S △AOC ,∴12BC•AD=16, ∴BC•AD=1,故答案为:1.【题目点拨】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.14、2522+ 54【分析】(1)根据题意,设出并找到B (4,-1)关于x 轴的对称点是B',其坐标为(4,1),算出AB′+AB 进而可得答案;(2)过A 点作AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .做点F (1,-1),连接A'F .利用两点间的线段最短,可知四边形ABDC 的周长最短等于A'F+CD+AB ,从而确定C 点的坐标值.【题目详解】解:(1)设点B (4,-1)关于x 轴的对称点是B',可得坐标为(4,1),连接AB′,则此时△PAB 的周长最小,∵AB′=()()222431=25-+--,AB=()()222431=22-+-+,∴△PAB 的周长为2522+,故答案为:2522+;(2)过A 点作AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .作点F (1,-1),连接A'F .那么A'(2,3). 设直线A'F 的解析式为y=kx+b ,则132k b k b -=+⎧⎨=+⎩,解得:45k b =⎧⎨=-⎩, ∴直线A'F 的解析式为y=4x-5,∵C点的坐标为(a,0),且在直线A'F上,∴a=54,故答案为:54.【题目点拨】本题考查最短路径问题,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.15、19﹣2【分析】利用完全平方公式计算.【题目详解】原式=18﹣2+1=19﹣2.故答案为19﹣2.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16、140°或80°【分析】分别讨论40°为顶角和底角的情况,求出即可.【题目详解】①当40°为顶角时,则这个等腰三角形的顶角的外角的度数为180-40=140°,②当40°为底角时,顶角为180240-⨯=100°,则这个等腰三角形的顶角的外角的度数为180-100=80°,故答案为140°或80°.【题目点拨】本题是对等腰三角形角度转换的考查,分类讨论是解决本题的关键.17、>.【分析】根据k <0,一次函数的函数值y 随x 的增大而减小解答.【题目详解】解:∵直线y kx b =+的k <0,∴函数值y 随x 的增大而减小.∵点11Ay -(,),2(3)B y ,是直线(0)y kx b k =+<上的两点,-1<3, ∴y 1>y 2,即120y y ->故答案为:>.【题目点拨】本题考查一次函数图象上点的坐标特征。
2023年四川省成都七中嘉祥外国语学校高三英语第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
第一部分(共20小题,每小题1.5分,满分30分)1.The disabled guy was attended throughout his school day by a nurse ________ to guard him.A.to appoint B.appointedC.appointing D.having appointed2.We will remain ______to the path of peaceful development and shoulder more international responsibilities.A.committing B.committed C.to be committed D.to have committed3.I had hardly rung the bell ________ the door was opened suddenly, and my son rushed out to greet me.A.before B.untilC.as D.since4.The lady standing over there may be from the USA, _____ I guess has lost her way. A.whom B.whoC.which D.where5.—Ted has never been so rude!—He ______something he shouldn’t have, but I guess he didn’t mean that.A.has said B.had saidC.said D.was saying6.—I spend two weeks in Beijing last year.—Then you must have visited the Great Wall during your stay, ________ you? A.mustn’t B.didn’tC.haven’t D.hadn’t7.I'm very grateful to my high school teachers,without _____________help I wouldn't be so excellent.A.their B.whomC.whose D.which8.You look frozen.Sit down by the fire and I you some hot tea.A.make B.was making C.made D.will make9.Our English teacher is considerate,helpful,and warm-hearted,but sometimes she________________ be angry at our silly mistakes.A.should B.mustC.can D.shall10.The debate has only a few moments that might be inspiring to those who ______ this issue.A.followed B.had followed C.have been following D.were following 11.The company and the effect brought about did great good to our business in the market.A.it B.whichC.that D.what12.They have leading experts in this field, and that's ____ they've made important progress.A.where B.why C.whether D.who13.—Why are you so late?—The driver couldn’t see clearly because of the fog.____, the road was too icy.A.Therefore B.Otherwise C.However D.Besides14.—What did she want to know, Tom?—She wondered _______ we could complete the experiment.A.when was it B.it was when thatC.it was when D.when it was that15.____ this may sound like a simple process, great care is needed.A.Since B.Once C.Although D.Unless16.The desks in our classroom are so close together that there is not enough room to move them.A.between B.in C.across D.over17.---Mum, can you tell me why some parents send their children to study abroad at a very young age?---__________, darling. I have never thought about it.A.You have got me there B.Take your timeC.You bet D.Don’t be silly18.I am sorry I am very busy now. If I time, I would certainly go to the movies with you.A.have B.hadC.have had D.had had19.–Excuse me, sir, didn’t you see the red light?–Sorry, my mind ________ somewhere else.A.has been wandering B.was wanderedC.was wandering D.has been wandered20.— Someone wants you on the phone.— ________ nobody knows I am here.A.Although B.AndC.So D.But第二部分阅读理解(满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。
