ST calculation sheet
- 格式:xls
- 大小:100.00 KB
- 文档页数:1
STTD6050H-12M2YFeatures•AEC-Q101 qualified•1200 V symmetrical blocking voltage •High junction temperature: 150 °C•High noise immunity, static dV/dt: 1000 V/μs•Embed two TN6050HP-12 and two STBR6012 dies•Module qualified according to AQG324 recommendation •SMD with isolated top cooled tab•Terminal pins opposite to cooling side –Fully automatic PCB mounting to heat sink •Moisture Sensitivity Level : Level 3–IPC/JEDEC J-STD-033•4000 V insulated tab-to-lead package –UL recognized, File E81734•Large creepage distance to meet IEC 60664-1–250 V AC , material group 2, pollution degree 3–600 V AC , material group 2, pollution degree 2•Smaller footprint than four TO-247•ECOPACK2 compliant componentApplications•Single-phase controlled bridge rectifier •On-board and stationary chargers•AC DC converter for motor drive, UPS and SMPS •AC input converter current up to 85 A RMS •Output full wave DC current up to 75 A AVDescriptionThe STTD6050H-12M2Y is a top cooled surface mount module that integrates a single-phase half-controlled bridge rectifier. It is rated at 1200 V and delivers anoutput full wave DC current up to 75 A AV . Each single embedded device has a rated current of 60 A RMS and a symmetric blocking voltage of 1200 V.With its top cooling pad opposite to the printed circuit board this device allows the PCB-module-heat sink stack to be automatically assembled.This provides a low profile and compact converter in the field of on-board charger,charging station, motor drive, UPS and AC-DC power supplies.Based on the ST high temperature automotive planar technology, it offers higher specified noise immunity of 1000 V/µs up to the 150 °C junction temperature T j , and an over-voltage robustness V DSM up to 1400 V.60 A 1200 V half-controlled bridge rectifier in ACEPACK SMIT moduleSTTD6050H-12M2YDatasheetSTTD6050H-12M2YCharacteristics 1CharacteristicsTable 1. Diode and SCR absolute maximum ratings (limiting values)1.V DRM and V DSM apply to SCR only.Table 2. SCR electrical characteristics, per single SCRSTTD6050H-12M2YCharacteristics1.Refer to application note AN4608 for parameter definitionTable 3. Diode Electrical Characteristics, per single diodeTable 4. Thermal characteristics1.The case temperature is measured right underneath the device die on cooling padFor more information, please refer to the following application note related to the thermal management:•AN5384: ACEPACK SMIT module package guidelines for mounting and thermal managementSTTD6050H-12M2YCharacteristics (curves) 1.1Characteristics (curves)STTD6050H-12M2Y Characteristics (curves)STTD6050H-12M2YCharacteristics (curves)Figure 15. SCR relative variation of the static dV/dt immunity versus junction temperature (typical values)dV/dt [T] / dV/dt [T=150 °C]2550751001251502Application2.1Solid state Inrush current limitation topologies using STTD6050H-12M2YAs illustrated here below, bypass and mixed bridge rectifiers are two topologies dedicated to the AC line voltage rectification which include the solid-state inrush current limitation feature.Figure 16. Bypass function ensured by SCRFigure 17.Soft start / mixed control bridge rectifierIn the bypass topology, at system start-up both T1 and T2 SCRs are OFF. The output bulk capacitor is thencharged through the D3, D4, D2, D1 diodes and the current is limited by the R_limit resistor placed in the current path.At steady state, R_limit power losses are cut by switching ON alternatively the T1 and T2 SCRs according to line polarity which are then bypassing R_limit.Figure 18. Bypass topology waveform working principleSTTD6050H-12M2YApplicationIn the mixed bridge topology, SCRs are controlled in phase angle to smoothly increase the PFC output capacitor voltage up to peak AC line voltage. The pre-charging peak current value is controlled by a microcontroller which smartly synchronizes the SCRs gate driving signal angle step (referred as Δt in the figure here below). Limiting resistor is no more needed.Figure 19.Mixed bridge phase angle principleFor more information, refer to the application note:•AN4606: Inrush-current limiter circuits (ICL) with Triacs and Thyristors (SCR) and controlled bridge designtips.Those two robust solid-state topologies allow the applications to easily comply to the following standards:1.IEC61000-3-3 (voltage fluctuations and flicker in public low-voltage supply systems, for equipment with ratedcurrent ≤ 16 A). the high current powered from the grid may lead to voltage fluctuations and drops due to the line impedance. Those mains voltage disturbances have an impact on any other equipment connected to the same circuit and cause undesired brightness variation of lamps or displays (commonly called flickering phenomenon).2.IEC61000-4-11 (voltage dips, short interruptions, and voltage variations immunity tests) As any applianceconnected to the mains can be subject to line voltage dips or