2018-2019学年河南省洛阳市八年级(下)期末数学试卷(解析版)
- 格式:doc
- 大小:367.00 KB
- 文档页数:20
2018-2019学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣22.(3分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x23.(3分)如图,∠AOB=30°,点P在∠AOB的平分线上,PC⊥OB于点C,PD∥OB交OA于点D、若PD=2,PC=()A.1B.2C.3D.44.(3分)下列因式分解正确的是()A.12a2b﹣8ac+4a=4a(3ab﹣2c)B.﹣4x2+1=(1+2x)(1﹣2x)C.4b2+4b﹣1=(2b﹣1)2D.a2+ab+b2=(a+b)25.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.5B.6C.7D.106.(3分)计算:a2﹣(b﹣1)2结果正确的是()A.a2﹣b2﹣2b+1B.a2﹣b2﹣2b﹣1C.a2﹣b2+2b﹣1D.a2﹣b2+2b+17.(3分)分式方程=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=38.(3分)如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F9.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是()A.EC=EF B.FE=FC C.CE=CF D.CE=CF=EF10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β二、填空题(每小题3分,共15分)11.(3分)计算:(a3x4﹣0.9ax3)÷ax3=.12.(3分)一个等腰三角形一边长为3cm,另一边长为7cm,那么这个等腰三角形的周长是cm.13.(3分)将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为.14.(3分)化简=.15.(3分)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC于点D、E,若△ABC的周长为23cm,△ABD的周长为13cm,则AE为cm.三、解答题16.(8分)解答下列各题:(1)计算:(y﹣2)(y+5)﹣(y+3)(y﹣3)(2)分解因式:3x2﹣1217.(8分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.18.(8分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:19.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△ABC的面积.20.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=40°,求∠BDE的度数.21.(10分)已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)当∠OAB=40°时,∠ACB=度;(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.22.(10分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?23.(11分)如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.【观察猜想】①AE与BD的数量关系是;②∠APD的度数为.【数学思考】如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;【拓展应用】如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为.2018-2019学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.2.(3分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x2【分析】根据单项式乘单项式、同底数幂的乘法和积的乘方进行解答.【解答】解:A、b3•b3=b6,正确;B、x4•x4=x8,错误;C、(﹣2x2)2=4x4,错误;D、3x2•4x2=12x4,错误;故选:A.【点评】此题考查单项式乘单项式、同底数幂的乘法和积的乘方,关键是根据单项式乘单项式、同底数幂的乘法和积的乘方法则解答.3.(3分)如图,∠AOB=30°,点P在∠AOB的平分线上,PC⊥OB于点C,PD∥OB交OA于点D、若PD=2,PC=()A.1B.2C.3D.4【分析】作PE⊥OA于E,根据直角三角形的性质求出PE,根据角平分线的性质求出PC.【解答】解:作PE⊥OA于E,∵PD∥OB,∴∠EDP=∠AOB=30°,∴PE=PD=1,∵点P在∠AOB的平分线上,PC⊥OB,PE⊥OA,∴PC=PE=1,故选:A.【点评】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.4.(3分)下列因式分解正确的是()A.12a2b﹣8ac+4a=4a(3ab﹣2c)B.﹣4x2+1=(1+2x)(1﹣2x)C.4b2+4b﹣1=(2b﹣1)2D.a2+ab+b2=(a+b)2【分析】各项分解得到结果,即可作出判断.【解答】解:A、原式=4a(3ab﹣2c+1),不符合题意;B、原式=(1+2x)(1﹣2x),符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意,故选:B.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.5B.6C.7D.10【分析】若两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【解答】解:已知4条木棍的四边长为2、3、4、6;①选2+3、4、6作为三角形,则三边长为5、4、6;5﹣4<6<5+4,能构成三角形,此时两个螺丝间的最长距离为6;②选3+4、6、2作为三角形,则三边长为2、7、6;6﹣2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;③选4+6、2、3作为三角形,则三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;④选6+2、3、4作为三角形,则三边长为8、3、4;而3+4<8,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7.故选:C.【点评】此题实际考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.6.(3分)计算:a2﹣(b﹣1)2结果正确的是()A.a2﹣b2﹣2b+1B.a2﹣b2﹣2b﹣1C.a2﹣b2+2b﹣1D.a2﹣b2+2b+1【分析】原式利用完全平方公式化简,去括号即可得到结果.【解答】解:原式=a2﹣(b2﹣2b+1)=a2﹣b2+2b﹣1.故选:C.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(3分)分式方程=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.【点评】此题考查了分式方程的解,求出分式方程的解是解本题的关键.8.(3分)如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且∠ABC=∠DEF,∴当AB=DF时,满足SSA,无法判定△ABC≌△DEF,故A不能;当AB=DE时,满足SAS,可以判定△ABC≌△DEF,故B可以;当∠ACB=∠F时,满足ASA,可以判定△ABC≌△DEF,故C可以;当∠A=∠D时,满足AAS,可以判定△ABC≌△DEF,故D可以;故选:B.【点评】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.9.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是()A.EC=EF B.FE=FC C.CE=CF D.CE=CF=EF【分析】求出∠CAF=∠BAF,∠B=∠ACD,根据三角形外角性质得出∠CEF=∠CFE,即可得出答案;【解答】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∵AF平分∠CAB,∴∠CAE=∠BAF,∴∠ACD+∠CAE=∠B+∠BAF,∴∠CEF=∠CFE,∴CE=CF.故选:C.【点评】本题考查了直角三角形的性质,等腰三角形的判定,正确的识别图形是解题的关键.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.二、填空题(每小题3分,共15分)11.(3分)计算:(a3x4﹣0.9ax3)÷ax3=2a2x﹣.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(a3x4﹣0.9ax3)÷ax3=a3x4÷ax3﹣0.9ax3÷ax3=2a2x﹣.故答案为:2a2x﹣.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.12.(3分)一个等腰三角形一边长为3cm,另一边长为7cm,那么这个等腰三角形的周长是17cm.【分析】题目给出等腰三角形有两条边长为3cm和7cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为3时,3+3<7,所以不能构成三角形;当腰为7时,3+7>7,所以能构成三角形,周长是:3+7+7=17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(3分)将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为15°.【分析】根据两直线平行,内错角相等求出∠BCE=∠E=30°,然后求出∠ACE的度数.【解答】解:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB﹣∠BCE=45°﹣30°=15°,故答案为:15°.【点评】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.14.(3分)化简=.【分析】首先将原式化为==﹣,然后进行分式的加减运算.【解答】解:原式==﹣==,故答案为:.【点评】此题考查的知识点是粉饰的加减法,关键明确如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.15.(3分)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC于点D、E,若△ABC的周长为23cm,△ABD的周长为13cm,则AE为5 cm.【分析】利用线段的垂直平分线的性质即可解决问题.【解答】解:由题意可得:MN是线段AC的垂直平分线,则AE=EC,AD=DC,∵△ABC的周长为23cm,△ABD的周长为13cm,∴AB+BC+AC=23cm,AB+BD=AD=AB+BD+DC=AB+BC=13cm,∴AC=23﹣13=10(cm),∴AE=AC=5cm.故答案为:5.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质,属于中考常考题型.三、解答题16.(8分)解答下列各题:(1)计算:(y﹣2)(y+5)﹣(y+3)(y﹣3)(2)分解因式:3x2﹣12【分析】(1)根据整式的乘法计算解答即可;(2)根据平方差公式分解因式即可.【解答】解:(1)原式=y2+3x﹣10﹣y2+9=3x﹣1;(2)3x2﹣12=3(x+2)(x﹣2).【点评】此题考查平方差公式,关键是根据平方差公式解答.17.(8分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.18.(8分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【分析】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解答】解:由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.【点评】本题考查完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.19.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△ABC的面积.