2023-2024学年四川省成都市锦江区嘉祥外国语学校七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题4分,共32分)1.(4分)下列计算正确的是()A.a2+a3=2a5B.a2•a3=a6C.a3÷a=a2D.(a3)2=a5 2.(4分)如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.3.(4分)据统计我国每年浪费的粮食约35000000吨,我们要勤俭节约,反对浪费,积极的加入“光盘行动”中来.用科学记数法表示35000000是()A.3.5×106B.3.5×107C.35×106D.35×1074.(4分)已知|x|=5,|y|=2,且xy>0,则x﹣y的值等于()A.7或﹣7B.7或3C.3或﹣3D.﹣7或﹣3 5.(4分)某班将安全知识竞赛成绩整理后绘制成如图4所示的频数分布直方图(每组不包括最小值,包括最大值),图中从左至右前四组的频数占总人数的百分比分别为4%,12%,40%,28%,且第五组的频数是8,下列结论不正确的是()A.第五组的频数占总人数的百分比为16%B.该班有50名同学参赛C.成绩在70~80分的人数最多D.80分以上的学生有14名6.(4分)下列说法不正确的是()A.一个次数是6的多项式中,各项的次数都不大于6B.代数式a2﹣b2表示a,b两数的平方差C.x2y﹣xy3+1是三次三项式D.若(a﹣1)2+|2a﹣b|=0,则3a﹣b=1 7.(4分)《九章算术》中有这样一道数学问题,原文如下:清明游园,共坐八船,大船满六,小船满四,三十八学子,满船坐观.请问客家,大小几船?其大意为:清明时节出去游园,所有人共坐了8只船,大船每只坐6人,小船每只坐4人,38个人,刚好坐满,问:大小船各有几只?若设有x只小船,则可列方程为()A.4x+6(8﹣x)=38B.6x+4(8﹣x)=38C.4x+6x=38D.8x+6x=388.(4分)在数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q分别从A、B同时出发,以每秒3个单位,每秒1个单位的速度向右运动.在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是()A.PB B.OP C.OQ D.QB二、填空题(本大题共5小题,每小题4分,共20分)9.(4分)若x3y m﹣2与x n+1y是同类项,则m+n=.10.(4分)如图是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为6,则2x﹣y+z=.11.(4分)过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是.12.(4分)已知:4a=5,8b=2,22a﹣3b的值为.13.(4分)A、B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(16分)计算:(1);(2)a4•a5﹣a10÷a+(﹣2a3)3;(3)x(4x+3y)﹣(2x+y)(2x﹣y);(4)解方程.15.(6分)先化简,再求值:(a﹣3b)2﹣(a+b)(a﹣b)+(4ab2﹣2b3)÷b,其中,.16.(8分)4月23日是世界读书日.为了解学生的阅读喜好,丰富学校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了部分学生,要求每名学生从中选择自己最喜欢的一类,将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并求出扇形统计图中m的值.(2)请将条形统计图补充完整.(温馨提示:请画在答题卷相对应的图上)(3)若该校共有1200名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数.17.(8分)定义=ad﹣bc,如=1×4×﹣2×3=﹣2.已知A=(n为常数),B=.(1)若B=4,则x的值为;(2)若A的代数式中不含x的一次项,当x=1时,求A+B的值;(3)若A中的n满足8×2n+1=24时,且A=B+2,求16x2﹣8x+9的值.18.(10分)如图1,线段CD在线段AB上运动,E、F分别是AC、BD的中点.(1)若线段AB=18,CD=2,求EF的长.(2)若AB=x,CD=y(x>y),由此可以猜想EF=(用x、y表示).(3)我们发现角的很多规律和线段一样:如图2,∠COD绕点O逆时针旋转(初始位置OD、OB重合,旋转度数0°<α<170°),OE、OF分别平分∠AOC和∠BOD,若∠AOB=100°,∠COD=10°,在旋转过程中,∠EOF的大小是否为定值?若是,请求出该值;若不是,请说明理由.一、填空题(本大题共5小题,每小题4分,共20分)19.(4分)已知x2﹣(2m+3)x+9是一个完全平方式,则m=.20.(4分)有理数a、b、c在数轴上的位置如图,则|a+b|﹣|b﹣c|+|c﹣a|的化简结果为.21.(4分)若关于x的方程的解是整数,且关于y的多项式ay2﹣(a2﹣4)y+1是二次三项式,则满足条件的整数a的值是.22.(4分)已知S1=10,,,…按此规律,则S2024=.23.(4分)定义:Φ[a,b,c]是以a、b、c为系数的二次多项式,即Φ[a,b,c]=ax2+bx+c,其中a、b、c均为实数.例如Φ[1,2,3]=x2+2x+3、Φ[2,0,﹣2]=2x2﹣2.①当x=2时,求Φ[1,1,1]×Φ[﹣1,﹣1,﹣1]=;②若Φ[p,q,﹣1]×Φ[m,n,﹣2]=2x4+x3﹣10x2﹣x+2,求(4p﹣2q﹣1)(2m﹣n﹣1)=.二、解答题题(本大题共3小题,共30分)24.(8分)为了迎接新学期,书店计划购进A、B两类书刊,且A书刊和B书刊的售价分别是15元/本和20元/本,且B书刊的进价比A书刊贵2元.已知购买300本A书刊和200本B书刊共需要4400元.(1)求A、B两类书刊的进价各是多少元?(2)若该书店第一次购进A、B两类书刊共600本,全部售完后总利润为4950元,求该书店第一次分别购进A、B两类书刊各多少本?(3)若第二次购进同样数量的两类书刊,且两类书刊的进价都比上次优惠了10%,再次销售时A类书刊售价不变,B类书刊打折出售,全部售完后总利润比上次还多30元,求B类书刊打了几折?25.(10分)【教材重现】如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).上述操作能验证的公式是.【类比探究】把上述两个正方形按照如图3所示的方式拼接,其中B,C,G三点在同一直线上.若a+b=20,ab=80,求阴影部分的面积.【拓展应用】根据前面的经验探究:若x满足,求(3﹣4x)2+4(2x ﹣5)2的值.26.(12分)若一个角是另一个角的二倍,则称这两个角互为“共轭角”.(1)已知∠1=12°且∠1和∠2互为“共轭角”,则∠2=;(2)如图1,∠AOB=72°,OC是∠AOB内部的一条射线,若图中存在“共轭角”,试求出∠AOC的度数;(3)如图2,∠AOB=160°,∠BOC=40°,射线OD从OA绕点O逆时针旋转,速度为2°每秒,到OC停止运动;射线OE以2°每秒的速度从OB顺时针旋转到OC,再以4°每秒的速度逆时针返回OB,射线OE按照这种方式在∠BOC内部往返,并随OD停止而停止.二者同时出发,设运动时间为t秒,在这一过程中,若∠COD和∠COE互为“共轭角”,求t的值.2023-2024学年四川省成都市锦江区嘉祥外国语学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分)1.【分析】根据幂的乘方、合并同类项、同底数幂的乘法及除法法则作答.【解答】解:A、a2与a3不是同类项,不能合并,故本选项不合题意;B、a2•a3=a2+3=a5,故本选项不合题意;C、应为a3÷a=a3﹣1=a2,故本选项符合题意;D、应为(a3)2=a3×2=a6,故本选项不合题意.故选:C.【点评】本题主要考查幂的乘方,同底数幂的除法,同底数幂的乘法以及合并同类项,需要注意不是同类项的一定不能合并.2.【分析】根据从上面看得到的图形是俯视图,据此可得答案.【解答】解:从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将35000000用科学记数法表示为:3.5×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】先根据绝对值的定义求出x、y的值,再由xy>0可知x、y同号,根据此条件求出x、y的对应值即可.【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵xy>0,∴当x=5时,y=2,此时x﹣y=5﹣2=3;当x=﹣5时,y=﹣2,此时x﹣y=﹣5+2=﹣3.故选:C.【点评】本题考查的是绝对值的性质及有理数的加减法,熟知绝对值的性质是解答此题的关键.5.