interruptions, a high input current mayoccur when the line voltage suddenly comes back to its nominal value. This high current may damage the front-end circuit components and can trigger an AC fuse for example.STTD6050H-12M2YSolid state Inrush current limitation topologies using STTD6050H-12M2Y2.2Dissipated power and junction temperature calculation at steady stateIn below example, STTD6050H-12M2Y is placed upstream from PFC stage. I T and I F define respectively SCR and diode current value. Therefore, the current taken from the line and flowing through the mixed bridge is a sinus waveform.Figure 20. Soft start / mixed control bridge rectifierFigure 21. SCR / diode current waveform (sinusoidal halfwave)2.2.1Dissipated power into SCRs and diodesDissipated power into SCRs and diodes is defined by the following equation:P d =V TOX ×I T AV +R DX ×I T RMS2(1)Note:V T0X and R DX are given in Eq. (1) and Eq. (4) where X = T for the SCR and F for the diode.I T AV =I P π ;Ip =I Line RMS× 2T AV =I L RMS(2)I T RMS 2=I P 24=(3)Using equations (1), (2) and (3), dissipated power can directly be calculated from AC line RMS current valueI L(RMS) for a single SCR or diode in the mixed bridge:P d =I L RMS +R DX2× I L RMS2(4)STTD6050H-12M2YDissipated power and junction temperature calculation at steady state2.2.2Junction temperature calculationFigure 22.Die assembly representationWhen Tc value is known, silicon junction temperature can be calculated as follows:T j =T C +P D × R TH j −cOtherwise, starting from ambient temperature measurement, junction temperature can be calculated as follows:T j =T A +P D ×R TH j −a Note:R th(j-c) and R th(j-a) values are given in the datasheet.with:R TH j −a =R TH j −c +R TH c −ℎ+R TH ℎ−aand where R TH(c-h) is the thermal interface resistance (grease or foil) and R TH(h-a) is the heatsink thermal resistance.For more information about the thermal management and power dissipation calculation, refer to the application note:•AN533: SCRs, TRIACs, and AC switches, thermal management precautions for handling and mounting •AN604 : Calculation of conduction losses in a power rectifier •AN4021 : Calculation of reverse losses in a power diodeDissipated power and junction temperature calculation at steady state3Package informationIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: . ECOPACK is an ST trademark.3.1ACEPACK SMIT package information•Lead-free package leads finishing•Halogen-free molding compound resin meets UL94 standard level V0Figure 23.ACEPACK SMIT package outlineDM00447519_Rev.5Package informationACEPACK SMIT package informationTable 5. ACEPACK SMIT package mechanical dataFigure 24. ACEPACK SMIT recommended footprint (dimensions are in mm)DM00447519_FP_Rev.5Note:Recommended pressing force on package to the heatsink: 50 N as described in application note AN5384.3.2ACEPACK SMIT package insulation informationFigure 25.ACEPACK SMIT package insulation informationTable 6. ACEPACK SMIT package insulation characteristicsNote:Recommended pressing force on package to the heatsink: 50 N as described in application note AN5384.ACEPACK SMIT package insulation information3.3ACEPACK SMIT terminal descriptionTable 7. ACEPACK SMIT STTD6050H-12M2Y module pinout descriptionFigure 26. ACEPACK SMIT STTD6050H-12M2Y module pinout3.4ACEPACK SMIT packing informationFigure 27. ACEPACK SMIT carrier tape outline, bottom viewTable 8. ACEPACK SMIT carrier tape dimensionsFigure 28. ACEPACK SMIT reel outlineTable 9. ACEPACK SMIT reel dimensions4Ordering informationFigure 29. Ordering information schemeDevices TypeT = Thyristor SCR, ; D = DiodeRMS SCR / Diode current60= 60 AGate triggering Current50 = 50 mAHigh TemperatureBlocking Voltage12 = 1200 VPackageM2 = ACEPACK SMIT module with two embedded legs 12T D6050-HH = 150°C rated M2YSTQuality gradeComply with automotive AQG324Table 10. Ordering informationOrdering informationRevision historyTable 11. Document revision historyIMPORTANT NOTICE – PLEASE READ CAREFULLYSTMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.No license, express or implied, to any intellectual property right is granted by ST herein.Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to /trademarks. All other product or service names are the property of their respective owners.Information in this document supersedes and replaces information previously supplied in any prior versions of this document.© 2021 STMicroelectronics – All rights reservedSTTD6050H-12M2Y。
calculation sheet样本【实用版】目录1.计算说明书的作用和重要性2.计算说明书的内容和结构3.如何编制一份有效的计算说明书4.计算说明书的实际应用案例正文一、计算说明书的作用和重要性计算说明书,又称计算表或计算稿纸,是一种用于描述计算过程和结果的文档。
在科学研究、工程设计、商业分析等众多领域中,计算说明书起着至关重要的作用。
它不仅可以使计算过程更加清晰、规范,还能方便他人审查和复核,从而确保计算结果的准确性。
二、计算说明书的内容和结构计算说明书通常包含以下几个部分:1.标题:简洁明了地描述计算说明书的主题。
2.目的:阐述计算说明书的目的和背景,以便读者了解计算的来龙去脉。
3.假设和限制:列出计算过程中所做的假设和存在的限制,这有助于他人评估计算结果的可靠性。
4.计算过程:详细地描述计算的步骤和方法,包括使用的公式、数据来源等。
5.结果:呈现计算的结果,并根据需要进行分析和解释。
6.结论:总结计算说明书的主要发现,并给出建议和展望。
7.参考文献:列出在计算过程中引用的所有文献,以表达对他人研究成果的尊重。