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;根据平面直角坐标系写出各点的坐标即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)如图所示,△A′B′C′即为所求,由图知A′(1,3),B′(5,1),C′(2,﹣2);(2)△ABC的面积为5×4﹣×1×5﹣×3×3﹣×2×4=9.【点评】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=40°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.21.(10分)已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)当∠OAB=40°时,∠ACB=45度;(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.【分析】(1)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论;(2)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论.【解答】解:(1)∵∠XOY=90°,∠OAB=40°,∴∠ABY=130°,∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB=20°,∠EBA=∠YBA=65°,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=45°,故答案为:45;(2)∠ACB的大小不变化.理由:∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB,∠EBA=∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=∠YBA﹣∠OAB=(∠YBA﹣∠OAB),∵∠YBA﹣∠OAB=90°,∴∠C=×90°=45°,即:∠ACB的大小不发生变化.【点评】此题主要考查了角平分线定理,三角形的外角的性质,解本题的关键是得出∠YBA﹣∠OAB=90°.22.(10分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2700元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,依题意,得:=3×,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价是4元/瓶.(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.设销售单价为y元/瓶,依题意,得:(450+1350)y﹣1800﹣8100≥2700,解得:y≥7.答:销售单价至少为7元/瓶.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(11分)如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.【观察猜想】①AE与BD的数量关系是AE=BD;②∠APD的度数为60°.【数学思考】如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;【拓展应用】如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为50.【分析】【观察猜想】:证明△ACE≌△DCB(SAS),可得AE=BD,∠CAO=∠ODP,由∠AOC=∠DOP,推出∠DPO=∠ACO=60°.【数学思考】:结论成立,证明方法类似.【拓展应用】:证明AC⊥BD,可得S四边形ABCD=•AC•DP+•AC•PB=•AC•(DP+PB)=•AC•BD.【解答】解:【观察猜想】:结论:AE=BD.∠APD=60°.理由:设AE交CD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,∵∠AOC=∠DOP,∴∠DPO=∠ACO=60°,即∠APD=60°.故答案为AE=BD,60°.【数学思考】:结论仍然成立.理由:设AC交BD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠P AO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,即∠APD=60°.【拓展应用】:设AC交BE于点O.∵△ADC,△ECB都是等腰直角三角形,∴ED=EA,∠AED=∠BEC=90°,CE=EB,∴∠AEC=∠DEB∴△AEC≌△DEB(SAS),∴AC=BD=10,∠PBO=∠OCE,∵∠BOP=∠EOC,∴∠BPO=∠CEO=90°,∴AC⊥BD,∴S四边形ABCD =•AC•DP +•AC•PB =•AC•(DP+PB )=•AC•BD=50.故答案为50.【点评】本题属于四边形综合题,考查了等边三角形的性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.第21页(共21页)。
洛阳市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12小题,每小题3分,共36分。
(共12题;共34分)1. (3分)如图,若输入x的值为﹣5,则输出的结果为()A . ﹣6B . ﹣5C . 5D . 62. (3分)(2017·辽阳) 如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD延长线于点E,过点E 作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是()A . 2B . 1C .D .3. (2分)小明周末去爬山,从家出发到山下开始爬山,到达山顶后在原地休息了一会,再原路返回下山到家,那么小明离家的距离S(单位:千米)与离家的时间t(单位:时)之间的函数关系图象大致是()A .B .C .D .4. (3分)下列二次根式中,与是同类二次根式的是()A .B .C .D .5. (3分)下列语句:①-1是1的平方根。
②带根号的数都是无理数。
③-1的立方根是-1。
④的立方根是2。
⑤(-2)2的算术平方根是2。
⑥-125的立方根是±5。
⑦有理数和数轴上的点一一对应。
其中正确的有()A . 2个B . 3个C . 4个D . 5个6. (3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A . (3,2)B . (3,﹣2)C . (﹣3,2)D . (﹣3,﹣2)7. (3分) (2018九上·乌鲁木齐期末) 抛物线的部分图象如图所示(对称轴是),若,则的取值范围是()A .B .C . 或D . 或8. (3分)(2019·鞍山) 如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A . x>B . x<C . x>3D . x<39. (3分)如图,在平面直角坐标系中,点A在第一象限,⊙A与轴相切于B,与轴交于C(0,1),D(0,4)两点,则点A的坐标是()A .B .C .D .10. (3分)(2018·毕节模拟) 数学老师给出如下数据1,2,2,3,2,关于这组数据的正确说法是()A . 众数是2B . 极差是3C . 中位数是1D . 平均数是411. (2分)(2020·三明模拟) 如图,在菱形ABCD中,CE⊥AD于点E,cosD= ,AE=4,则AC的长为()A . 8B .C .D .12. (3分)如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是6cm,则∠AOB的度数是()A . 25°B . 30°C . 35°D . 40°二、填空题:本大题共6小题,每小题3分,共18分, (共6题;共18分)13. (3分) (2020七下·阳信期末) 一个正数的两个平方根分别是2a-2和a-7,则这个正数是________。
2018-2019学年河南省洛阳市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣12.(3分)下列各式中,正确的是()A.30=0 B.x3•x2=x5 C.(x﹣1)2=x2﹣1 D.x﹣2x=x3.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或174.(3分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B. 1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣35.(3分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③6.(3分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣27.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b28.(3分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.9.(3分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值分别是()A.5 B.﹣5 C.1 D.﹣110.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64二、填空题(本大题共4小题,每小题5分,满分20分)11.已知点(a﹣1,3)与点(2,b+3)关于y轴对称,则(a+b)2018=.12.某水库的水位在5小时内持续上涨,初始的水位高度为4米,水位以每小时0.2米的速度匀速上涨,则水库的水位y(米)与上涨时间x(小时)(0≤x≤5)之间的函数表达式为.13.请给假命题“两个锐角的和是钝角”举一个反例.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).三、简答题(本大题共2小题,每小题8分,共16分)15.(8分)如图,在网格图中(小正方形的边长为1),△ABC的三个顶点都在格点上,直接写出点C的坐标,并把△ABC向右平移4个单位得到△A1B1C1,再把△A1B1C1沿x轴对称得到△A2B2C2,请分别作出△A1B1C1与△A2B2C2,并写出点C1和点C2的坐标.16.(8分)已知直线y=﹣2x+b经过点(1,1),求关于x的不等式﹣2x+b≥0的解集.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE 平分∠ACB,求∠DEC的度数.18.(8分)如图,△ADF≌△BCE,∠B=32°,∠F=28°,BC=5cm,CD=1cm 求:(1)∠1的度数(2)AC的长五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知y与x+3成正比例,且当x=1时,y=8(1)求y与x之间的函数关系式;(2)若点(a,6)在这个函数的图象上,求a的值.20.(10分)如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB、DF⊥AC,垂足分别为E、F,且BE=CF.求证:(1)BD=CD;(2)AB=AC.六、(本题满分12分)21.(12分)一个有进水管与出水管的容器,从某时刻开始6min内只进水而不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量保持不变,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)求y关于x的函数解析式.(2)直接写出每分钟进水,出水各多少升.七、(本题满分12分)22.(12分)如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°.(1)求证:BD=AE;(2)若△ACB不动,把△DCE绕点C旋转到使点D落在AB边上,如图2所示,问上述结论还成立吗?若成立,给予证明.八、(本题满分14分)23.已知:线段AB,作出线段AB的垂直平分线MN.24.已知:∠AOB,作出∠AOB的平分线OC.25.已知:线段a和b,求作:直角△ABC,使∠B=90°,BC=a,AC=b2018-2019学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.2.(4分)下列各式中,正确的是()A.30=0 B.x3•x2=x5C.(x﹣1)2=x2﹣1 D.x﹣2x=x【解答】解:A、30=1,故原题计算错误;B、x3•x2=x5,故原题计算正确;C、(x﹣1)2=x2﹣2x+1,故原题计算错误;D、x﹣2x=﹣x,故原题计算错误;故选:B.3.