【分析】根据题意和频数分布直方图中的数据,可以计算出本班参赛的学生,然后即可判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:第五组的百分比为:1﹣4%﹣12%﹣40%﹣28%=16%,故选项A正确,不符合题意;本班参赛的学生有:8÷(1﹣4%﹣12%﹣40%﹣28%)=50(名),故选项B正确,不符合题意;成绩在70~80分的人数最多,故选项C正确,不符合题意;80分以上的学生有:50×28%+8=22(名),故选项D不正确,符合题意;故选:D.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.6.【分析】A、根据多项式的定义判断即可;B、根据代数式表示的意义判断即可;C、根据多项式的定义判断即可;D、根据非负数的性质判断即可.【解答】解:A.一个次数是6的多项式中,各项的次数都不大于6,正确;B.代数式a2﹣b2表示a,b两数的平方差,正确;C.x2y﹣xy3+1是四次三项式,错误;D.若(a﹣1)2+|2a﹣b|=0,则a﹣1=0,2a﹣b=0,可得a=1,b=2,则3a﹣b=1,正确.故选:C.【点评】此题考查的平方差公式、多项式、非负数的性质,掌握其概念是解决此题的关键.7.【分析】设有x只小船,则有大船(8﹣x)只,由题意得等量关系:大船坐的总人数+小船坐的总人数=38,然后再列出方程即可.【解答】解:设有x只小船,则有大船(8﹣x)只,由题意得:4x+6(8﹣x)=38,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系.8.【分析】设出运动的时间,表示出点P、点Q在数轴上所表示的数,进而求出线段PQ,OQ、PB、OP、QB,在做出选择即可.【解答】解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|;OQ=|﹣2+t﹣0|=|t﹣2|,故选:C.【点评】考查数轴表示数的意义,理解绝对值的意义和数轴上两点之间距离的计算方法是正确得出答案的关键.二、填空题(本大题共5小题,每小题4分,共20分)9.【分析】根据同类项的定义解答即可.【解答】解:∵x3y m﹣2与x n+1y是同类项,∴n+1=3,m﹣2=1,解得n=2,m=3,∴m+n=3+2=5.故答案为:5.【点评】本题考查的是同类项,熟知所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项是解题的关键.10.【分析】根据正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:“y”所在面与“3”所在面相对,“z”所在面与“﹣1”所在面相对,“x”所在面与“8”所在面相对,则y+3=6,z+(﹣1)=6,x+8=6,解得:y=3,z=7,x=﹣2.故2x﹣y+z=2×(﹣2)﹣3+7=0.故答案为:0.【点评】本题考查了正方体的展开图形,代数式求值,解题关键是从相对面入手进行分析及解答问题.11.【分析】经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数.【解答】解:设多边形有n条边,则n﹣2=8,解得n=10.所以这个多边形的边数是10.【点评】解决此类问题的关键是根据多边形过一个顶点的对角线与分成的三角形的个数的关系列方程求解.12.【分析】分别根据同底数幂的除法、幂的乘方与积的乘方法则进行计算即可.【解答】解:∵4a=5,8b=2,∴(22)a=5,(23)b=2,∴22a=5,23b=2,∴22a﹣3b=22a÷23b=5÷2=.故答案为:.【点评】本题考查的是同底数幂的除法、幂的乘方与积的乘方法则,熟知运算法则是解题的关键.13.【分析】由已知条件知A,B,C三点在同一直线上,做本题时应考虑到A、B、C三点之间的位置,分情况可以求出A,C两点的距离.【解答】解:第一种情况:C点在AB之间上,故AC=AB﹣BC=1cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9cm.故答案为:1cm或9cm.【点评】本题考查两点间的距离,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.【分析】(1)先算乘方,再算乘除,后算加减,即可解答;(2)先算乘方,再算乘除,后算加减,即可解答;(3)利用单项式乘多项式,平方差公式进行计算,即可解答;(4)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1进行计算,即可解答.【解答】解:(1)=+1+÷(﹣)=+1+(﹣1)=;(2)a4•a5﹣a10÷a+(﹣2a3)3=a9﹣a9+(﹣8a9)=﹣8a9;(3)x(4x+3y)﹣(2x+y)(2x﹣y)=4x2+3xy﹣4x2+y2=3xy+y2;(4),3x﹣2=6+2(x﹣1),3x﹣2=6+2x﹣2,3x﹣2x=6﹣2+2,x=6.【点评】本题考查了整式的混合运算,有理数的混合运算,解一元一次方程,准确熟练地进行计算是解题的关键.15.【分析】先根据完全平方公式、平方差公式和多项式除以单项式法则去掉括号,再合并同类项,然后把a,b的值代入化简后的式子,进行有理数的混合运算即可.【解答】解:原式=a2﹣6ab+9b2﹣a2+b2+4ab﹣2b2=a2﹣a2+9b2+b2﹣2b2+4ab﹣6ab=8b2﹣2ab,当时,原式====.【点评】本题主要考查了整式的化简求值,解题关键是熟练掌握完全平方公式、平方差公式、多项式除以单项式法则和合并同类项法则.16.【分析】(1)将其他类人数除以其所占的比即可求出被抽查的人数;将科技类人数除以被抽查的人数化成百分数,即可求出m的值;(2)先求出艺术类人数,再补全条形统计图即可;(3)将1200乘以样本中最喜欢“文学类”书籍所占的比例即可估计全校最喜欢“文学类”书籍的学生人数.【解答】解:(1)被抽查的学生人数是40÷20%=200(人),∵,∴扇形统计图中m的值是40,答:被抽查的学生人数为200人,扇形统计图中m的值为40;(2)200﹣60﹣80﹣40=20(人),补全的条形统计图如图所示.(3)∵(人),∴估计全校最喜欢“文学类”书籍的学生人数共有360人.【点评】本题考查条形统计图,扇形统计图,用样本估计总体,能从统计图中获取有用信息是解题的关键.17.【分析】(1)利用新定义的规定列出方程,解方程可得到结论;(2)按新定义的规定列出式子,合并同类项后,令x的一项系数为0,求得n的值,再利用整式加法法则解答即可;(3)利用幂的运算性质求出n的值,再将n的值代入A中,列出A=B+2的式子,最后表示出16x2﹣8x的值,计算即可.【解答】解:(1)(x+1)(x+1)﹣(x﹣1)(x﹣1)=4x,∵4x=4,∴x=1,故答案为:1.(2)2x(2x+1)﹣1(nx﹣1)=4x2+2x﹣nx+1=4x2+(2﹣n)x+1,∵代数式中不含x的一次项,∴2﹣n=0,解得n=2.∴A=4x2+(2﹣2)x+1=4x2+1,∴A+B=4x2+1+4x,把x=1代入,A+B=4×12+1+4×1=9.(3)8×2n+1=23×2n+1=2n+4=24,∴n+4=4,∴n=0,∴A=4x2+(2﹣n)x+1=4x2+2x+1,∵B+2=4x+2,∴4x2+2x+1=4x+2,即:4x2﹣2x=1,两边都乘4得到:16x2﹣8x=4,∴16x2﹣8x+9=4+9=13.【点评】本题考查了整式的混合运算,有理数的混合运算,解题的关键是理解新定义并熟练运用.18.【分析】(1)求出AC+BD的值,证明CE=,DF=,利用整体思想即可求出结果;(2)理由同(1);(3)∠EOF的度数不变,恒为55°,分∠COD在∠AOB的内部、∠COD一部分在∠AOB内部,一部分在∠AOB外部和∠COD在∠AOB外部三种情况讨论,画出对应的图,结合角平分线的定义,运用整体思想求出∠COE+∠DOF或∠DOF﹣∠COE,即可得到结果.【解答】解:(1)∵AB=18,CD=2,∴AC+BD=AB﹣CD=16,∵E、F分别是AC、BD的中点,∴CE=,DF=,∴CE+DF=,∴EF=CE+CD+DF=8+2=10;(2)∵AB=x,CD=y,∴AC+BD=AB﹣CD=x﹣y,∵E、F分别是AC、BD的中点,∴CE=,DF=,∴CE+DF=,∴EF=CE+CD+DF==;故答案为:;(3)∠EOF的度数不变,恒为55°,理由如下:若∠COD在∠AOB的内部,∵∠AOB=100°,∠COD=10°,∴∠AOC+∠BOD=∠AOB﹣∠COD=90°,∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠COE+∠DOF==45°,∴∠EOF=∠COE+∠COD+∠DOF=55°;若∠COD一部分在∠AOB内部,一部分在∠AOB外部,∵∠AOB=100°,∠COD=10°,且∠BOD+∠COD=∠AOB+∠AOC,∴∠BOD﹣∠AOC=∠AOB﹣∠COD=90°,∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠DOF﹣∠COE==45°,∴∠EOF=∠DOF+∠COD﹣∠COE=55°;若∠COD在∠AOB外部,∵∠AOB=100°,∠COD=10°,且∠BOD+∠COD=∠AOB+∠AOC,∴∠BOD﹣∠AOC=∠AOB﹣∠COD=90°,∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠DOF﹣∠COE==45°,∴∠EOF=∠DOF+∠COD﹣∠COE=55°;综上所述,∠EOF的度数不变,恒为55°.