三、如何编制一份有效的计算说明书为了编制一份有效的计算说明书,需要注意以下几点:1.结构清晰:按照上述结构组织计算说明书,使其内容条理分明,便于阅读和理解。
2.语言简洁:使用简洁明了的语言描述计算过程和结果,避免过于复杂的术语和表达。
3.数据准确:确保计算过程中的数据准确无误,以提高计算结果的可靠性。
4.格式统一:使用一致的格式和单位,便于他人阅读和复核。
5.举例说明:适当使用实例进行讲解,有助于读者更好地理解计算过程和结果。
四、计算说明书的实际应用案例以下是一个计算说明书的实际应用案例:假设我们要计算一个企业的年度利润,我们可以编制一份计算说明书,包括以下内容:1.标题:年度利润计算说明书2.目的:计算企业年度利润,为管理层提供决策依据。
3.假设和限制:假设企业年度收入为 1000 万元,年度成本为 600 万元,企业所得税税率为 25%。
石油英语词汇(S7)stock acid 储存酸stock allowance 机械加工留量stock anchor 有杆锚stock and dies 板牙架和板牙stock broker 股票经纪人stock buildup 增加库存stock certificate 股票stock dividend 股票红利stock exchange 证券交易所stock key 钩头键stock loan 股票贷借stock material 库存材料stock oil 库存油;原料油stock option 股票期权stock price index 股票价格指数stock price 股票价格stock sheet 存货表stock split 分股;股票分割stock tank barrels 储罐桶数stock tank oil 地面脱气原油stock tank vapor recovery 储罐蒸汽回收stock tank 油库油罐;库存罐;原料罐stock to bearer 无记名股票stock withdrawal 动用库存stock 库存料;成品库;股票stockade 围桩;围住stocker 装料工;堆料机;炉排;碎料工stockholder 股东stockholder's equity 股东权益stockholder's right 股东权利stockholders' meeting 股东大会stockhouse 仓库;栈桥stocking 堆积;库存成品轧材;装料stockless anchor 无杆锚stockout cost 脱销费用stockpile 储存;料堆;资源;积累资料;围储stockpiling 堆放stocks on hand 库存stocks 库存stockwork 非定制品;网状脉stoddard naphtha 干洗溶剂汽油stoff 材料;火箭燃料;冷却液stoichiometric balance 化学当量平衡stoichiometric calculation 化学计算stoichiometric composition 化学计量成分stoichiometric equation 化学计算方程式stoichiometric point 当量点stoichiometric 按化学式计算的stoichiometry 化学计算法stoiip 储罐原始地质储量stoke 烧火;加煤于stokehold 锅炉舱;炉前stokehole 炉膛口;炉前stoker 司炉;自动加煤机;机动炉排stokes theorem 斯托克斯定理stokes 斯stokes' law 斯托克斯定律stoking 连续烧结stolodus 长裙牙形石属stomach 胃;腹部stomata stoma的复数stomochara 口轮藻属stone coal 无烟煤stone dike 砌石堤stone oil 石油stone peat 致密泥炭stone wheel 砂轮stone 块石;块体;磨石stone-faced bank 砌石堤stone-pitched jetty 砌石堤stone-slab correction 中间层校正stonebreaker 碎石机stoneley wave 斯通利波stoneware 石制品stonework 砌石工程stony desert 石漠stony ground 多石地stony 石质的stoodite 一种镶焊钻头用的硬合金stool pigeon 管子位置探测器stool 凳子;垫凳;内窗台;平板;托架;平管支座stoop 弯腰;屈服stop band attenuation 抑制频带衰减stop bath 定影液stop bit 结束位stop collar 止动环stop device 停止装置stop fold 陡斜褶皱stop instruction 停机指令stop key 停机键stop means 限位装置stop motion mechanism 止动装置stop nut 止动螺母stop off 封堵stop pin 止动销stop pulse 停止脉冲stop ring 止动卡箍stop screw 止动螺钉stop short 突然中止stop signal 停止信号stop statement 停语句stop sub 止动短节stop time 停机时间stop valve 停止阀stop 停止;停机stop 稳定海洋平台stop-and-waste valve 关闭泄漏阀stop-band 阻带stopcock 旋塞阀stopcocking 周期关井stope 回采stoper 向上式凿岩机stopgap 补缺者;权宜之计;补缺的stoppage of formation sand 地层砂的阻挡stoppage of pay 停付薪金stoppage of publication 停止发行stoppage 停止stopped and suspended project 停缓建项目stopped check 止付支票stopped status 停机状态stopper circuit 带除滤波器的电路stopper nozzle 注口;浇铸嘴stopper 塞;止动轧头;挡环;制动器;阀;封堵器stopping device 关闭装置stopping potential 截止电位stopping rule 停止法则stopping up 填塞stopping 停止stopple coupon 取样管stopple plugging machine 封堵机stopple 塞子stopwatch 秒表stopway 停车道storability 耐储存性能storable 可储存的;耐储层物品storage access 存储器存取storage allocation 存储分配storage and transportation loss 储运损失storage area 储存区storage battery 蓄电池storage bin 贮藏仓storage block 存储块storage capacity 贮藏量storage cell 存储单元storage charges 栈租storage coefficient 存储系数storage core 存储磁心storage cost 保管费用storage counter 累积式计数器storage cycle 存取周期storage density 存储密度storage depot 储油库storage evaluation 储集能力评价storage factor 储能因数storage fragmentation 存储碎片storage gas 地层天然气storage hierarchy 存储器层次结构storage in transit 运输中的货物量storage instruction 存储指令storage jug 地下液化石油气储穴storage life of gasoline 汽油的可储存期限storage life 储存期限storage limit register 存储界限寄存器storage location 存储器单元;存储位置;存储场所storage loss 仓储损失storage mapping 存储映象storage modulus 储存模量storage of spare parts 配件储备storage oscilloscope 存储示波器storage piping installation 油库管线storage plant 油罐区storage pore 封闭孔隙storage porosity 封闭孔隙度storage protection 存储器保护storage reel 存储滚筒storage register 存储寄存器storage space 存储空间storage switch 存储开关storage tank farm 储油库storage tank 储罐storage terminal 转运仓库storage test 储存试验storage time 存储时间storage tube 存储管storage under pressure 压力下储存storage unit 存储单元storage volume 储存容量storage writing speed 存储记录速度storage yard 堆货场storage 仓库storage-tank piping 储罐管网storageproduction terminal 储油-采油浮码头storageproduction vessel 储油-采油浮式装置storascope 存储式同步示波器storativity ratio 存储比storativity 储存系数store access controller 存储访问控制器store access cycle 存取周期store access time 存储器的存取时间store coefficient of hook load 钩载储备系数store cycle time 存储器的周期时间store energy welding 储能焊store through 全存储store 贮藏品;贮藏stored program computer 存储程序计算机stored routine 存入程序storehouse 库房storekeeper 仓库管理员storer 存储器storeroom 贮存室;商品陈列室storey twist machine 多层加捻机storey 层storied cambium 叠生形成层storied structure 叠生构造storing mechanism 存储机构storing 储藏storm back-flow 风暴回流storm choke 油管安全阀storm delta 浪成三角洲storm deposit 风暴沉积storm drain 雨水道storm intensity 风暴强度storm lantern 汽灯storm oil 防波油storm proof 防风暴的storm roller 风暴卷浪storm surge protection breakwater 高潮防波堤storm surge 风暴波涌storm tide 风暴潮storm valve 井下安全阀storm wave base 风暴浪底storm wind 暴风storm 风暴storm-guyed pole 耐风暴加固电杆storm-mwl 暴风雨天气时平均水面storm-surge current 风暴潮流stormer viscosimeter 斯氏粘度计story 故事;经历;描述;内情;情节;记事;层stove