(4分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.4.(4分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B.1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣3【解答】解:0.000151=1.51×10﹣4,故选:C.5.(4分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③【解答】解:加上条件AE=CF,利用SSS证明三角形全等;添加条件∠D=∠B,根据SAS得出全等;故选:D.6.(4分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣2【解答】解:∵3x=4,3y=6,∴3x﹣y=3x÷3y=4÷6=.故选:B.7.(4分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选:A.8.(4分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.【解答】解:设江水的流速为x km/h,则逆流的速度为(30﹣x)km/h,顺流的速度为(30+x)km/h,由题意得,=.故选:C.9.(4分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值分别是()A.5 B.﹣5 C.1 D.﹣1【解答】解:(x+1)(x﹣3)=x2﹣3x+x﹣3=x2﹣2x﹣3,由x2+ax+b=(x+1)(x﹣3)=x2﹣2x﹣3知a=﹣2、b=﹣3,则a+b=﹣2﹣3=﹣5,故选:B.10.(4分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64【解答】解:根据题意得:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7,系数之和为2(1+7+21+35)=128,故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.【解答】解:∵点(a﹣1,3)与点(2,b+3)关于y轴对称,∴a﹣1=﹣2,b+3=3,解得:a=﹣1,b=0,∴(a+b)2018=1,故答案为:1,.12.【解答】解:根据题意可得:y=4+0.2x(0≤x≤5),故答案为:y=4+0.2x.13.【解答】解:例如α=30°,β=40°,α+β<90°,故答案为:α=30°,β=40°,α+β=70°<90°,14.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.三、简答题(本大题共2小题,每小题8分,共16分)15.【解答】解:如图所示,△A1B1C1与△A2B2C2即为所求,点C1的坐标(3,3)和点C2的坐标(3,﹣3).16.【解答】解:∵直线y=﹣2x+b经过点(1,1),∴1=﹣2×1+b,解得b=3,∵﹣2x+3≥0,解得x≤.四、(本大题共2小题,每小题8分,满分16分)17.【解答】解:在△ABC中,∵∠A=55°,∠ACB=70°∴∠ABC=55°∵∠ABD=32°∴∠CBD=∠ABC﹣∠ABD=23°∵CE平分∠ACB∴∠BCE=∠ACB=35°∴在△BCE中,∠DEC=∠CBD+BCE=58°.18.【解答】解:(1)∵△ADF≌△BCE,∠F=28°,∴∠E=∠F=28°,∴∠1=∠B+∠E=32°+28°=60°;(2)∵△ADF≌△BCE,BC=5cm,∴AD=BC=5cm,又CD=1cm,∴AC=AD+CD=6cm.五、(本大题共2小题,每小题10分,满分20分)19.【解答】解:(1)根据题意:设y=k(x+3),把x=1,y=8代入得:8=k(1+3),解得:k=2.则y与x函数关系式为y=2(x+3)=2x+6;(2)把点(a,6)代入y=2x+6得:6=2a+6,解得a=0.20.【解答】证明:(1)∵AD平分∠BAC,DE⊥AB、DF⊥AC,∴DE=DF,∠DEB=∠DFC=90°,在△DEB和△DFC中,,∴△DEB≌△DFC,∴BD=DC.(2)∵△DEB≌△DFC,∴∠B=∠C,∴AB=AC.六、(本题满分12分)21.【解答】解:(1)当0≤x≤6时,设y=ax,把(6,24)代入上式得:6a=24,解得:a=4,所以y=4x;设当6≤x≤14时的直线方程为:y=kx+b(k≠0).∵图象过(6,24)、(14,32),∴,解得:,∴y=x+18(6≤x≤14);综上所述,;(2)根据图象,每分钟进水24÷6=4升,设每分钟出水m升,则4﹣(32﹣24)÷(14﹣6)=4﹣1=3,故每分钟进水、出水各是4升、3升.七、(本题满分12分)22.【解答】(1)证明:∵△ABC和△ECD都是等腰直角三角形,∴CE=CD,CA=CB,∠ACE=∠BCD=90°,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:结论成立.理由:∵△ABC和△ECD都是等腰直角三角形,∴CE=CD,CA=CB,∠ACE=∠BCD=90°,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD.八、(本题满分14分)23.【解答】解:如图所示,直线MN即为所求.24.【解答】解:如图所示,OC即为所求作的∠AOB的平分线.25.【解答】解:如图△ABC即为所求.。
2020-2021学年河南省洛阳市伊川县八年级(下)期末数学试卷一、选择题(共10小题,每题3分,共30分).1.若分式的值为0,则x的值是()A.2B.0C.﹣2D.﹣52.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣43.根据下列条件,不能判定四边形是平行四边形的是()A.一组对边平行且相等的四边形B.两组对角分别相等的四边形C.对角线相等的四边形D.对角线互相平分的四边形4.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°5.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁6.如图,反比例函数和正比例函数y2=k2x的图象交于A(﹣1,﹣3)、B(1,3)两点,若,则x的取值范围是()A.﹣1<x<0B.﹣1<x<1C.x<﹣1或0<x<1D.﹣1<x<0或x>17.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°8.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC =60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)9.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号12345方差平均成绩得分3834■3740■37那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,310.函数y=kx+b与y=(kb≠0)在同一坐标系中的图象可能是图中的()A.B.C.D.二、填空题(每小题3分,共15分)11.在函数y=中,自变量x的取值范围是.12.点P在反比例函数y=(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,则反比例函数的解析式为.13.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=5,则AD的长是.14.某校规定:学生期末总评成绩由卷面成绩、研究性学习成绩、平日成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科三部分成绩分别是90分,80分,85分,则小明的期末数学总评成绩为分.15.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=.三、解答题(本大题共8个小题,满分75分)16.计算:|﹣3|﹣(﹣π)0++(﹣1)3.17.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.18.如图,已知菱形ABCD的边长为2cm,∠BAD=120°,对角线AC、BD相交于点O,试求这个菱形的两条对角线AC与BD的长.19.为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,先从中随机抽取15名学生家庭的年收入情况,数据如表:年收入(单位:万元)2 2.5345913家庭个数1352211(1)求这15名学生家庭年收入的平均数、中位数、众数;(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.20.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,EC交AD于F.(1)求证:△AEF≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.21.如图,在平面直角坐标系xOy中,直线y=kx+b交x轴于点A(4,0),交y轴于点B (0,2).(1)求k,b的值.(2)P为直线AB上一点,PC⊥x轴于点C,PD⊥y轴于点D,若四边形PCOD为正方形,求点P的坐标.22.如图,△ABC中,D、E分别是AB、AC的中点,连结DE并延长到点F,使EF=ED,连结CF.(1)四边形DBCF是平行四边形吗?说明理由;(2)DE与BC有什么样的位置关系和数量关系?并说明理由.23.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.参考答案一、选择题(每小题3分,共30分)1.若分式的值为0,则x的值是()A.2B.0C.﹣2D.﹣5解:由题意,得x﹣2=0,解得,x=2.经检验,当x=2时,=0.故选:A.2.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣4解:将数0.0002用科学记数法表示为2×10﹣4,故选:D.3.根据下列条件,不能判定四边形是平行四边形的是()A.一组对边平行且相等的四边形B.两组对角分别相等的四边形C.对角线相等的四边形D.对角线互相平分的四边形解:A、∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,故本选项正确;B、∵∠BAD=∠BCD,∠ABC=∠ADC,∴∠BAD+∠ABC=∠BCD+∠ABC=180°,∴AD∥BC,AB∥DC,∴四边形ABCD是平行四边形,故本选项正确;C、由AC=BD,不能推出四边形ABCD是平行四边形,故本选项错误;D、∵OA=OC,OD=OB,∴四边形ABCD是平行四边形,故本选项正确;故选:C.4.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°解:在正方形ABCD中,AB=AD,∠BAD=90°,在等边△ABE中,AB=AE,∠BAE=∠AEB=60°,在△ADE中,AD=AE,∠DAE=∠BAD+∠BAE=90°+60°=150°,所以,∠AED=(180°﹣150°)=15°,所以∠BED=∠AEB﹣∠AED=60°﹣15°=45°.故选:C.5.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁解:因为S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,所以s甲2<s乙2<s丙2<s丁2,由此可得成绩最稳定的为甲.故选:A.6.如图,反比例函数和正比例函数y2=k2x的图象交于A(﹣1,﹣3)、B(1,3)两点,若,则x的取值范围是()A.﹣1<x<0B.﹣1<x<1C.x<﹣1或0<x<1D.﹣1<x<0或x>1解:根据题意知:若,则只需y1>y2,又知反比例函数和正比例函数相交于A、B两点,从图象上可以看出当x<﹣1或0<x<1时y1>y2,故选:C.7.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.8.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC =60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.9.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号12345方差平均成绩得分3834■3740■37那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,3解:∵这组数据的平均数是37,∴编号3的得分是:37×5﹣(38+34+37+40)=36;被遮盖的方差是:[(38﹣37)2+(34﹣37)2+(36﹣37)2+(37﹣37)2+(40﹣37)2]=4;故选:B.10.