【点评】本题考查了线段中点的定义,角平分线的定义等知识,本题的关键是熟练运用角平分线的定义,通过角度的转换,结合整体思想求出结果.一、填空题(本大题共5小题,每小题4分,共20分)19.【分析】运用完全平方式的定义进行讨论、求解.【解答】解:∵x2±6x+9=x2±2•x•3+32=(x±3)2,∴﹣(2m+3)=±6,解得m=或m=﹣,故答案为:或﹣.【点评】此题考查了完全平方式的应用能力,关键是能准确理解并运用该知识进行讨论、求解.20.【分析】b在原点的左侧,并且比a离原点的距离远,因此a+b<0.b的绝对值大于c 的绝对值,b的相反数是正的,因此b﹣c<0,c<0,a>0,所以c﹣a<0根据正数的绝对值是它本身,负数的绝对值是它的相反数得|a+b|=﹣(a+b),|b﹣c|=c﹣b,|c﹣a|=﹣(c﹣a),去括号合并同类项得出结果.【解答】解:由数轴可得,b<c<0<a,|b|>|c|>|a|,∴a+b<0,b﹣c<0,c﹣a<0,∴|a+b|﹣|b﹣c|+|c﹣a|=﹣(a+b)﹣(c﹣b)+[﹣(c﹣a)]=﹣a﹣b﹣c+b﹣c+a=﹣2c.故答案为:﹣2c.【点评】本题考查了数轴,绝对值,去括号和合并同类项有关知识,是一道综合性强的题目.21.【分析】求出方程的解,根据其解是整数,确定a的可能值,再根据多项式的次数和项数,进一步求出a的值即可.【解答】解:,6x﹣(1﹣ax)=5x+5﹣3,(a+1)=3,x=,∵是整数,∴a+1=±1或±3,∴a=0或﹣2或2或﹣4;∵关于y的多项式ay2﹣(a2﹣4)y+1是二次三项式,∴a≠0,且a2﹣4≠0,∴a≠0,且a≠±2;∴a=﹣4,故答案为:﹣4.【点评】本题考查一元一次方程的解,正确求出方程的解是解题的关键.22.【分析】依次计算出S2,S3,S4,…,发现规律即可解决问题.【解答】解:由题知,因为S1=10,所以;;;…,由此可见,这列数按循环出现,又因为2024÷3=674余2,所以.故答案为:.【点评】本题考查数字变化的规律,能通过计算发现这列数按循环出现是解题的关键.23.【分析】①根据Φ[a,b,c]定义即可代入计算;②根据Φ[a,b,c]定义分别求出p,q,m,n的关系,再代入计算即可求解.【解答】解:①Φ[1,1,1]×Φ[﹣1,﹣1,﹣1]=(x2+x+1)×(﹣x2﹣x﹣1)=﹣(x2+x+1)2,当x=2时,原式=﹣(x2+x+1)2=﹣(22+2+1)2=﹣49,故答案为:﹣49;②Φ[p,q,﹣1]×Φ[m,n,﹣2]=(px2+qx﹣1)×(mx2+nx﹣2)=pmx4+(pn+qm)x3+(﹣2p+qn﹣m)x2+(﹣n﹣2q)x+2=2x4+x3﹣10x2﹣x+2,∴,(4p﹣2q﹣1)(2m﹣n﹣1)=8pm﹣4pn﹣4p﹣4qm+2qn+2q﹣2m+n+1=8pm﹣4(pn+qm)+2(﹣2p+qn﹣m)﹣(﹣n﹣2q)+1=8×2﹣4×1+2×(﹣10)﹣(﹣1)+1=16﹣4﹣20+1+1=﹣6,故答案为:﹣6.【点评】本题考查多项式乘多项式和新定义问题,解题的关键是理解题意,对新定义的理解.二、解答题题(本大题共3小题,共30分)24.【分析】(1)根据“300本A书刊和200本B书刊共需要4400元”列方程求解;(2)根据“总利润为4950元”列方程求解;(3)根据“总利润比上次还多30元”列方程求解.【解答】解:(1)设A类书刊的进价是x元,则300x+200(x+2)=4400,解得:x=8,∴x+2=10,答:A类书刊的进价为8元、B类书刊的进价是10元;(2)设该书店第一次购进A类书刊y本,则(15﹣8)y+(20﹣10)(600﹣y)=4950,解得:y=350,∴600﹣y=250,答:该书店第一次分别购进A类书刊350本、B类书刊250本;(3)设B类书刊打了a折,则:(15﹣8×0.9)×350+(20×﹣10×0.9)×250=4950+30,解得:a=9,答:B类书刊打了9折.【点评】本题考查了一元一次方程的应用,找到相等关系是解题的关键.25.【分析】【教材重现】用代数式表示图1、图2中阴影部分的面积即可;【类比探究】根据图形中各个部分面积之间的关系得出S阴影部分=[(a+b)2﹣2ab],再代入求值即可;【拓展应用】设3﹣4x=a,2(2x﹣5)=b,则ab=2(3﹣4x)(2x﹣5)=9,a+b=3﹣4x+4x﹣10=﹣7,将(3﹣4x)2+4(2x﹣5)2化为a2+b2=(a+b)2﹣2ab,再代入计算即可.【解答】解:【教材重现】图1中阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,所拼成的图2是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),所以有a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);【类比探究】如图3,∵a+b=20,ab=80,∴S阴影部分=S梯形BDEG﹣S△DEH﹣S△BCH=a(a+b+b)﹣b(a﹣b)﹣ab =a2+ab﹣ab+b2﹣ab=a2+b2=(a2+b2)=[(a+b)2﹣2ab]=×(400﹣160)=120;【拓展应用】设3﹣4x=a,2(2x﹣5)=b,则ab=2(3﹣4x)(2x﹣5)=9,a+b=3﹣4x+4x﹣10=﹣7,∴(3﹣4x)2+4(2x﹣5)2=a2+b2=(a+b)2﹣2ab=49﹣18=31.【点评】本题考查平方差公式的几何背景,多项式乘多项式,掌握平方差公式的结构特征,多项式乘多项式的计算方法是正确解答的关键.26.【分析】(1)根据“共轭角”的定义得出∠2是∠1的2倍或者∠1是∠2的2倍,进行解答;(2)若图中存在“共轭角”,则根据“共轭角”的定义,可分∠AOB=2∠AOC;∠BOC =2∠AOC,∠AOC=2∠BOC三种情况;∠已知∠AOB的度数是72°,即可求得∠AOC 的度数;(3)根据∠AOB=160°,∠BOC=40°可得到∠AOC的度数为120°,根据射线OD 的运动速度可得到∠AOD的度数为2t°,射线OD运动时间为120÷2=60秒,也是OE 的运动时间.那么射线OE往返一次需要的时间为:40÷2+40÷4=30秒,那么当OD停止时,0E往返2次.根据“共轭角”的定义得出∠COD是∠COE的2倍或者∠COE是∠COD的2倍,然后求解即可.【解答】解:(1)∵∠1=12°,∠1和∠2互为“共轭角”,∴∠2=2∠1或∠1=2∠2.∴∠2=2∠1=24°或∠2=∠2=6°.故答案为:6°或24°.(2)①∵∠AOB=72°,图中存在“共轭角”,∴∠AOB=2∠AOC.∵∠AOB=72°,∴∠AOC=∠AOB=36°.②∠BOC=2∠AOC.∵∠BOC+∠AOC=∠AOB,∴2∠AOC+∠AOC=72°,∴∠AOC=24°.③∠AOC=2∠BOC.∴∠BOC=∠AOC.∵∠BOC+∠AOC=∠AOB,∴∠AOC+∠AOC=72°.∴∠AOC=72°×=48°.答:∠AOC的度数为36°或24°或48°.(3)∵∠AOB=160°,∠BOC=40°,∴∠AOC=∠AOB﹣∠AOC=120°.∵射线OD速度为2°每秒,运动时间为t秒,∴∠AOD=2t°,射线OD运动时间为120÷2=60秒.∴∠COD=∠AOC﹣∠AOD=(120﹣2t)°,射线OE运动时间为60秒.∵∠BOC=40°,射线OE以2°每秒的速度从OB顺时针旋转到OC,再以4°每秒的速度逆时针返回OB,∴射线OE往返一次需要的时间为:40÷2+40÷4=30秒.①当射线OE还未到达OC,即0≤t≤20时,∵射线OE速度为2°每秒,运动时间为t秒,∴∠BOE=2t°.∴∠COE=∠BOC﹣∠BOE=(40﹣2t)°.Ⅰ、∠COD=2∠COE.120﹣2t=2(40﹣2t),120﹣2t=80﹣4t,2t=﹣40,时间为负数,不合题意,舍去.Ⅱ、∠COE=2∠COD.40﹣2t=2(120﹣2t),40﹣2t=240﹣4t,2t=200,t=100.不在相应时间范围内,舍去.②当射线OE从OC返回,即20<t≤30时,∵射线OE速度为4°每秒,运动时间为t秒,∴∠COE=4(t﹣)=(4t﹣80)°,Ⅰ、∠COD=2∠COE.120﹣2t=2(4t﹣80),120﹣2t=8t﹣160,280=10t,t=28.Ⅱ、∠COE=2∠COD.4t﹣80=2(120﹣2t),4t﹣80=240﹣4t,8t=320,t=40.不在相应时间范围内,舍去.③当射线OE第二次从OB出发,还未到达OC,即30<t≤50时,∠BOE=2(t﹣30)°=(2t﹣60)°,∴∠COE=∠BOC﹣∠BOE=40°﹣(2t﹣60)°=(100﹣2t)°.Ⅰ、∠COD=2∠COE.120﹣2t=2(100﹣2t),120﹣2t=200﹣4t,2t=80,Ⅱ、∠COE=2∠COD.100﹣2t=2(120﹣2t),100﹣2t=240﹣4t,2t=140,t=70.不在相应时间范围内,舍去.④当射线OE第二次从OC返回,即50<t≤60时,∠COE=4(t﹣50)=(4t﹣200)°.Ⅰ、∠COD=2∠COE.120﹣2t=2(4t﹣200).120﹣2t=8t﹣400,520=10t,t=52.Ⅱ、∠COE=2∠COD.4t﹣200=2(120﹣2t).4t﹣200=240﹣4t,8t=440,t=55.答:t的值为28或40或52或55.【点评】本题考查了一元一次方程的应用里的角的计算问题.理解“共轭角”的定义是解决本题的关键.在动直线的问题里,应注意根据运动时间以及新定义进行分类讨论,并使用类比思想解决问题。