oil 炉用油stove 烘箱;温室;烘干stovepipe assembly 管子组装线stovepipe casing 导管stovepipe method 逐段铺管法stovepipe welding 高架焊管法stovepipe 烟囱管stow 装stowage space 载货货位stowage 装载;装载物;堆存费;装载容积stower 充填机;充填工stp 标准温度和压力stp 地面工作压力stp 发动机燃油的一种添加剂stp 海水处理设备stp 卫星追踪程序str 冲程str 构造;结构;组织str 轮船str 起动变阻器straddle barge 双体船straddle over year 跨年度straddle packer 跨式双封隔器中的一个封隔器straddle spread 中间放炮排列straddle test 双封隔器选择性地层测试straddle tool 跨越式皮碗工具straddle 跨;跨式的straddle-packer test 跨式双封隔器地层测试straggle 分散straight angle 平角straight arrival bill 直达汇票straight asphalt 纯沥青straight beam method 直射法;直梁法straight bevel gear 直齿伞齿轮straight bill 光票straight blade stabilizer 直翼片稳定器straight chain compound 直链化合物straight chain hydrocarbon 直链烃straight compounded gas turbine 直列复合式燃气轮机straight cross 四通straight cut 直边割缝straight day-work rate 不变的日费率straight fault 直线断层straight firing 直接加热straight framed ship 直框结构船straight gas-lift 连续气举straight hole guide 导管straight hole 直井眼straight injection 连续注入straight line approximation 直线逼近straight line correlation 直线相关straight line 直线straight lined vessel 直线型船straight motor 直管式发动机straight od sub 同径接头straight pipe prover 直管式标准体积管straight polarity 正接straight polymer 纯聚合物straight pull 直拉straight purchase 单面购买straight ray path tomographic inversion 直射线路径层析成象反演straight reciprocating motion 直线往复运动straight rotary crown-block 单层天车straight run coal tar 直馏煤焦油沥青straight run 直馏馏分straight sale 单边销售straight sided slot 直边割缝straight slope 直线斜率straight state 直接状态straight stem 直艏柱straight tee 三通straight thread 圆柱螺纹straight through model 直线输出型straight upstrain release 直接上提丢手straight water 不掺添加剂的水straight waterflooding 单纯注水straight well 直井straight 直线的straight-ahead drilling 顺利续钻straight-chain paraffin 直链烷烃straight-chain polymer 直链聚合物straight-hole downhole motor 直井井下马达straight-hole drilling 钻直井straight-hole turbodrill 直井涡轮钻具straight-line amortization 直线摊销straight-line code 直接式程序straight-line decline 直线递减straight-line depreciation 直线折旧straight-line extrapolation 直线外推straight-line interpolation 直线内插straight-line portion 直线段straight-line regression 直线回归straight-line segment 直线段straight-line tomographic method 直射线层析成象法straight-line-spectrum 直线频谱straight-ray approximation 直射线近似straight-run gasoline 直馏汽油straight-side flank spline 直边式花键straight-sided axial worm 阿基米德蜗杆straight-through passage 直通straight-through process 直通过程straightaway 立刻straightedge vane 等厚叶片straightedge 直尺straighten 矫直straightener 矫直器straightening device 矫直装置straightening of hole 井身矫直straightening vanes 整流叶片straightening 矫直straightforward 简单的straightline method of amortization 直接摊销法straightline method of depreciation 直线折旧法straightness error 直线度误差straightness 正直度;正直;直线性strain axis 应变轴strain break 张力裂隙strain deviation 应变偏量strain ellipsoid 应变椭球strain energy 应变能量strain field 应变场strain figure 应变图象strain gage 应变仪strain gauge 应变计strain gauge-type load cell 应变仪式测力传感器strain hardening 应变硬化strain increment 应变增量strain indicator 应变仪strain lattice 应变晶格strain line 应变线strain of flexure 挠曲应变strain pattern 应变图象strain quadric 应变二次曲面strain recrystallization 应变重结晶作用strain relaxation 应变松驰strain relief 溢流冒口strain seismometer 应变地震仪strain slip 应变滑移strain spectrum 应变谱strain tensor 应变张量strain transducer 应变传感器strain wave 应变波strain wire 振弦strain 应变strain-aging 应变老化;应变时效;弥散硬化strain-gauge test 应变仪测试strain-gauge-type pressure transducer 应变仪式压力传感器strain-slip folding 滑动褶皱strain-to-failure 应变造成的损坏strainer box 吸口上滤罩strainer filter 粗滤器strainer screen 网式滤器strainer tube 过滤管strainer 粗滤器strainless 无应变的strainmeter 应变仪strainometer 应变计strait 海峡;通道;狭窄的strake 洗矿槽;轮箍;条纹;侧板strand deposit 沿滨沉积strand dune 海岸沙丘strand rope 股绞绳strand 绳股;绞strand-line trend 滨线趋向strand-line 海滨线stranded blob 断开液滴stranded cable 股绞电缆;股绞钢丝绳stranded electrode 多股焊丝stranded 绞成股的strandflat 潮间坪strandline pool 海岸线油藏strandplain 海滨平原strange particle 奇异粒子strangeness 奇异性stranger 陌生人;外行strangler 压制者;阻气门;节流阀strap brake 带刹车strap iron 条钢strap jet gun 带状聚能射孔器strap 带strapped weld 对接搭板焊接strapping of tank 油罐围测标定strapping 橡皮膏strass 含有氧化铅的闪亮玻璃strat test 参数井strata control 地层控制;顶板控制strata correlation 标志层对比strata gap 地层间断strata profile 地层剖面strata sequence 层序strata stratum的复数strata-punch 气动井壁取心器stratabound 层控的stratafrac 地层压裂stratagem 战略stratal configuration 地层结构stratal continuity 地层连续性stratal pinch-out 地层尖灭stratal 地层的;成层的strategic alliance 战略联盟strategic business unit 策略事业单位strategic decision 战略决策strategic effect 战略性效果strategic oil inventory 石油战略储备strategic oil reserve 石油战略储备strategic planning 战略规划strategic reserve 战略储备strategy management 战略管理strategy 策略strati- 层stratic 地层的straticulate 薄层的stratification effect 分层效应stratification plane 层面stratification ratio 成层比stratification sampling 分层取样stratification testing 分层测试stratification 层理;成层;层次;分层stratified alluvium 层状冲积层stratified current 层流stratified deposit 层状油藏stratified drift 成层冰碛stratified finger 层状指进stratified flow 层流stratified heterogeneous reservoir 层状非均质油藏stratified model 层状模型stratified rock 层状岩stratified sampling 分层取样stratified sediment 层状沉积物stratified till 层状冰碛stratified waterflooding 