函数y=kx+b与y=(kb≠0)在同一坐标系中的图象可能是图中的()A.B.C.D.解:A、函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,则kb<0,所以函数y=(kb≠0)的图象经过第二、四象限,故A选项不符合题意;B、函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0,所以函数y=(kb≠0)的图象经过第一、三象限,故B选项不符合题意;C、函数y=kx+b的图象经过第一、二、三象限,则k>0,b>0,则kb>0,所以函数y=(kb≠0)的图象经过第一、三象限,故C选项不符合题意;D、函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0,所以函数y=(kb≠0)的图象经过第一、三象限,故D选项符合题意;故选:D.二、填空题(每小题3分,共15分)11.在函数y=中,自变量x的取值范围是x≥2.解:在函数y=中,有x﹣2≥0,解得x≥2,故其自变量x的取值范围是x≥2.故答案为x≥2.12.点P在反比例函数y=(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,则反比例函数的解析式为y=.解:∵点Q(2,4)和点P关于y轴对称,∴P点坐标为(﹣2,4),将(﹣2,4)解析式y=得,k=xy=﹣2×4=﹣8,∴函数解析式为y=﹣.故答案为:y=﹣.13.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=5,则AD 的长是5.解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD,∴AO=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴∠ABO=60°,∴AD=AB•tan60°=5.故答案为:5.14.某校规定:学生期末总评成绩由卷面成绩、研究性学习成绩、平日成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科三部分成绩分别是90分,80分,85分,则小明的期末数学总评成绩为87分.解:小明的期末数学总评成绩=90×60%+80×20%+85×20%=87(分).故填87.15.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=5.解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.三、解答题(本大题共8个小题,满分75分)16.计算:|﹣3|﹣(﹣π)0++(﹣1)3.解:原式=3﹣1+4﹣1=517.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.18.如图,已知菱形ABCD的边长为2cm,∠BAD=120°,对角线AC、BD相交于点O,试求这个菱形的两条对角线AC与BD的长.解:在菱形ABCD中,AB=AD=2cm,∠BAD=120°,∴∠ABD=30°,∵AC⊥BD,∴AO=AB=1,AC=2AO=2(cm).在Rt△AOB中,BO==.BD=2BO=2(cm).19.为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,先从中随机抽取15名学生家庭的年收入情况,数据如表:年收入(单位:万元)2 2.5345913家庭个数1352211(1)求这15名学生家庭年收入的平均数、中位数、众数;(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.解:(1)这15名学生家庭年收入的平均数是:(2+2.5×3+3×5+4×2+5×2+9+13)÷15=4.3万元;将这15个数据从小到大排列,最中间的数是3,所以中位数是3万元;在这一组数据中3出现次数最多的,故众数3万元;(2)(2)众数和中位数代表这15名学生家庭年收入的一般水平较为合适,因为3即是众数也是中位数,所以能代表家庭年收入的一般水平.20.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,EC交AD于F.(1)求证:△AEF≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.解:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF和△CDF中,,∴△AEF≌△CDF(AAS);(2)∵AB=4,BC=8,∴CE=BC=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,在Rt△CDF中,DF2+CD2=CF2,即DF2+42=(8﹣DF)2,解得DF=3,∴EF=3,∴阴影部分面积S阴影=S△ACE﹣S△AEF==10.21.如图,在平面直角坐标系xOy中,直线y=kx+b交x轴于点A(4,0),交y轴于点B (0,2).(1)求k,b的值.(2)P为直线AB上一点,PC⊥x轴于点C,PD⊥y轴于点D,若四边形PCOD为正方形,求点P的坐标.解:(1)将A(4,0),B(0,2)代入直线y=kx+b中,,解得;(2)直线AB的解析式为y=x+2,∵P为直线AB上一点,∴设P(a,a+2),∵四边形PCOD为正方形,∴PC=PD,∴|a|=|a+2|,解得a=﹣4或,∴P(﹣4,4)或(,).22.如图,△ABC中,D、E分别是AB、AC的中点,连结DE并延长到点F,使EF=ED,连结CF.(1)四边形DBCF是平行四边形吗?说明理由;(2)DE与BC有什么样的位置关系和数量关系?并说明理由.【解答】(1)证明:∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,BC=2DE,∵EF=DE,∴DF=2DE,∴DF=BC,∴四边形DBCF是平行四边形;(2)解:DE∥BC,DE=BC,理由如下:∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC.23.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.。
新八年级下学期期末考试数学试题及答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的4个选项中,只一项是符合题目要求的)1.下列图案中既是中心对称图形,又是轴对称图形的是( )答案:C 2.在代数式3x ,21m m -,2y π,2a ﹣b ,1x x-中,是分式的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个 答案:B3.已知实数m 、n ,若m <n ,则下列结论成立的是( ) A 、m ﹣3<n ﹣3 B 、2+m >2+n C 、22m n> D 、﹣3m <﹣3n 答案:A4.下列说法中,错误的是( )A 、不等式x <5的整数解有无数多个B .不等式x >﹣5的负整数解集有限个C .不等式﹣2x <8的解集是x <﹣4D .﹣40是不等式2x <﹣8的一个解 答案:C5.下列多项式能用完全平方公式分解因式的有( )A 、m 2﹣mn +n 2B 、x 2+4x ﹣4 C 、x 2﹣4x +4 D 、4x 2﹣4x +4 答案:C6.不能判定一个四边形是平行四边形的条件是( ) A 、两组对边分别平行 B .一组对边平行另一组对边相等 C .一组对边平行且相等 D .两组对边分别相等 答案:B7.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,平行四边形ABCD 的周长为40.则平行四边形ABCD 的面积为( ) A 、24 B 、36 C 、40 D 、48 答案:D8.如右上图所示,将△ABC 绕点A 按逆时针旋转50°后,得到△ADC ′,则∠ABD 的度数是( )A 、30°B 、45°C 、65°D 、75° 答案:C9.计算22()()4x y x y xy+--的结果为( )A 、1B 、12C 、14D 、0 答案:A 10.若分式方程222x ax x =+--的解为正数,则a 的取值范围是( ) A 、a >4 B 、a <4 C 、a <4且a ≠2 D 、a <2且a ≠0 答案:C11.如图,在平面直角坐标系xOy 中,直线y 经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CBD .若点B 的坐标为(2,0),则点C 的坐标为( )A 、(﹣1)B 、(﹣2)C 、1)D 、,2) 答案:A第11题 第12题12.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为( )A、54cm2B、58cm2C、516cm2D、532cm2答案:B二、填空题(本大题共6个小题,每小题4分,共24分.)13.分解因式b2(x﹣3)+b(x﹣3)=.答案:b(x﹣3)(b+1)14.若一个正多边形的一个内角等于135°,那么这个多边形是正边形.答案:八15.若不等式(m﹣2)x>1的解集是12xm<-,则m的取值范围是.答案:m<216.若关于x的方程122a xx x-=---3有增根,则a=.答案:117.如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为.答案:818.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间秒时,以点P,Q,E,D为顶点的四边形是平行四边形.答案:2或143;三、解答题(本大题共7个小题,共78分解答题应写出文字说明,证明过程或演算步骤)19.(18分)(1)分解因式:m2(x﹣y)+4n2(y﹣x)(2)解不等式组250(2)(1)0xx x-<⎧⎨-+<⎩,并把解集在数轴上表示出来(3)先化简,再求解,231()11x x xx x x-+-+,其中x﹣2解:(1)m2(x﹣y)+4n2(y﹣x)=(x﹣y)(m2-4n2)=(x﹣y)(m+2n)(m-2n)(2)5212xx⎧<⎪⎨⎪-<<⎩,解得:512x-<<,如下图,(3)原式=22222331()11x x x x xx x x+--+--=2224211x x xx x+--=42x+,当x﹣2时,原式=-620.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A1B1C1.如果△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是.(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.解:(1)如下图1,AA==平移的距离为'(2)如下图2。
2018-2019学年河南省洛阳市五校联考八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.式子√x−3成立的条件是()A. x≠3B. x≥3C. x>3D. x<32.下列条件能判断△ABC是直角三角形的是()A. AC2+BC2=AB2B. ∠A=∠BC. ∠A+∠B+∠C=180∘D. ∠A3=∠B4=∠C53.如图,在▱ABCD中,对角线AC,BD相交于点O,AC=6,BD=10,则AD的长度可以是()A. 2B. 7C. 8D. 104.下列式子是最简二次根式的是()A. √8B. √36C. √21D. −√1375.已知Rt△ABC的三边长为a,4,5,则a的值是()A. 3B. √41C. 3或√41D. 9或416.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,顺次连接四边形ABCD各边中点E,F,G,H,则所得四边形EFGH的形状为()A. 对角线不相等的平行四边形B. 矩形C. 菱形D. 正方形7.下列式子运算正确的是()A. √3−2√3=−1B. √2+√3=√5C. 12√3=√32D. (3+√10)(3−√10)=−18.如图,在△ABC中,AB⊥AC,AB=5cm,BC=13cm,BD是AC边上的中线,则△BCD的面积是()A. 15cm2B. 30cm2C. 60cm2D. 65cm29.如图,在正方形ABCD中,点E,F分别在BC,CD上,EA平分∠BEF,AG⊥EF,垂足为点G.则∠EAF的度数为()A. 45∘B. 30∘C. 60∘D. 40∘10. 如图,在矩形ABCD 中,AD =√AB −4+√4−AB +8,点M 在边AD 上,连接BM ,BD 平分∠MBC ,则AMMD 的值为( )A. 12 B. 2 C. 53 D. 35二、填空题(本大题共5小题,共15.0分) 11. 计算:√(−3)2-|√−83|=______. 12. 如图,在Rt △ABC 中,∠ACB =90°,AC =√3,BC =√6,点D 是斜边AB 的中点,连接CD ,则CD 的长度为______.13. 