成都七中嘉祥外国语学校人教版七年级上册数学期末考试试卷及答案一、选择题1.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短2.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯3.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=4.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线 6.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=07.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)8.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠49.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 10.3的倒数是( )A .3B .3-C .13D .13-11.下列计算正确的是( ) A .-1+2=1 B .-1-1=0 C .(-1)2=-1 D .-12=112.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 17.把53°24′用度表示为_____. 18.化简:2xy xy +=__________.19.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.20.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.21.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.22.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 23.用度、分、秒表示24.29°=_____.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、解答题25.如图,图1中小正方形的个数为1个;图2中小正方形的个数为:1+3=4=22个;图3中小正方形的个数为:1+3+5=9=32个;图4中小正方形的个数为:1+3+5+7=16=42个;…(1)根据你的发现,第n 个图形中有小正方形:1+3+5+7+…+ = 个. (2)由(1)的结论,解答下列问题:已知连续奇数的和:(2n +1)+(2n +3)+(2n +5)+……+137+139=3300,求n 的值. 26.解方程:(1)3524x x -=- (2)4132y y-+= 27.柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载) 车型甲 乙 丙 汽车运载量(吨/5810辆)汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?28.知图①,在数轴上有一条线段AB,点,A B表示的数分别是2-和11-.(1)线段AB=____________;(2)若M是线段AB的中点,则点M在数轴上对应的数为________;(3)若C为线段AB上一点.如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B'处,若15AB B C''=,求点C在数轴上对应的数是多少?29.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A'处,BC为折痕.若54ABC∠=︒,求'A BD∠的度数;(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA重合,折痕为BE,如图2所示,求CBE∠的度数.30.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C ,使AC=2BC ,则点C 在数轴上表示的数为 .(3)现有动点P 、Q 都从B 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?四、压轴题31.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.32.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.33.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.2.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 3.A解析:A 【解析】 【分析】设女生x 人,男生就有(30-x )人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可. 【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.4.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.5.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A.连接两点的线段的长度叫做两点间的距离,错误;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C.对顶角相等,正确;D.线段AB的延长线与射线BA不是同一条射线,错误.故选C.【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.6.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
成都七中嘉祥外国语学校人教版七年级数学上册期末试卷及答案一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=- 4.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7 5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④6.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( ) A .14,4 B .11,1 C .9,-1 D .6,-47.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 8.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2 B .4 C .﹣2 D .﹣4 9.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( )A .0mB .0.8mC .0.8m -D .0.5m - 10.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒ 11.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………14.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.159________16.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.18.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.19.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.20.当x= 时,多项式3(2-x )和2(3+x )的值相等.21.8点30分时刻,钟表上时针与分针所组成的角为_____度.22.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.23.若523m x y +与2n x y 的和仍为单项式,则n m =__________.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.27.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?28.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?29.