层状注水stratified wavy flow 分层波浪流stratified 成层的stratiform stromatolite 层状叠层石stratiform 层状的stratigrapher 地层学家stratigraphic =stratigraphical 地层的stratigraphic analysis 地层分析stratigraphic anormaly 地层异常stratigraphic arrangement 地层排列stratigraphic boundary 地层边界stratigraphic break 地层间断stratigraphic categories 地层类别stratigraphic classification 地层划分stratigraphic code 地层规范stratigraphic column 地层柱状图stratigraphic condensation 化石杂聚层位stratigraphic control 地层控制stratigraphic correlation 地层对比stratigraphic criteria 地层标志stratigraphic cross-section 地层横剖面stratigraphic datum 地层的基准面stratigraphic deconvolution 地层反褶积stratigraphic dip 地层倾角stratigraphic distribution 地层分布stratigraphic division 地层划分stratigraphic effect 地层效应stratigraphic equipment 地层测量设备stratigraphic equivalence 相当地层层位stratigraphic fluctuation 地层变化stratigraphic gap 地层滑距;地层缺失stratigraphic geology 地层地质学stratigraphic geophysics 地层地球物理学stratigraphic guide 地层标志stratigraphic hiatus 缺层stratigraphic high resolution dipmeter tool 地层学高分辨率地层倾角测井仪stratigraphic history 地层史stratigraphic horizon 地层层位stratigraphic information 地层资料stratigraphic interpretation 地层解释stratigraphic interval 地层间距stratigraphic marker 地层标志stratigraphic model 地层模式stratigraphic nomenclature 地层命名stratigraphic oil pool 地层油藏stratigraphic order 层序stratigraphic overlap 地层超覆stratigraphic palaeontology 地层古生物学stratigraphic piercing-point 地层刺穿点stratigraphic pitch-out 地层尖灭stratigraphic procedure 地层程序stratigraphic profile 地层剖面stratigraphic prognosis 地层推断stratigraphic range 地层延续时限stratigraphic record 地层记录stratigraphic reef 层礁stratigraphic repetition 地层重复stratigraphic reservoir 地层油藏stratigraphic resolution 地层分辨率stratigraphic rig 地质钻探钻机stratigraphic scale 地层年代表stratigraphic screened oil accumulation 地层遮挡油藏stratigraphic section 地层剖面stratigraphic seismic 地层地震的stratigraphic separation 地层落差stratigraphic sequence 地层层序stratigraphic succession 地层层序stratigraphic test well 地层探井stratigraphic throw 地层落差stratigraphic time table 地层年代表stratigraphic timescale 地层年代表stratigraphic trap 地层圈闭stratigraphic type oil pool 地层油藏stratigraphic unconformity 地层不整合stratigraphic well 基准井stratigraphic window 地层窗stratigraphic younging 地层变新stratigraphic zonal sequence 地层带序列stratigraphic zonation 地层分带性stratigraphic zone 地层带stratigraphic-sedimentologic framework 地层沉积岩石构架stratigraphic-sedimentologic 地层沉积学的stratigraphic-type reservoir 地层油藏stratigraphy 地层学stratinomy 层序学strato- 层stratochamber 同温层研究室stratocruiser 同温层飞机stratocumuli stratocumulus的复数stratocumulus 层积云stratographic analysis 色谱分析stratographic 色谱的stratography 色层分离stratoisohypse 地层等厚线stratojet 声调谐振荡结构射流stratometer 土壤硬度计straton 层子stratopause 同温层上限stratoplane 同温层飞机stratosphere 同温层stratospheric ozone depletion 平流层臭氧耗竭stratotype 层型stratum compactum 致密层stratum contour 地层等高线stratum 层stratus 层云straw 草stray capacitance 寄生电容stray current corrosion 漏泄电流腐蚀stray current 杂散电流;漏泄电流stray loss 杂散损耗stray parameter 随机参数stray pay 零散可采层stray sand 钻井中不期而遇的砂层stray winding 防叠卷绕stray 杂散streak line 条纹线streak photograph 纹影摄影streak 条痕streaked-out ripple 纹影波痕streaking 条纹;品质不均;图象拖尾streaky structure 条纹构造stream azimuth 河流方位线stream bank 河岸stream basin 河流盆地stream bed 河床stream capacity 河流最大输沙能力stream channel pattern 河道类型stream coefficient 操作系数stream competence 水流强度stream course 河道stream crossing 小河流穿越stream data transmission 数据流传输stream day 连续开工日stream diversion 河流袭夺stream fillings 河流沉积stream function 流函数stream function-vorticity method 流函数-涡旋法stream hours 连续工作时数stream line motion 流线运动stream line operation 流水线操作stream outlet 河口stream pattern 河流类型stream piracy 河流袭夺stream pollution 河流污染stream potential 流动势stream processing 流水式处理stream robber 河流袭夺stream runoff 河泾流stream segment 河段stream stage 河水位stream straightening 河流取直stream temperature 连续作业温度stream terrace 河流阶地stream time 连续开工时间stream trace 蒸汽伴随stream tube model 流管模型stream valley 河谷stream 流stream's self-purification 河流自净stream-actuated 液压驱动的stream-cut terrace 切割阶地stream-laid deposit 河流沉积stream-to-stream time 停工检修时间stream-tube method 流管法streamer cable system 等浮电缆系统streamer depth indicator 等浮电缆深度指示器streamer digitizing module 等浮电缆数字化模块streamer hydrophone 等浮电缆检波器streamer polygon 等浮电缆位置图streamer positioning 等浮电缆定位streamer reel 等浮电缆卷筒streamer track 等浮电缆轨迹streamer tracking 等浮电缆跟踪streamer 光柱streamer-towed hydrophones 等浮电缆检波器streamhandling 流动式处理streaming flow 连续水流;冰川水流;稳流streaming gradation 河流均夷作用streaming lineation 水流线理streaming potential 流动电势streamline flow 流线状流动streamline molded form 流线形地形streamline nozzle 流线形喷嘴streamline redder 流线型舵streamline stratification 流线分层streamline topographic form 流线形地形streamline 流线;流线型的;制成流线型;使现代化streamlined body 流线型体streamlined flow 流线流动streamlined motion 流线形运动streamlined pressure tank 流线形压力储罐streamlined pump 流线型抽油泵streamlined stern 流线形船尾streamlined 流线型的streamliner 流线型装置streamlining 成流线形streamplain facies 河流平原相streamtube 流管streamway 河流水道street elbow 带内外螺纹的弯管接头street market 集市street price 场外行情street roller 压路机strength beam 强梁strength constraint 强度约束strength degradation 强度下降strength envelope 强度包络线strength factor 强度因素strength of