定义新运算:a ⊗b =√ab +a +b +1,则√32×(2⊗3)的值为______.14. 如图是学校艺术馆中的柱子,高4.5m .为迎接艺术节的到来,工作人员用一条花带从柱底向柱顶均匀地缠绕3圈,一直缠到起点的正上方为止.若柱子的底面周长是2m ,则这条花带至少需要______m .15. 如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B 的坐标分别为(-2,0),(√3,0),AD =2,∠DAB =60°点P 从点A 出发沿A →D →C 运动到点C ,连接PO .当PO =OB 时,点P 的坐标为______三、解答题(本大题共8小题,共75.0分) 16. 计算:(1)√3-2√12÷6√13 (2)(3√2-√18)÷11√2217.下列两图均由四个全等的直角三角形拼接而成,且它们的两条直角边分别为a,b,斜边为c,a>b.请选择一个你喜欢的图形,利用等面积法验证勾股定理.你选择的是______图,写出你的验证过程.18.如图,在矩形ABCD中,对角线AC,BD相交于点O,OA=6,点E,F是DC的三等分点,△OEF是等边三角形,求EF的长度.19.中国海军亚丁湾护航十年,中国海军被亚丁湾上来往的各国商船誉为“值得信赖的保护伞”如图,在一次护航行动中,我国海军监测到一批可疑快艇正快速向护航的船队靠近.为保证船队安全,我国海军迅速派出甲、乙两架直升机分别从相距20海里的船队首(O点)尾(A点)前去拦截,4分钟后同时到达B点将可疑快艇驱离.已知甲直升机每小时飞行180海里,航向为北偏东25°,乙直升机的航向为北偏西65°,求乙直升机的飞行速度.20. 如图,BD 是▱ABCD 的对角线,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,AM 与CN 分别是∠BAE 与∠DCF 的平分线,AM 交BE 于点M ,CN 交DF 于点N ,连接AN ,CM .求证:四边形AMCN 是平行四边形.21. 阅读下列材料,解答后面的问题:1√2+1+1√3+√2=√3-11√2+1+1√3+√2+12+√3=2-1=1 √2+1+√3+√2+2+√3+1√5+2=√5-1(l )写出下一个等式;(2)计算1√2+1+1√3+√2+12+√3+…+1√100+√99的值;(3)请直接写出(√101+√100)+…√2120+√2119)×(√2120+√100)的运算结果.22. 如图,在RI △ABC 中,∠C =90°,AC =BC =4cm ,点P 从点A 出发沿线段AB 以√2cm /s的速度向点B 运动,设运动时间为ts .过点P 作PD ⊥AB ,PD 与△ABC 的腰相交于点D .(1)当t =(4-2√2)s 时,求证:△BCD ≌△BPD ; (2)当t 为何值时,S △APD =3S △BPD ,请说明理由.23.如图,在平行四边形ABCD中,对角线AC,BD交于点O,OA,OD满足等式√3OA−OD−3+(OA-5)2=0,AD=13(1)求证:平行四边形ABCD是菱形;(2)过点D作DE∥AC交BC的延长线于点E,DF平分∠BDE,请求出DF的长度.答案和解析1.【答案】C【解析】解:式子成立的条件是:x-3>0,解得:x>3.故选:C.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.【答案】A【解析】解:A、AC2+BC2=AB2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,符合题意;B、∠A=∠B,不能够判定△ABC是直角三角形,不符合题意;C、∠A+∠B+∠C=180°,不能够判定△ABC为直角三角形,不符合题意;D、==,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形,不符合题意.故选:A.利用直角三角形的定义和勾股定理的逆定理逐项判断即可.此题主要考查了直角三角形的判定方法,只有三角形的三边长符和勾股定理的逆定理或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.3.【答案】B【解析】解:如图所示:∵四边形ABCD是平行四边形,∴OA=AC=3,OD=BD=5,在△AOD中,由三角形的三边关系得:∴5-3<AD<5+3,即:2<AD<8,∴AD的长度可以是7;故选:B.根据平行四边形对角线互相平分可得OA=3,OD=4,再根据三角形的三边关系可得5-3<AD<5+3,即可得出结果.此题主要考查了三角形的三边关系,以及平行四边形的性质;关键是掌握平行四边形的对角线互相平分.4.【答案】C【解析】解:A、=2,不是最简二次根式,故本选项不符合题意;B、=6,不是最简二次根式,故本选项不符合题意;C、是最简二次根式,故本选项符合题意;D、-=-,不是最简二次根式,故本选项不符合题意;故选:C.检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.【答案】C【解析】解:当5为斜边长时,a==3,当a为斜边长时,a==,则a的值为3或,故选:C.分5为斜边长、a为斜边长两种情况,根据勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.解:∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=AC,GH=AC,∴EF=GH,同理EH=FG∴四边形EFGH是平行四边形;又∵对角线AC、BD互相垂直,∴EF与FG垂直.∴四边形EFGH是矩形.故选:B.首先利用三角形的中位线定理证得四边形EFGH为平行四边形,然后利用有一个角是直角的平行四边形是矩形判定即可.本题考查了中点四边形的知识,解题的关键是灵活运用三角形的中位线定理,平行四边形的判断及矩形的判断进行证明,是一道综合题.7.【答案】D【解析】解:A、原式=-,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式=9-10=-1,所以D选项正确.故选:D.根据二次根式的加减法对A、B进行判断;利用分母有理化对C进行判断;根据平方差公式对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.解:由勾股定理得,AC==12,∵BD是AC边上的中线,∴AD=6,∴△BCD的面积=×5×6=15(cm2),故选:A.根据勾股定理求出AC,根据三角形的面积公式计算,得到答案.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.9.【答案】A【解析】解:∵在正方形ABCD中,AG⊥EF,EA平分∠BEF,∴∠BAC=45°,∴∠BEG=180°-45°=135°,∠BAE=∠EAC=22.5°,∴∠GEC=45°,∵∠ECF=90°,∴EC=CF,在△AEC与△AFC中,∴△AEC≌△AFC(SAS),∴∠EAC=∠CAF=22.5°,∴∠EAF=∠EAC+∠CAF=45°,故选:A.根据正方形的性质和全等三角形的判定和性质进行解答即可.此题考查正方形的性质,关键是根据正方形的性质和全等三角形的判定和性质进行解答.10.【答案】D【解析】解:∵AD=++8,∴AB=4,AD=8∵四边形ABCD是矩形∴AD∥BC,∴∠MDB=∠DBC,∵BD平分∠MBC∴∠MBD=∠DBC=∠MDB∴MD=BM在Rt△ABM中,BM2=AB2+AM2,∴MD2=16+(8-MD)2,∴MD=5,∴AM=3∴故选:D.由二次根式有意义的条件可得AB=4,AD=8,由矩形的性质和角平分线的性质可求DM=BM,由勾股定理可求AM=3,MD=5,即可求解.本题考查了矩形的性质,二次根式有意义的条件,勾股定理等知识,求MD的长度是本题的关键.11.【答案】1【解析】解:原式=3-2=1.故答案为:1.直接利用立方根、算术平方根的定义、绝对值化简得出答案.此题主要考查了实数的运算,正确化简各数是解题关键,属于基础题型.12.【答案】32【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=,BC=,∴AB==3,∵点D是斜边AB的中点,∴CD=AB=,故答案为:.根据勾股定理和直角三角形的性质即可得到结论.本题考查了直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.13.【答案】3【解析】解:∵a ⊗b=, ∴×(2⊗3) =× =×2 =3.故答案为:3. 先根据题目给出的例子得出实数混合运算的式子,再进行计算即可.本题考查的是实数的混合运算,熟知实数混合运算的法则是解答此题的关键.14.【答案】56.25【解析】解:将圆柱表面切开展开呈长方形,则有螺旋线长为三个长方形并排后的长方形的对角线长∵圆柱高4.5米,底面周长2米x 2=(2×3)2+4.52=56.25m所以,花圈长至少是56.25m .故答案为:56.25.要求花圈的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.本题考查了勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.15.【答案】(-32,√32)或(0,√3) 【解析】解:作OF⊥AD于F,作PE⊥OA于E,如图所示:则∠AOF=30°,∴AF=OA=1,∴OF=AF=,∴F与P重合,∴∠OPA=90°,∴∠AOP=30°,∴PE=OP=,OE=PE=,∴P(-,);设CD与y轴交于Q,连接OD,∵∠BAD=60°,∴△AOD是等边三角形,∴∠AOD=60°,∴∠DOQ=30°,OD=OA=2,∴DQ=OD=1,∴OQ=DQ=,∴OQ=OB,∴Q(0,);当PO=OB时,点P的坐标为(-,)或(0,);故答案为:(-,)或(0,).作OF⊥AD于F,作PE⊥OA于E,由直角三角形的性质得出AF=OA=1,OF= AF=,证出∠AOP=30°,得出PE=OP=,OE=PE=,得出P(-,);设CD与y轴交于Q,连接OD,由等边三角形的性质得出∠AOD=60°,由直角三角形的性质得出DQ=OD=1,OQ=DQ=,得出Q(0,);即可得出结果.本题考查了平行四边形的性质、坐标与图形性质、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握平行四边形的性质,证明△AOD是等边三角形是解题的关键.16.【答案】解:(1)原式=√3-2×16×√12×3 =√3-2;(2)原式=(3√2-√24)÷11√22=11√24÷11√22=12. 【解析】(1)先根据二次根式的除法法则运算,然后化简即可;(2)先把二次根式化为最简二次根式,然后合并后利用二次根式的除法法则运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.【答案】2【解析】解:选择的是图2,证明:∵S 大正方形=c 2,S 大正方形=4S △+S 小正方形=4×ab+(b-a )2,∴c 2=4×ab+(b-a )2,整理,得2ab+b 2-2ab+a 2=c 2,∴c 2=a 2+b 2.故答案为:2,直接利用图形面积得出等式,进而整理得出答案.此题主要考查了勾股定理的证明,正确表示出图形面积是解题关键. 18.【答案】解:过O 作OG ⊥DC ,∵△OEF 是等边三角形,∴EG =GF ,∠FEO =60°,OE =EF =OF ,∵点E,F是DC的三等分点,∴DE=EF=FC,∴DE=OE,∴∠ODE=30°,∴DG=√3OD,2∵矩形ABCD,∴DB=AC=2OA=2OD=12,∴DG=3√3,∴DC=AB=6√3,∴EF=2√3,故答案为:2√3【解析】过O作OG⊥DC,利用等边三角形的性质和矩形的性质以及含30°的直角三角形的性质解答即可.此题考查矩形的性质,关键是利用等边三角形的性质和矩形的性质以及含30°的直角三角形的性质解答.19.【答案】解:∵甲直升机航向为北偏东25°,乙直升机的航向为北偏西65°,∴∠ABO=25°+65°=90°,∵OA=20,OB=180×4=12,60∴AB=√OA2−OB2=√202−122=16,∵16÷4=240海里,60答:乙直升机的飞行速度为每小时飞行240海里.【解析】根据已知条件得到∠ABO=25°+65°=90°,根据勾股定理即可得到结论.本题考查了解直角三角形-方向角问题,正确的理解题意是解题的关键.20.【答案】证明:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB=CD,AB∥CD,∴∠ABM=∠CDN,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∴∠ABM+∠BAE=90°,∠CDN+∠DCF=90°,∴∠BAE=∠DCF,∵AM与CN分别是∠BAE与∠DCF的平分线,∴∠BAM=∠DCN,在△ABM 和△CDN 中,{∠BAM =∠DCN AB =CD ∠ABM =∠CDN,∴△ABM ≌△CDN (ASA ),∴BM =DN ,∴OM =ON ,又∵OA =OC ,∴四边形AMCN 是平行四边形.