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值30.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.31.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A 、5+3×6+1×6×6=59(颗),故本选项错误;B 、1+3×6+2×6×6=91(颗),故本选项正确;C 、2+3×6+1×6×6=56(颗),故本选项错误;D 、1+2×6+3×6×6=121(颗),故本选项错误;故选:B .【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.D解析:D【解析】【分析】设分配x 名工人生产螺栓,则(26-x )名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x 名工人生产螺栓,则(26-x )名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个, ∴可得2×12x=18(26-x ).故选:D .【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.5.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.6.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.7.A解析:A【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 8.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:3x ﹣9﹣3=0,解得:x =4,故选:B .【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.9.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m 时水位变化记作0.6m +,∴水位下降0.8m 时水位变化记作0.8m -,故选:C .【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.B解析:B【解析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.11.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,解析:83n【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.14.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;15.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.16.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 17.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键18.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式19.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.20.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.21.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.22.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12AM=2cm ,AQ=12AB=8cm ,从而得到答案. 【详解】 解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm , ∴PQ=AQ-AP=6cm ;故答案为:6cm .【点睛】 本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.23.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.24.>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、压轴题25.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 26.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.27.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.28.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.29.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.30.(1)5 ;(2)点F表示的数是11.5或者-6.5;(3)127t=或6t=.【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M是PB中点可知PM长度;(2)点P运动3秒是9个单位长度,M为PB的中点,则可求解出点M表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.31.(1)x=1;(2) x =-3或x =5;(3) 30.【解析】【分析】(1)根据题意可得4-x =x -(-2),解出x 的值;(2)此题分为两种情况,当点P 在B 的右边时,当点P 在B 的左边时,分别列出方程求解即可;(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x 进而求出即可.【详解】(1)4-x =x -(-2),解得:x =1,(2)①当点P 在B 的右边时得:x -(-2)+x -4=8,解得:x =5,②当点P 在B 的左边时得:-2-x +4-x =8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 32.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。
成都七中嘉祥外国语学校人教版七年级上册数学期末考试试卷及答案一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107 C .6.5×108 D .65×106 2.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元 3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10-B .10C .5-D .54.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.在223,2,7-四个数中,属于无理数的是( ) A .0.23B 3C .2-D .2276.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣28.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④9.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =10.下列各数中,有理数是( ) A .2B .πC .3.14D .3711.3的倒数是( ) A .3B .3-C .13D .13-12.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离13.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣414.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m=,则x y = D .若x y =,则x y m m= 15.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-二、填空题16.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 17.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 18.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 19.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.20.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.21. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.22.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 23.若方程11222m x x --=++有增根,则m 的值为____. 24.如果一个数的平方根等于这个数本身,那么这个数是_____.25.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 26.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.27.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.28.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.29.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______30.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题31.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.32.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
2023-2024学年四川省成都市锦江区嘉祥外国语学校九年级(上)期末数学试卷一、选择题(每小题4分,共32分)1.(4分)这是一个水平放置的木陀螺(上面是圆柱体,下面是圆锥体)玩具,它的主视图()A.B.C.D.2.(4分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate60系列低调开售.据统计,截至2023年10月21日,华为mate60系列手机共售出约160万台,将数据1600000用科学记数法表示应为()A.0.16×107B.1.6×106C.1.6×107D.16×1063.(4分)一个不透明的盒子中装有5个大小相同的乒乓球,将其摇匀,从中随机摸出一个乒乓球,记下其颜色.然后再放回,这样重复做了1000次摸球试验,摸到黄球的频数为400,则估计其中的黄球个数为()A.1B.2C.3D.44.(4分)调查某少年足球队18位队员的年龄,得到数据结果如表:年龄岁1112131415人数26721则该足球队队员年龄的众数和中位数分别是()A.13岁,12岁B.13岁,14岁C.13岁,13岁D.13岁,15岁5.(4分)小刚身高1.6m,测得他站立在阳光下的影子长为0.8m,紧接着他把手臂竖直举起,测得影子长为1m,那么小刚举起手臂超出头顶()A.2m B.0.6m C.0.5m D.0.4m6.(4分)如图,△A'B'C'是△ABC以点O为位似中心经过位似变换得到的,若OB=3OB',则△A'B'C'的面积与△ABC的面积之比是()A.1:3B.2:3C.1:6D.1:97.(4分)我国古代数学经典著作《九章算术》中有这样一题,原文是:今有共买物,人出七,盈二;人出六,不足三.问人数、物价各几何?”意思是:今有人合伙购物,每人出七钱,会多二钱;每人出六钱,又差三钱,问人数、货物总价各多少?设人数为x人,货物总价为y钱,可列方程组为()A.B.C.D.8.(4分)下列关于反比例函数的说法正确的是()A.图象位于第二、四象限B.y随x的增大而减小C.函数图象过点(﹣2,4)D.图象是中心对称图形二、填空题(每小题4分,共20分)9.(4分)若在实数范围内有意义,则实数x的取值范围是.10.(4分)分解因式:ax2﹣2ax+a=.11.(4分)已知+2是方程x2﹣4x+c=0的一根,则c=.12.(4分)已知点C是线段AB的黄金分割点,且AC>BC,AB=2,则BC=.13.(4分)如图,△ABC中,以点A为圆心任意长为半径画弧交线段AB、AC于点M、N,分别以点M、N为圆心,大于的长为半径画弧交BC于点D,折叠△ABC,使点A与点D重合,折痕交线段AB、AC于点E、F,若∠BAC=60°,AD=2,则AE=.三、解答题(共48分)14.(8分)(1)解方程:x2﹣6x+8=0;(2)求不等式组的解集,并写出满足该不等式组的非负整数解之和.15.(10分)成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D ﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全条形统计;(2)求出“足球”在扇形的圆心角是多少度;(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好都选修足球的概率.16.(10分)“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.17.(10分)如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E、F在对角线AC上,且AE=CF.(1)求证:四边形EGFH是平行四边形;(2)连接BD交AC于点O,若BD=14,AE+CF=EF,求EG的长.18.(10分)正方形ABCD的边长为4,AC,BD交于点E.在点A处建立平面直角坐标系如图所示.(1)如图1,双曲线过点E,求点E的坐标和反比例函数的解析式;(2)如图2,将正方形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线与AB交于点P.当△AEP为等腰三角形时,求m的值.四、填空题(每小题4分,共20分)19.(4分)已知关于x的方程x2+(2m﹣1)x+m2=0有两个实数根,此方程两根分别为α,β,且αβ+α+β=9,则m的值为.20.(4分)若有六张完全一样的卡片正面分别写有﹣1,﹣2,0,1,2,3,现背面向上,任意抽取一张卡片,其上面的数字能使关于x的分式方程的解为正数,且使反比例函数图象过第一、三象限的概率为.21.(4分)如图,四边形ABCD为菱形,∠ABC=80°,延长BC到E,在∠DCE内作射线CM,使得过点D作∠ECM=30°,DF⊥CM,垂足为F,若,则对角线BD的长为.22.(4分)在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A 是点B的“关联点”,当线段OB最短时,点B的坐标为.23.(4分)如图,△ABC中,∠A=45°,∠ABC=60°,,点D是边AB上任意一点,以CD 为边在AD的右侧作等边△DCE,连接BE,则△BDE面积的最大值为.五、解答题(共30分)24.(10分)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y (万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?25.(10分)如图1,在平面直角坐标系中,,经过A,B两点的直线与反比例函数y=在第一象限内的图象交于点D,经过A,C两点的直线与反比例函数在第一象限内的图象交于点E,已知点D的坐标为(3,5).(1)求直线AC的解析式及E点的坐标;(2)若y轴上有一动点F,直线AB上有一动点G.当最小时,求△EFG周长的最小值;(3)如图2,若y轴上有一动点Q,直线AB上有一动点P,以Q,P,E,D四点为顶点的四边形为平行四边形时,求P点的坐标.26.(10分)在正方形ABCD中,点G是边AB上的一个动点,点F、E在边BC上,BF=FE=AG,且AG ≤AB,GF、DE的延长线相交于点P.(1)如图1,当点E与点C重合时,求∠P的度数;(2)如图2,当点E与C不重合时,过D作DN⊥GP于点N,若DN=4,求DP长;(3)在(2)的条件下,连接CN、BP,取BP的中点M,连接MN,在点G的运动过程中,求的值.。
七年级上册成都七中嘉祥外国语学校数学期末试卷达标检测(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°,∴∠AOD= ∠AOE= ×90°=30°,∴∠AOC=2∠AOD=60°,∴∠COE=90°﹣∠AOC=30°【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。
成都七中嘉祥外国语学校2007-2008学年度上期2010级期末试题
命题人: 审题人:
姓名:____________
试题说明:1.本套试题满分100分,考试时间70分钟。
2.该试题重点考察有理数、字母代表数、一元一次方程和简单几何等重要内容和重要的数学思想方法。
新增内容与传统内容有机结合,着重考察学生对所学知识的理解和灵活运用,这也是今后中、高考命题的重要方向。
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题
目要求的. 1.代数式[2()]m n m m n −−−+去括号得( )
A.-2m
B.2m
C.4m
D.2m-2n
2.若两个数之和为负数,则一定有( )
A.这两个数都是负数
B.这两个加数只能是一正一负
C.两个加数中一负一0
D.至少有一个负数 3.下列事件中,必然发生的事件是( ).