cement 水泥强度strength of current 电流强度strength of discharge 放电强度strength of field 场强strength of joint 连接强度strength of materials 材料强度strength of structure 结构强度strength of vortex 涡流强度strength of water drive 水驱强度strength retrogression 强度衰退strength test 强度试验strength weld 加强焊道strength 强度;浓度;力strengthening stability 强化稳定性strengthening 加强strenuous 费力的streptognathodus 卷颚牙形石属stress adjustment 应力调整stress analysis 应力分析stress axis 应力轴stress block 应力块stress concentration 应力集中stress concentrator 管子应力集中凹槽stress condition 应力状态stress contrast 应力差stress corrosion crack 应力腐蚀开裂stress corrosion 应力腐蚀stress couple 应力偶stress crack 应力开裂;应力龟裂stress detector 应力测定器stress diagram 应力图stress difference 应力差stress distribution 应力分布stress ellipse 应力椭圆stress ellipsoid 应力椭球stress endurance limit 应力持久极限stress field 应力场stress function 应力函数;伸差函数stress gradient 应力梯度stress induced corrosion 应力诱发腐蚀stress intensity factor 应力强度因子stress joint 应力节stress limit 应力极限stress limitation 应力限stress loading 应力载荷stress loss correction 应力恢复stress matrix 应力矩阵stress mineral 应力矿物stress raiser 形成应力集中的因素stress ratio 应力比stress relaxation 应力松弛stress relief 应力释放stress relieving 应力消除stress restoration 应力恢复stress reversal tolerance 应力逆转容限stress reversal 应力反向stress riser 管子应力集中凹槽stress rupture 应力破坏stress state 应力状态stress strain diagram 应力应变图stress trajectory 应力轨迹stress wrinkle 应力皱纹stress 结构工程系统解算器stress 应力stress-assisted localised corrosion 应力辅助局部腐蚀stress-free completion 无应力完井stress-number 应力-次数stress-ratio design 应力比设计stress-relief grooves 应力减轻槽stress-relief heat treatment 消除应力的热处理stress-rupture testing of tube 管子的应力-破裂试验stress-strain curve 应力-应变曲线stresscoat 应力涂料stressed skin construction 预应力薄壳结构stressometer 应力计stretch bath 拉伸浴stretch breaker 牵切机stretch chart 拉伸图表stretch coefficient 伸长系数stretch draft 走锭牵伸stretch fault 引伸断层stretch growth 第二潜伸stretch mill indentation 轧制凹痕stretch modulus 拉伸模量stretch section 拉伸段stretch slide 拉伸滑动stretch spinning 拉伸纺丝stretch thrust 引伸冲断层stretch 拉伸stretch-breaking technology 牵切技术stretch-out view 展开图stretch-spinning of two-bath system 二浴拉伸纺丝法stretch-twister 拉伸加捻机stretchability 拉伸性stretched outer arc 拉伸外弧stretched-out view 展开图stretcher jack 深井泵拉杆的拉紧器stretcher 拉伸器stretching bolt 拉紧螺栓stretching pulley 张紧轮stria 条痕striae stria的复数striated pattern 条纹图形;线性光栅striation cast 擦痕铸型striation 条纹;条痕striatites 多肋粉属striatoabietites 冷杉多肋粉属striatopiceites 云杉多肋粉属striatopodocarpites 罗汉松多肋粉属striatosporites 条纹单缝孢属striatricolpites 条纹三沟粉属striature =striationstrickle 刮型器;油石;刮平;磨快strict perfomance of contract 严格遵守合同条款striction 收缩strictly concave function 严格凹函数strictly convex function 严格凸函数strictly upper triangular matrix 严格上三角矩阵stricture 严厉批评;限制;狭窄stride 步测strided distance 跨距stridiporosporites 脊肋双孔孢属strike closure 走向闭合strike fault 走向断层strike fold 走向褶皱strike joint 走向节理strike line 走向线strike off 砍去strike plate 防冲击板strike price 选择权行使价格strike separation fault 走向离断层strike separation 走向断距strike shift 走向移位strike slip 走向位移strike through 击穿strike 打击strike-and-dip symbol map 走向和倾角符号图strike-dip survey 产状测量strike-overlap 走向超覆strike-ridge 走向脊strike-shift fault 平移断层strike-slip fault 走向滑动断层strike-slip microfault 走向滑动微断层strike-slip plate 走向滑移板块strike-slip thrust 走向滑动冲断层striker 打击者;罢工者;撞针;钟锤striking board 样板striking contrast 显著对比striking mottled pattern 明显斑点图形striking voltage 引弧电压striking wrench 锤击扳手striking 起弧;打击;拆除支架;显著的string bead 窄焊道string cable 小线string control 钻柱控制string description 钻柱说明string galvanometer 弦线电流计string grammar 链文法string manipulation 串处理string of casing 套管柱string of deposits 条带状油气藏string of rods 抽油杆柱string of tank cars 油槽列车string of tools 钻柱string of tubing 油管柱string operation 串操作string reamer 钻柱扩眼器string shot assembly 解卡爆震装置string shot backoff 爆震倒扣string shot 松扣炸药包string stabilizer 钻柱稳定器string suspending weight 悬重string the block 滑车穿绳string up 装绳string wound polypropylene 线状绕制用聚丙烯string wound type of filter cartridge 缠线型滤心string 弦;线stringency 迫切stringent 严格的精确的stringer bead brush 窄焊道钢刷stringer bead 焊蚕stringer 低产井stringiness 纤维性stringing coupling 接管管箍stringing crew 布管班stringing grip 绳夹stringing truck 布管卡车stringing 穿绳stringy 粘稠的strip a well 从井内同时起抽油杆和油管strip adjustment 航线平差strip carrier capsule gun 钢带托架座舱式射孔器strip chart apparatus 记录带打印机strip chart 记录仪纸带strip coating 可剥离的复盖层strip deformation 航线弯曲strip index 航线相片索引图strip line 带状线strip log 条带录井图strip map 航线地图strip mosaic 航线相片镶嵌图strip photography 航线摄影术strip prediction 航线预报strip recorder 带式记录仪strip the drill pipe 提出钻杆strip thrust 挤离冲断层strip welding 镶条焊接法strip 条strip-beam recorder 条带记录器strip-chart recorder 纸带记录器stripe 条纹;车道;种stripe-chart recorder 图线记录器striplight 带状照明器;长条状灯stripmine production 露天开采stripmine 露天矿strippant 洗涤剂stripped fossil plain 剥露古平原stripped gas 已脱除汽油的干气stripped oil 脱去汽油的石油stripped peneplain 剥露准平原stripped structural surface 剥露的构造面stripped vapor 汽提蒸汽stripped well 低产井stripped 剥去的;卸下的;拆开的;拉断的;萃取过的stripper development well 低产开发井stripper field 低产油田stripper head 封井头stripper plate 脱模板stripper pool 低产油藏stripper reboiler 汽提塔stripper rubber 橡胶刮泥器;防喷环状橡胶心子stripper stage 