【解析】连接AC 交BD 于O ,由平行四边形的性质得出OA=OC ,OB=OD ,AB=CD ,AB ∥CD ,由ASA 证明△ABM ≌△CDN ,得出BM=DN ,证出OM=ON ,即可得出结论.本题考查了平行四边形的性质和全等三角形的判定和性质,利用平行四边形的性质,获得全等的条件是解题的关键.21.【答案】解:(1)1√2+1+1√3+√2+12+√3+1√5+2+1√6+√5=√6-1;(2)原式=√2-1+√3-√2+2-√3+…+√100-√99=√100-1=10-1=9;(3)原式=(√101-√100+…+√2120-√2119)(√2120+√100)=(√2120-√100)(√2120+√100)=2120-100=2020.【解析】(1)利用前面的规律写出下一个等式;(2)利用题中的等式规律得到原式=-1;(3)先分母有理化,然后把括号内合并后利用平方差公式计算.本题考查了二原式=次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 22.【答案】(1)证明:如图1所示:∵在RI △ABC 中,∠C =90°,AC =BC =4cm ,∴AB =√2AC =4√2cm ,当t =(4-2√2)s 时,AP =√2(4-2√2)=4√2-4,∴BP=AB-AP=4cm,∴BP=BC,∵PD⊥AB,∴∠BFD=∠C=90°,BD=BD,在Rt△BCD和Rt△BPD中,{BC=BP∴Rt△BCD≌Rt△BPD(HL);(2)解:如图2所示:∵PD⊥AB,当S△APD=3S△BPD时,AP=3BP,即√2t=3(4√2-√2t),解得:t=3,∴当t为3s时,S△APD=3S△BPD.【解析】(1)由勾股定理得出AB=AC=4cm,当t=(4-2)s时,AP=4-4,得出BP=AB-AP=4cm=BC,由HL证明Rt△BCD≌Rt△BPD即可;(2)当S△APD=3S△BPD时,AP=3BP,由题意得出方程,解方程即可.本题考查了全等三角形的判定、等腰直角三角形的性质、勾股定理等知识;熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.23.【答案】解:(1)∵√3OA−OD−3+(OA-5)2=0,∴OA=5,OD=12,∴OA2+OD2=52+122=169,∵AD=13,∴AD2=169,∴OA2+OD2=AD2,∴∠AOD=90°,∴AC⊥BD,∴平行四边形ABCD是菱形;(2)过F作FG⊥BD于G,∵DE∥AC,AC⊥BD,∴BD⊥DE,即∠BDE=90°,∵DF平分∠BDE,∴∠BDF=45°,∴△FDG为等腰直角三角形,∴DG=FG,设FG=x,则BG=24-x,∵OC∥FG,∴△BOC∽△BGF,∴OC FG =OBBG,∴5 x =1224−x,x=12017,∴DF=√2FG=√2x=120√217.【解析】(1)根据非负性得出OA=5,OD=12,利用勾股定理的逆定理得出AC⊥BD,利用菱形的判定解答;(2)作辅助线,构建等腰直角三角形,则△FDG为等腰直角三角形,设FG=x,则BG=24-x,证明△BOC∽△BGF,可得x的值,从而得DF的长.此题主要考查了非负数的性质、平行四边形的性质、菱形的性质和判定、三角形相似的性质和判定及等腰直角三角形等知识,熟练掌握菱形的判定是解题关键.。
2022-2023学年河南省洛阳市八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列二次根式是最简二次根式的是( )A.12B. 0.2C. 10D. 122. 满足下列条件的三角形是直角三角形的是( )A. 三个内角之比是3:4:5 B. 三边长分别为 2, 3, 6C. 三边长分别13,14,15D. 三边长分别为1,2, 33.如图,在四边形ABCD 中,AC 与BD 交于O 点,则下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. AB =CD ,AD =BCB. AO =CO ,BO =DOC. AB //DC ,AD =BCD. AD //BC ,AD =BC4. 下列各点中,在函数y =−x +1的图象上的是( )A. (0,1)B. (0,−1)C. (1,2)D. (−1,0)5. 为了了解同学们每周看手机的时间,现调查了8位同学上周玩手机的时间(单位:小时)分别为:3,2,4,5,7,6,5,8,则下列关于这组数据说法错误的是( )A. 平均数是5B. 中位数是5C. 众数是5D. 方差是06. 《九章算术》是中国传统数学的重要著作之一,它奠定了中国传统数学的基本框架.其中记录的一道“折竹”问题:今有竹高一丈,末折抵地,去根四尺,向折者高几何?题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根4尺,则折断处离地面的高度为( )A. 4.1尺B. 4.2尺C. 4.5尺D. 4.8尺7. 某校规定学生的学期体育成绩满分为100分,平时成绩、期中成绩、期末成绩按2:3:5的比计算学期成绩.小彤的体育平时成绩、期中成绩、期末成绩(百分制)依次是90分、90分、84分,则小彤的学期体育成绩是(单位:分)( )A. 87B. 88C. 90D. 848.如图,一次函数y=kx+b(k≠0)的图象经过点A(a,−4)和点B(−4,0),正比例函数y=2x的图象过点A,则不等式2x≤kx+b的解集为( )A. x≥−2B. x≤−2C. x≥−4D. x≤−49. 如图,在▱ABCD中,以点B为圆心,适当长为半径作弧,FG的长交BA、BC于点F、G,分别以点F、G为圆心,大于12为半径作弧,两弧交于点H,连接BH交AD于点E,连接CE,若AB=2.5,DE=1.5,CE=2,则BE的长为( )A. 4B. 25C. 5D. 3.510. 已知一次函数y=3x+3与坐标轴交于点A和点B,如图,以AB为边作正方形ABCD,点C到y轴的距离是( )A. 1B. 3C. 4D. 6二、填空题(本大题共5小题,共15.0分)11. 二次根式x−1中x的取值范围是______.12.如图,在Rt△ABC中,∠ABC=90°,以直角三角形的两边为边向外作正方形,其面积分别为5和9,则BC的长为______ .13. 生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙、丙、丁四个品种的大豆中各选20株,在同等实验条件下,测量它们的光合作用速率(单位:μmol⋅m−2⋅s−1),结果统计如下:品种甲乙丙丁平均数25252424方差29.64420.8根据这些数据,应选择的优良大豆品种是______ .14. 已知点A(x1,y1)、B(x2,y2)在一次函数y=kx−2的图象上,且x2=x1+2,y2=y1−1,则k=______ .15.如图,菱形ABCD中,对角线AC=6,BD=8,M是边BC上一点,N是CD的中点,在线段BD上有一点P使PM+PN的距离最短,则最短距离是______ .三、解答题(本大题共8小题,共75.0分。
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2019-2020学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个交通标志图中为轴对称图形的是()A.B.C.D.2.(3分)禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为()A.102×10﹣7m B.1.02×10﹣7m C.102×10﹣6m D.1.02×10﹣8m3.(3分)已知不等边三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为()A.8cm B.10cm C.8cm或10cm D.8cm或9cm4.(3分)下列计算正确的是()A.a6÷a2=a4B.(2a2)3=6a6C.(a2)3=a5D.(a+b)2=a2+b25.(3分)化简x2x−1+11−x的结果是()A.x+1B.1x+1C.x﹣1D.xx−16.(3分)计算:(4x3﹣2x)÷(﹣2x)的结果是()A.2x2﹣1B.﹣2x2﹣1C.﹣2x2+1D.﹣2x27.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b28.(3分)下列运算中正确的是()A.3x﹣2=13x B.x−yx+y=y−xy+xC.xx−2−3−x2−x=2x−3x−2D.x2÷1x•x3=19.(3分)已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值()A.大于零B.小于零C.等于零D.不能确定10.(3分)已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.ll D.13二、填空题(每小题3分,共15分)11.(3分)计算:﹣22+(7﹣π)0+(−13)﹣1=.12.(3分)如图,在等边△ABC中,将∠C沿虚线DE剪去,则∠ADE+∠DEB=.13.(3分)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=.14.(3分)已知(m﹣n)2=40,(m+n)2=4000,则m2+n2的值为.15.(3分)加图,在△ABC中.∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D.下列论:①AC﹣BE=AE;②点E在线段BC的垂直平分线上:③∠DAE=∠C;④BD=2DE;⑤BC=4AD,其中正确的有(填结论正确的序号).三、解答题:(共75分)16.(8分)解下列各题:(1)计算:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1)(2)分解因式:﹣y3+4xy2﹣4x2y17.(9分)已知△ABN和△ACM位置如图所示,∠B=∠C,AD=AE,∠1=∠2.求证:∠M=∠N.18.(9分)先化简,再求值(a+2a−2a +1−aa−4a+4)÷a−4a,并从0≤a≤4中选取合适的整数代入求值.19.(9分)如图,△ABC是等边三角形,延长BC到E,使CE=12BC.点D是边AC的中点,连接ED并延长ED交AB于F求证:(1)EF⊥AB;(2)DE=2DF.20.(9分)如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.(1)求BC的长;(2)分别连接OA、OB、OC,若△OBC的周长为13cm,求OA的长.21.(10分)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;(2)请你写出∠BAC、∠B、∠E三个角之间存在的等量关系,并写出证明过程.22.(10分)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?23.(11分)在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.2019-2020学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.2.【解答】解:0.000000102=1.02×10﹣7,故选:B.3.【解答】解:根据三角形的三边关系,得7cm<第三边<11cm,故第三边为8,9,10,又∵三角形为不等边三角形,∴第三边≠9.故选:C.4.【解答】解:A、a6÷a2=a4,故A正确;B、(2a2)3=8a6,故B错误;C、(a2)3=a6,故C错误;D、(a+b)2=a2+2ab+b2,故D错误.故选:A.5.【解答】解:原式=x2x−1−1x−1=x2−1x−1=(x+1)(x−1)x−1=x+1.故选:A.6.【解答】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选:C.7.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.8.【解答】解:(A)原式=3x2,故A错误.(C)原式=xx−2+3−xx−2=3x−2,故B错误.(D)原式=x2•x•x3=x6,故D错误.故选:B.9.【解答】解:∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),a,b,c是三角形的三边,∴a+c﹣b>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2的值是负数.故选:B.10.【解答】解:∵AB的垂直平分线DE分别交AB、AC于点D、E,∴AE=BE,∵AD=3,∴AB=6,∴AE+EC=AC=AB=6,∵BC=5,∴△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=6+5=11;故选:C.二、填空题(每小题3分,共15分)11.【解答】解:原式=﹣4+1﹣3=﹣6.故答案为:﹣6.12.