(A )明天会下雨 (B )小明数学考试得99分 (C )今天是星期一,明天就是星期二 (D )明年有370天
4.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。
据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0
5.0毫升。
小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴了( )毫升水.(用科学记数法表示) (A )1440 (B )3
104.1× (C )4
1014.0× (D )2
1014× 5. 现在的时间是9点30分,则钟表上的时针与分针的夹角为( ) A .75o
B .90o
C .105o
D .120o
6. 已知下列方程的解法分别是 (1)24
13
y y −−
=,去分母,得3243y y −−=,所以7y = (2)23(1)4(3)x x −+=+,去括号,得233412x x −+=+,所以1x =−
(3)
143
x x
−=,去分母,得341x x −=,所以1x =− (4)168x −=−,两边都乘以1
16
−,得2x =
其中正确的角法的个数为( ) A .0 B .1 C .2 D .3 7.下列说法正确的为( )
A . 到线段两个端点距离相等的点叫做线段的中点。
B . 线段的中点到线段两个端点距离相等。
C . 线段的中点可以有两个。
D . 线段的中点有若干个。
8. 下列各式计算正确的是( ) A.2
(4)16−−=−
B.826(16)(2)−−×=−+×−
宁静姐姐家长论坛w w w .c d n i n g j i n g .c o m
C.6565445656⎛⎞÷
×=÷×⎜⎟⎝⎠
D.
20032004(1)(1)11−+−=−+
9.观察下列算式:
L ,, , , , , , , 2562128264232216282422287654321======== 根据上述算式
中的规律,你认为20
2的末位数字是( ).
(A )2 (B )4 (C )6 (D )8
10.甲、乙两人同时从A 到B 、甲比乙每小时多行1千米,若甲每小时行10千米,结果甲比乙早到半小时,设AB =x 千米,由题意,列方程( )
A.
10x =9x +21
B.
10x =11x -21 C. 10x =9x -2
1
D. 10x =11x +2
1
二、填空题:本大题共10小题,每小题2分,共20分,把答案填写在题中横线上. 1.把下列各数填入相应的大括号里: 5,-1,0,-6, 0.3,-13
2,-8
2
,-0.72,… ①正数集合:{ …} ②负整数集合:{ …}
③负数集合:{ …} ④分数集合: { …}
2. 地球的质量为13
610×亿吨,太阳的质量是地球的5
3.310×倍,则太阳的质量为____________亿吨.
3.单项式2
a b −的系数是___________,单项式2715
x y
π−的系数是________ 4.已知23
5x a
−b 与545
712
y a b
+−
是同类项,则|x+5y|=___________. 5.已知a 是最小的正整数,b 的相反数还是它本身,c 比最大的负整数大3,计算(2a +3c )·b 的值为
______________. 6.若代数式2
237y y ++的值是8,则代数式2
469y y +−的值为___________.
7. 某商店有两个进价不同的计算器都卖64元,其中一个赢利60%,另一个亏本20%,则在这次买卖中,这家商店___________元(填赚或亏的数目).
8.如图,C、D 是线段AB 上的两点,则AC-AD+CB=________;若C 是AB 的中点,D 是AC 的中点,AB=10cm,则AC-AD+CB=________cm ;
A D C B
9.若代数式3
2008ax bx ++,当1x =时,其值是为2011,则当1x =−时,代数式的值是_____________.
10. 已知52a b ==,
,且0ab <,则23
a b =______. 三、运算题:本大题共3小题,共15分,解答应写出必要的计算过程、推演步骤或文字说明.
宁静姐姐家长论坛w w w .c d n i n g j i n g .c o m
1.计算:[]42)3(18)2(2÷×−−+−
2.化简求值. 2(3a 2-5b)-[-3(a 2-3b)] , 其中a=3
1
,b=-2
3. 解方程
0.07-0.01x 0.04-10x-10
30=x+1
四、作图题:本大题共2小题,共10分,解答应写出必要的计算过程、推演步骤或文字说明.
1.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。
请你画出它的主视图与左视图
2. 下面两幅统计图(如图1、图2),反映了某市甲、乙两所中学学生参加课外活动的情况.请你通过图中信息回答下面的问题. (1)、通过对图1的分析,
写出一条你认为正确的结论; (2)通过对图2的分析, 写出一条你认为正确的结论; (3)2003年甲、乙两所中学参加科技 活动的学生人数共有多少?
五、解答题:本大题共3小题,共17分,解答应写出必要的计算过程、推演步骤或文字说明. 1. 已知线段AB ,延长AB 到C ,使1
4
BC AB D AC =
,为中点,若3BD cm =,求AB 的长.(5分)
2
4
13
2
/年 甲校 乙校
甲、乙两校参加课外活动的
学生人数统计图(1997~2003年)
(图2)
2003年甲、乙两校学生参加课外活动情况统计图
宁静姐姐家长论坛w w w .c d i n g j i n g .c o m
2.
(1) 停止后指针对准红色区域比对准黄色区域的可能性大,应旋转哪个转盘,为什么? (2) 停止后指针对准红色与黄色区域的可能性相等,应旋转哪个转盘?为什么? (3) 停止后指针对准黄色比对准红色区域的可能性大,应旋转哪个转盘?为什么?
(4) 若同时旋转A、B转盘,停止后两枚指针同时对准哪一种颜色区域的可能性大?为什么?(6分)
3.已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式。
……
内角和180° 180°×2 180°×3 180°×4 n 边形
根据上图所示,一个四边形可以分成____个三角形;于是四边形的内角和为______度:一个五边形可以分成______个三角形,于是五边形的内角和为______度,……,按此规律,n 边形可以分成_______个三角形,于是n 边形的内角和为________________度。
(4分) 4.一串有黑有白,其排列有一定规律的珠子,
则这串珠子被盒子遮住的部分有____ 颗个珠子.(2分)
六、应用题:本大题共1小题,共8分,解答应写出必要的计算过程、推演步骤或文字说明.
1. 苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为600元,水面需按整数亩出租;②每亩水面可在年初混合投放8公斤蟹苗和40公斤虾苗;③每公斤蟹苗的价格为80元,其饲养费用为520元,当年可获1600元收益; ④每公斤虾苗的价格为20元,其饲养费用为80元,当年可获180元收益;
李大爷现有26000元,他准备再向银行贷款,用于蟹虾混合养殖。
已知银行贷款的年利率为8%,试问李大爷租50亩水面,至少要向银行贷款多少元?估算他获得的年利润为多少元?
A B C 宁静姐姐家长论坛w w w .c d n i n g j i n g .c o m。