枯竭阶段stripper stopper 刮泥器止动块stripper tube 封井管stripper type preventer 环状橡胶心子防喷器stripper well 低产井stripper 拆卸器;卸开器;钻杆橡胶刮泥圈;防喷环状橡胶心子stripping assembly 拆卸装置stripping column 汽提塔stripping filtering 剥离滤波stripping fork 脱模仪;脱模器械;齿梳stripping gas 汽提气stripping in and out of the hole 用防喷器在压力下强行起下钻stripping job 同时起出抽油杆和油管作业stripping oil 提取油stripping plant 有脱轻烃装置的天然气压气站stripping pump 扫舱泵stripping section 汽提段stripping tower 汽提塔stripping valve 扫舱阀stripping 拆开stripping-in operations 强行起下钻作业stripwise rectification 逐条航线修正strive 奋斗strobe interrupt 选通中断strobe pulse 选通脉冲strobe release time 选通释放时间strobe 选通;选通脉冲;闸门strobeacon 闪光灯标strobo 闪光放电管stroboflash 频闪stroboglow 闸流管频闪观测器strobolume 高强度闪光仪strobolux 频闪观测器strobophonometer 爆震测声计stroboscope 频闪观测器stroboscopic effect 频闪效应strobotac 频闪转速计strobotron 频闪放电管stroke loss 冲程损失stroke of piston 活塞冲程stroke post 摇杆stroke 冲程;行程;一击strokes per fill 每次灌泥浆冲数strokes per minute 每分钟冲数strokes to fill 灌泥浆冲数stroma 叶绿体基质stromatactis 平底晶洞构造stromatite 层状混合岩stromatoid 叠层石类stromatolite 叠层石stromatolith 叠层;叠层混合岩stromatolithic limestone 叠层灰岩stromatolithic structure 叠层构造stromatolitic 叠层岩的stromatoporoid limestone 层孔虫灰岩stromoconolith 成层锥状体strong acid 强酸strong aqua 浓氨水strong back 厚基座strong base 强碱strong bonding 胶结良好strong breeze 强风strong brine 浓盐水strong caustic 强碱的strong convergence 强收敛strong currency 硬通货strong discontinuity 强间断strong gale 烈风strong magnetic die 强磁力打捞器strong magnetic material 强磁性材料strong metal-support interaction 金属-载体强相互作用strong oil-wet 强亲油strong oxidizer 强氧化剂strong reflection 强反射strong refraction 强折射strong response signal 强响应信号strong reverse wetting effect 强润湿反转效应strong sewage 浓污水strong shock 强震strong solution 浓溶液strong water drive 强水驱strong well 高压井strong-acid number 强酸中和值strong-base number 强碱中和值strong-motion accelerograph 强震加速度仪stronghold 要塞;根据地strongly implicit 强隐式strongly oil-wet 强亲油的strongly water-wetting system 强亲水系统strongly wetted media 强润湿介质strongly wetting liquid 强润湿液strontia 氧化锶;氢氧化锶strontianite 菱锶矿strontium sulfate scale 硫酸锶垢strontium sulfate 硫酸锶strontium 锶strop 环索;滑车带strophoid 环索线strophotron 超高频振荡器strthd 普通螺纹structural abnormal pressure 构造异常压力structural accommodation 构造调节structural alignment 构造排列线structural anisotropy 构造非均质性;结构各向异性structural anormaly 构造异常structural arrangement 结构布置structural basin 构造盆地structural behaviour 构造动态structural belt 构造带structural block 构造断块structural bulge 构造凸起structural bulkhead 主构舱壁structural casing 结构套管structural chemistry 结构化学structural classification 构造分类structural closure 构造闭合度structural configuration 构造轮廓structural constant 结构常数structural continuity 构造连续性structural contour map 构造等高线图structural correction 构造校正structural cross section 构造横剖面structural cycle 构造旋回structural deck 主构甲板structural decoupling 构造分离作用structural deficiency 构造缺失structural design 结构设计structural diagram 构造图structural dip 构造倾斜structural discordance 构造不整合structural disharmony 构造不谐调structural dislocation 构造错位structural divergence 构造离散度structural division 构造划分structural drawing 结构图structural element 构造要素;结构要素structural environment 构造条件structural evolution 构造演化structural failure 结构破坏structural fatigue failure 结构疲劳损坏structural feature 构造形态structural flow 结构流structural foam 结构泡沫塑料structural formula 结构式structural framework 结构骨架structural gas pool 构造气藏structural geology 构造地质学structural grain 构造方向structural group 结构族structural growth 结构生长structural high 构造隆起structural history 构造发育史structural horst 构造地垒structural inheritance 构造继承性structural integrity 结构整体性structural interface 结构界面structural isomeride 结构同分异构体structural landscape 构造景观structural layer 构造层structural length 全长structural line 构造线structural lineament 区域构造线structural low 构造洼地structural map 构造图structural mast 桁架结构桅式井架structural member 构件structural nose 构造鼻structural offset 构造偏移structural oil pool 构造油藏structural overburden 构造覆盖层structural petrology 构造岩石学structural pipe 结构管structural plane 构造面structural platform 构造台地structural porosity 结构孔隙度structural property 构造特性structural protein 结构蛋白质structural query language 结构询问语言structural regime 构造状态structural relief 构造起伏structural saddle 鞍部structural salient 构造凸起structural section 构造剖面structural segmentation 构造分割作用structural set-up 构造配置structural setting 构造背景structural shale 结构泥岩structural sheet 结构层structural steel 结构钢structural stiffness matrix 结构刚度矩阵structural stillstand 构造宁静期structural strength 结构强度structural style 构造型式structural sub-area 构造亚区structural terrace 构造阶地structural trap 构造圈闭structural trapping 构造圈闭structural trend 构造方向structural truncation 构造截切structural type 构造类型structural unconformity 构造不整合structural unit 结构单元structural viscosity 结构粘度structural vitrain 结构镜煤structural-stratigraphic trap 构造-地层圈闭structure clay 结构粘土structure closure 构造闭合度structure contour interval 构造等高距structure contour map 构造等高线图structure contour 构造等高线structure drilling 构造钻井structure elucidation 构造解释structure expansion solution 结构膨胀溶液structure geometry 构造几何形状structure grain 构造方向structure index 结构指数structure indicator 标准层structure isomer 结构同分异构体structure isomeride 结构同分异构体structure line 构造线structure of basement 基底构造structure outline map 构造纲要图structure plot 结构标绘图。