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=60°,∴∠ADE+∠BED=360°﹣60°×2=240°,故答案为:240°.13.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=12BD=6×12=3.故答案为:3.14.【解答】解:(m﹣n)2=40,m2﹣2mn+n2=40 ①,(m+n)2=4000,m2+2mn+n2=4000 ②,①+②得:2m2+2n2=4040,m2+n2=2020.故答案为:2020.15.【解答】解:∵BE平分∠ABC交AC于E ∴∠ABE=∠CBE∵∠ABC=2∠C∴∠EBC=∠C∴BE=CE∵AC﹣CE=AE∴AC﹣BE=AE,故①正确;∵BE=CE∴点E在线段BC的垂直平分线上,故②正确;∵∠ABE=∠CBE=∠C,∠BAC=90°∴∠ABE=∠CBE=∠C=30°∴∠AEB=90°﹣30°=60°∴∠DAE=90°﹣60°=30°∴∠DAE=∠C,故③正确;∵DEAD=tan∠DAE=tan30°=√33∴AD=√3DE∵AD BD =tan ∠ABE =tan30°=√33∴BD =√3AD∴BD =3DE ,故④错误;∵∠C =30°,∠BAC =90°∴BC =2AB∵∠ABE =30°,AD ⊥BE∴AB =2AD∴BC =4AD ,故⑤正确.综上,正确的有①②③⑤.故答案为:①②③⑤.三、解答题:(共75分)16.【解答】解:(1)原式=x 2+4x +4+4x 2﹣1﹣4x 2﹣4x=x 2+3;(2)原式=﹣y (y 2﹣4xy +4x 2)=﹣y (y ﹣2x )2.17.【解答】证明:∵∠B =∠C ,∠1=∠2,∠AEC =180°﹣∠2﹣∠C ,∠ADB =180°﹣∠1﹣∠B , ∴∠AEC =∠ADB ,∴∠NEO =∠MDO ,∵∠NOE =∠MOD ,∠M =180°﹣∠MDO ﹣∠MOD ,∠N =180°﹣∠NEO ﹣∠NOE∴∠M =∠N .18.【解答】解:(a+2a 2−2a +1−a a 2−4a+4)÷a−4a =[a+2a(a−2)+1−a (a−2)]⋅a a−4 =(a+2)(a−2)+a(1−a)a(a−2)2⋅a a−4 =a 2−4+a−a 2(a−2)2⋅1a−4 =a−4(a−2)2⋅1a−4=1(a−2)2,∵0≤a≤4且a为整数,a(a﹣2)(a﹣4)≠0,∴a=1或a=3,当a=1时,原式=1(1−2)2=1或当a=3时,原式=1(3−2)2=1.19.【解答】证明:(1)∵△ABC是等边三角形,∴AC=BC,∠ACB=∠B=60°,∵D为AC的中点,∴AD=CD=12AC,∵CE=12BC,∴CD=CE,∵∠E+∠CDE=∠ACB=60°,∴∠E=∠CDE=30°,∵∠B=60°,∴∠EFB=180°﹣60°﹣30°=90°,即EF⊥AB;(2)连接BD,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵D为AC的中点,∴∠DBC=∠ABD=12∠ABC=30°,∵∠E=30°,∴∠DBC=∠E,∴DE=BD,∵∠BFE=90°,∠ABD=30°,∴BD=2DF,即DE=2DF.20.【解答】解:(1)∵DM是线段AB的垂直平分线,∴DA=DB,同理,EA=EC,∵△ADE的周长5,∴AD+DE+EA=5,∴BC=DB+DE+EC=AD+DE+EA=5(cm);(2)∵△OBC的周长为13,∴OB+OC+BC=13,∵BC=5,∴OB+OC=8,∵OM垂直平分AB,∴OA=OB,同理,OA=OC,∴OA=OB=OC=4(cm).21.【解答】解:(1)∵∠ECD=∠B+∠E,∠B=35°,∠E=25°,∴∠ECD=60°,∵EC平分∠ACD,∴∠ACE=∠ECD=60°,∴∠BAC=∠ACE+∠E=60°+25°=85°.(2)结论:∠BAC=∠B+2∠E.理由:∵∠BAC=∠ACE+∠E,∠ECD=∠ACE=∠B+∠E,∴∠BAC=∠B+∠E+∠E=∠B+2∠E.22.【解答】解:(1)设第一次每个书包的进价是x元,3000 x −20=24001.2xx=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设设应打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.23.【解答】解:(1)如图1中,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CBE=∠A,∵CA=CB,∠ACB=90°,∴∠A=∠CBA=45°,∴∠CBE=∠A=45°,∴ABE=90°,∴AB⊥BE,∵AB=AD+BD,AD=BE,∴AB=BD+BE,故答案为AB⊥BE,AB=BD+BE.(2)①如图2中,结论:BE=AB+BD.理由:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∵AD=AB+BD,AD=BE,∴BE=AB+BD.②如图3中,结论:BD=AB+BE.理由:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS)∴AD=BE,∵BD=AB+AD,AD=BE,∴BD=AB+BE.(3)如图2中,∵AB=5,BD=7,∴BE=AD=5+7=12,∵BE⊥AD,∴S△AED=12•AD•EB=12×12×12=72.如图3中,∵AB=5,BD=7,∴BE=AD=BD﹣AB=7﹣5=2,∵BE⊥AD,∴S△AED=12•AD•EB=12×2×2=2.。
2019年洛阳市八年级数学下期末试卷(带答案)一、选择题1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( )A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B2.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =03.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个.A .4B .3C .2D .15.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3 6.如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.88.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个9.如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.10.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B89C.8D4111.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .12.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题13.已知13y x =-+,234y x =-,当x 时,12y y <. 14.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .15.已知20n 是整数,则正整数n 的最小值为___16.如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.17.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人 甲 乙 测试成绩(百分制)面试86 92 笔试 90 83如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
2017-2018学年河南省洛阳市八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.=()A.5B.7C.﹣5D.﹣72.下列各组数中能作为直角三角形的三边长的是()A.32,42,52B.C.9,41,40D.2,3,43.如图,平行四边形ABCO的顶点O、A、C的坐标分别是(0,0)、(3,0)、(1,2),则点B的坐标是()A.(2,4)B.(2,2)C.(3,2)D.(4,2)4.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.5.九年级(1)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16这组数据的中位数、众数分别为()A.8,16B.16,16C.8,8D.10,166.矩形的面积为18,一边长为,则周长为()A.18B.C.D.247.如图,菱形ABCD中,AB=4,E、F分别是AB、BC的中点,P是AC上一动点,则PF+PE的最小值是()A .3B .C .4D .8.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A .甲 B .乙 C .丙 D .丁9.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( ) A .8 B .9.6 C .10 D .1210.若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是( ) A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形二、填空题(每小题3分,共15分)11.若有意义,则x 的取值范围是 .12.初二3班有50名同学,27名男生的平均身高为169cm ,23名女生的平均身高159cm ,则全班学生的平均身高是 cm .13.函数y =2x 与y =6﹣kx 的图象如图所示,则k = .14.如图,E 、F 是正方形ABCD 内的点,AE ⊥EF ,EF ⊥FC ,AE =EF =3,CF =1,则正方形的面积为.15.平行四边形ABCD的对角线AC、BD相交于点O,AB=6,BC=8,若△AOB是等腰三角形,则平行四边形ABCD的面积等于.三.解答题(本大题8小题,共75分)16.(8分)计算:2﹣6+﹣3+17.(8分)如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,求AE的长.18.(9分)如图是王老师散步过程中所走的路程s(m)与步行时间t(min)的函数图象:(1)王老师散步过程中停留了min;(2)王老师散步过程的平均速度是m/min;(3)求BC段s关于t的函数关系式.19.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)求m,n的值;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在哪一组?(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.20.(10分)如图所示,直线y=﹣x+3与x轴、y轴交于A、B两点,点C是y轴负半轴上一点,BA=BC.(1)求△ABC的面积和点C的坐标;(2)在平面内是否存在点P,使以P、A、B、C为顶点的四边形为平行四边形?若存在,请直接写出所有的点P的坐标;若不存在,请说明理由.21.(10分)如图,O 是矩形ABCD 对角线AC 的中点,AB =4,BC =8,P 是边AD 上一动点(不与A 、D 重合)(1)PO 的延长线交BC 于Q .求四边形AQCP 是平行四边形;(2)连接BP 、DQ ,四边形BPDQ 能否成为菱形?若能,请直接写出此时AP 的长;若不能,请说明理由.22.(10分)某学校七年级一班学生要去实验基地进行实践活动,估计乘车人数为10人到40人之间,现在欲租甲、乙两家旅行社的车辆,已知甲、乙两家旅行社的服务质量相同,且报价都是每人120元,经过协商,甲旅行社表示可给予每位学生七五折优惠;乙旅行社表示可先免去一位同学的车费,然后给予其他同学八折优惠.(1)若用x 表示乘车人数,请用x 表示选择甲、乙旅行社的费用y 甲与y 乙;(2)请你帮助学校选择哪一家旅行社费用合算?23.(11分)已知边长为2的正方形ABCD 中,P 是对角线AC 上的一个动点(与点A 、C 不重合),过点P 作PE ⊥PB ,PE 交射线DC 于点E ,过点E 作EF ⊥AC ,垂足为点F .(1)求证:PB =PE ;(2)在点P 的运动过程中,PF 的长度是否发生变化?若不变,试求出这个不变的值,写出解答过程;若变化,试说明理由;(3)在点P 的运动过程中,△PEC 能否为等腰三角形?如果能,直接写出此时AP 的长;如果不能,试说明理由.2017-2018学年河南省洛阳市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式=6﹣1=5.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.2.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、92+162≠252,故不是直角三角形,故不符合题意;B、()2+()2≠()2,故不是直角三角形,故不符合题意;C、92+402=412,故是直角三角形,故符合题意;D、22+32≠42,故不是直角三角形,故不符合题意.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.【分析】根据“平行四边形的对边平行且相等的性质”得到点B的纵坐标与点C的纵坐标相等,且BC=OA即可得到结论.【解答】解:如图,在▱OABC中,O(0,0),A(3,0),∴OA=BC=3,又∵BC∥AO,∴点B的纵坐标与点C的纵坐标相等,∴B(4,2),故选:D.【点评】本题考查了平行四边形的性质和坐标与图形性质.此题充分利用了“平行四边形的对边相互平行且相等”的性质.4.【分析】由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.【点评】本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.5.【分析】根据中位数和众数的定义求解.【解答】解:这组数据的中位数为:8,众数为:16.故选:A.【点评】本题考查了中位数和众数,解答本题的关键是掌握众数和中位数的定义,属于基础题.6.【分析】先根据二次根式的除法求出矩形的另一边,再利用二次根式的加法求出其周长即可.【解答】解:根据题意矩形的另一边长为18÷2=3,则矩形的周长为2×(2+3)=10,故选:C.【点评】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式乘除运算法则.7.【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可【解答】解:∵四边形ABCD是菱形,对角线AC=6,BD=8,∴直线AC是菱形的对称轴,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=4.故选:C.【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知菱形的性质是解答此题的关键.8.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.9.【分析】如图,作CE⊥AB于E.利用勾股定理的逆定理证明AD⊥BC,再利用面积法求出EC 即可.【解答】解:如图,作CE⊥AB于E.∵AD是△ABC的中线,BC=12,∴BD=6,∵AB=10,AD=8,BD=6,∴AB2=AD2+BD2,∴∠ADB=90°,∴AD⊥BC,=•BC•AD=•AB•CE,∵S△ABC∴CE==9.6,故选:B.【点评】本题考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会利用面积法求三角形的高.10.【分析】首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.二、填空题(每小题3分,共15分)11.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵有意义,∴x≥0,故答案为:x≥0.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12.【分析】只要运用求平均数公式:=即可求得全班学生的平均身高.【解答】解:全班学生的平均身高是:=164.4(cm).故答案为:164.4.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.13.【分析】首先根据一次函数y=2x与y=6﹣kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6﹣kx求得k值即可.【解答】解:∵一次函数y=2x与y=6﹣kx图象的交点纵坐标为2,∴4=2x,解得:x=2,∴交点坐标为(2,4),代入y=6﹣kx,6﹣2k=4,解得k=1.故答案为:1【点评】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x与y=6﹣kx两个解析式.14.【分析】首先连接AC,则可证得△AEM∽△CFM,根据相似三角形的对应边成比例,即可求得EM与FM的长,然后由勾股定理求得AM与CM的长,进而得到AC的长,在Rt△ABC中,由AB=AC•sin45°,即可求出正方形的边长.【解答】解:连接AC,AC交EF于M.∵AE⊥EF,EF⊥FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴=,∵AE=3,EF=3,FC=1,∴=3,∴EM=,FM=,在Rt△AEM中,AM==,在Rt△FCM中,CM==,∴AC=5,在Rt△ABC中,AB=AC•sin45°=.∴正方形ABCD的面积=.故答案为.【点评】此题考查了相似三角形的判定与性质,正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.15.【分析】分三种情形分别讨论求解即可解决问题;【解答】解:情形1:如图当OA=OB时,∵四边形ABCD是平行四边形,∴AC=2OA,BD=2OB,∴AC=BD,∴四边形ABCD是矩形,∴四边形ABCD的面积=48.情形2:当AB=AO=OC=6时,作AH⊥BC于H.设HC=x.∵AH2=AB2﹣BH2=AC2﹣CH2,∴62﹣(8﹣x)2=122﹣x2,∴x=,∴AH=,∴四边形ABCD的面积=8×=2.情形3:当AB=OB时,四边形ABCD的面积与情形2相同.综上所述,四边形ABCD的面积为48或2.故答案为48或2.【点评】本题考查平行四边形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.三.解答题(本大题8小题,共75分)16.【分析】直接化简二次根式进而合并同类二次根式进而得出答案.【解答】解:原式=4﹣6×+4﹣3+=4﹣2+4﹣3+=6﹣3+.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.17.【分析】先根据折叠的性质得到∠DBC=∠DBE,再由AD∥BC得到∠DBC=∠BDE,则∠DBE =∠BDE,于是可判断BE=DE设AE=x,则DE=BE=8﹣x,然后在Rt△ABE中利用勾股定理得到x2+62=(8﹣x)2,再解方程即可.【解答】解:∵△BDC′是由△BDC折叠得到,∴∠DBC=∠DBE,∵AD∥BC,∴∠DBC=∠BDE,∴∠DBE=∠BDE,∴BE=DE设AE=x,则DE=AD﹣AE=8﹣x,BE=8﹣x,在Rt△ABE中,∵AE2+AB2=BE2,∴x2+62=(8﹣x)2,解得x=,即AE的长为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.18.【分析】(1)根据函数图象可以得到王老师散步过程中停留的时间;(2)根据函数图象中的数据,可以求得王老师散步过程的平均速度;(3)根据函数图象中的数据可以求得BC段s关于t的函数关系式.【解答】解:(1)由图象可得,王老师散步过程中停留了:16﹣10=6min,故答案为:6;(2)王老师散步过程的平均速度是:1000÷40=25m/min,故答案为:25;(3)设BC段s关于t的函数关系式是s=kt+b,,得,即BC段s关于t的函数关系式是s=.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;9500≤x<10500的有9865这1个,即n=1.(2)如图:(3)由于一共20个数据,其中位数是第10、11个数据的平均数,而第10、11个数据的平均数均落在B组,∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)120×=48(人),答:估计其中一天行走步数不少于7500步的有48人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.【分析】(1)根据解析式得出A,B坐标,利用等腰三角形的性质得出C坐标,进而利用三角形的面积公式解答即可.(2)以两边为邻边,另一边为对角线画平行四边形是可行的,所以点P存在.【解答】解:(1)令x=0代入解析式可得:y=3,令y=0代入解析式可得:x=4,所以A(4,0),B(0,3),∵点C是y轴负半轴上一点,BA=BC,∴点C坐标为(0,﹣2),∴△ABC的面积=;(2)当AB是对角线时,AP∥BC,AP=BC=5,A(4,0),∴点P1(4,5);当BA∥CP,且BA=CP时,∴点P2(﹣4,1);当AC是对角线时,AP∥BC,AP=BC=5,A(4,0),∴点P3(4,﹣5);∴存在P(4,5)或(﹣4,1)或(4,﹣5),使以A、B、C、P为顶点的四边形为平行四边形.【点评】此题考查一次函数的综合题,主要利用了:(1)求交点坐标即求它们组成的方程组的解;(2)图形的分割转化思想;(3)分类讨论思想.21.【分析】(1)由题意可证△APO ≌△CQO ,可得AP =CQ ,则可证AQCP 是平行四边形 (2)若四边形BPDQ 是菱形,可得AQ =CQ ,根据勾股定理可求AP 的长.【解答】证明:(1)∵四边形ABCD 是矩形∴AD ∥BC∴∠DAC =∠BCA ,∠APQ =∠CQP∵O 是矩形ABCD 对角线AC 的中点∴AO =CO 且∠DAC =∠BCA ,∠APQ =∠CQP∴△AOP ≌△COQ∴AP =CQ 且AP ∥CQ∴四边形AQCP 是平行四边形(2)若四边形BPDQ 为菱形∴AQ =CQ =AP∴BQ =8﹣CQ =8﹣AQ在Rt △ABQ 中,AQ 2=AB 2+BQ 2∴AQ 2=16+(8﹣AQ )2∴AQ =5∴AP =5【点评】本题考查了矩形的性质,平行四边形的判定,菱形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.22.【分析】(1)设共有x 人由题意得:甲旅行社的花费=120×人数×七五折;乙旅行社的花费=120×(人数﹣1)×八折;(2)分三种情况:①y 甲=y 乙时,②y 甲>y 乙时,③y 甲<y 乙时,分别列出方程或不等式进行计算即可.【解答】解:(1)设共有x 人,则y 甲=0.75×120x =90x ,y 乙=0.8×120(x ﹣1)=96x ﹣96;(2)由y 甲=y 乙得,90x =96x ﹣96,解得:x=16,y甲>y乙得,90x>96x﹣96,解得:x<16,y甲<y乙得,90x<96x﹣96,解得:x>16,所以,当人数为10﹣16人时,选择乙旅行社合算;当人数16﹣40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.【点评】此题主要考查了一元一次不等式和方程的应用,关键是正确理解题意,找出题目中不等关系,再列出不等式.23.【分析】(1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可;(3)可分点E在线段DC上和点E在线段DC的延长线上两种情况讨论,通过计算就可求出符合要求的AP的长;【解答】(1)证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=PH,∠GPH=∠PGB=∠PHE=90°.∵PE⊥PB即∠BPE=90°,∴∠BPG=90°﹣∠GPE=∠EPH.在△PGB和△PHE中,.∴△PGB≌△PHE(ASA),∴PB=PE.(2)解:连接BD,如图2.∵四边形ABCD是正方形,∴∠BOP=90°.∵PE⊥PB即∠BPE=90°,∴∠PBO=90°﹣∠BPO=∠EPF.∵EF⊥PC即∠PFE=90°,∴∠BOP=∠PFE.在△BOP和△PFE中,,∴△BOP≌△PFE(AAS),∴BO=PF.∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴BC=OB.∵BC=2,∴OB=,∴PF=OB=.∴点PP在运动过程中,PF的长度不变,值为.(3)①若点E在线段DC上,如图1.∵∠BPE=∠BCE=90°,∴∠PBC+∠PEC=180°.∵∠PBC<90°,∴∠PEC>90°.若△PEC为等腰三角形,则EP=EC.∴∠EPC=∠ECP=45°,∴∠PEC=90°,与∠PEC>90°矛盾,∴当点E在线段DC上时,△PEC不可能是等腰三角形.②若点E在线段DC的延长线上,如图4.若△PEC是等腰三角形,∵∠PCE=135°,∴CP=CE,∴∠CPE=∠CEP=22.5°.∴∠APB=180°﹣90°﹣22.5°=67.5°.∵∠PRC=90°+∠PBR=90°+∠CER,∴∠PBR=∠CER=22.5°,∴∠ABP=67.5°,∴∠ABP=∠APB.∴AP=AB=2.∴AP的长为2.【点评】本题主要考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、角平分线的性质、勾股定理、四边形的内角和定理、三角形的内角和定理及外角性质等知识,有一定的综合性,而通过添加辅助线证明三角形全等是解决本题的关键.。