Project No.Project TitleMa'aden Aluminium ProjectCalc No.Bauxite Residue Disposal (Area 3600) SubstructurePhase/CTRS11A36000501Table of ContentsPage Number HO SO 3.Footing design for Residue disposal pump3.1 Description3.2 Equipment location3.3 Footing layout and dimension 3.4 Weight computation 3.5 Allowable stress design3.5.1 Soil bearing capacity check 3.5.2 Settlement check 3.5.3 Overturning check 3.5.4 Sliding check3.6 Equipment footing weigh check 3.7 Allowable eccentricity check3.7.1 The centroid of Residue disposal pump 3.7.2 The centroid of footing3.7.3 The centroid of soil above footing 3.7.4 Eccentricity check 3.8 Dynamic analysis3.9 Strength design 3.10 Sketch* HO and SO denote Home Office (Brisbane) and Support Office (Beijing) respectivelyCGA22-11-11ZJXB30-11-11ByCheckedRevDateByCheckedRevDateByCheckedRevDateSheetof Table of ContentCustomer Ma'aden201001-00168MD-402-3600-EG-ST-CAL-00005Calculation TitleBauxite Residue Disposal (Area 3600) SubstructurePhase/CTR3.Footing design for Residue disposal pump 3.1 DescriptionThe footings and foundation were calculated with hand computationUS and relevant international standards are used for strength and serviceability design.Concrete design compressive strength: f’c = 50 MPa Reinforcement yield strength: fsy = 420 Mpa Reinforcement cover: c = 75mm 3.2 Equipment LocationRefer to MD-402-3600-EG-ME-DWG-00001 and MD-402-3600-EG-ME-DWG-00002MD-402-3600-EG-ME-DWG-00001CGA22-11-11ZJXB30-11-11ByChecked RevDateByCheckedRevDate ByChecked RevDatePageofCalculation Title S11A36000501Bauxite Residue Disposal (Area 3600) SubstructurePhase/CTRMD-402-3600-EG-ME-DWG-00002Calculation Title S11A36000501PageofRevDate ByChecked RevDateByChecked RevDateByCheckedA22-11-11ZJXB30-11-11CGBauxite Residue Disposal (Area 3600) SubstructurePhase/CTR3.3 Footing layout and DimensionRefer to b0062874.tif on K:\MM1011D1211\255 MECHANICAL\255E ENGINEERING-DESIGN DATA\Mechanical Packages Beijing\4-0601 PD PUMP\05 VENDOR DATA REVIEW\ Drawing Vendor supply 2011-12-15the footing size: length: 9.4m width: 8.2m thickness:1m depth:2mCalculation Title S11A36000501PageofRevDate ByChecked RevDateByChecked RevDateByCheckedA22-11-11ZJXB30-11-11CGBauxite Residue Disposal (Area 3600) SubstructurePhase/CTR3.4 weight computation3.4.1 the weight of residue disposal pumpthe weight of residue disposal pump = 100+350+250+20+10=730KN 3.4.2 the weight of footingRefer to footing layout 3.3 the weight of footing pad=8.2×9.4×25×1 =1927 KNthe weight of footing pedestalthe weight of soil above footing =20×1×(3.65×5.97+3.05×1.145+2.715×2.03+5.485×3.04+6.36×0.315)=989.4KN the sum total of the weight =1927+1150.3+989.4=4066.7KN3.5 Allowable stress design 3.5.1 Soil bearing capacity checkLoad case 100 1.0(DL+EDL+LL+ELL) is critical load for bearing capacity.Refer DESIGN CRITERIA 8.1.4.2. (Revision 2 Date of Issue:20 Sep 2011)The soil bearing pressure under vibrating loads shall be taken to be less than 50% of the Net Allowable Bearing Capacities Average pressure = (4066.7+730)/(8.2×9.4)=62.2KPa less than 50% Bearing Capacity 3.5.2 Overturning checkRefer footing layout 3.3Footing thickness = 1 m Depth = 2 mWind Load:Refer DESIGN CRITERIA 6.3. Wind Load (Revision 2 Date of Issue:20 Sep 2011) q z = 0.613×K z ×K zt ×K d ×V 2×I = 0.613 × 1.03 × 1.0 × 0.85 × 43.06² × 1.15= 1.14 KN/m³q = q z × G × C=1.14 × 0.85 × 1.6 = 1.55 KN/m³P = q × D × H =1.55 × 3 × 6 = 27.9 KNEarthquake LoadRefer DESIGN CRITERIA 6.4. Earthquake Load (Revision 2 Date of Issue:20 Sep 2011) Fx = 0.01Wx = 0.01 × 730 = 73 KNLoad Case 100 to 102 103 to 106 & 107 to 110 &111 to 114 & 115 to 118Load case 115(EmptyWeight + Earthquake) is critical Load Case for overtuning Moment about base Mo=73 × 0.7× ( 1.5+2 ) = 178.8KNmResistance moment by concrete and soil Mcr=4796.7 × 0.6 × 4.1=11800KNm Saty factor =Mcr/Mo =46.2 > 1.5There is no overturning problem.CGA22-11-11ZJXB30-11-11ByChecked RevDateByCheckedPageofRevDate ByChecked RevDateRefer to b0062874.tif on K:\MM1011D1211\255 MECHANICAL\255E ENGINEERING-DESIGN DATA\Mechanical Packages Beijing\4-0601 PD PUMP\05 VENDOR DATA REVIEW =25×(1.915×3.65×1.544+(5.17×2.71+3.05×1.57)×1.734+1.0×0.84×1.484+1.0×1.0×1.376)=1150.3KNCalculation Title S11A36000501Bauxite Residue Disposal (Area 3600) SubstructurePhase/CTR3.5.3 Sliding checkLoad Case 100 to 102 103 to 106 & 107 to 110 &111 to 114 & 115 to 118Load case 115(EmptyWeight + Earthquake) is critical Load Case for slidingHorizontal force=73 KN Vertical force=4795 KNRatio=(4796.7 × 0.6) × 0.5/73 = 28>1.5There is no sliding problem.3.6 Equipment footing weigh checkRefer DESIGN CRITERIA 8.1.4.2. (Revision 2 Date of Issue:20 Sep 2011)Equipment footings for reciprocating machinery shall be sized to weigh five times as much as the machine a minimum.the weight of soil and footing (DL) = 4066.7 KN > 5 × the weight of Equipment (EDL)=5 × 730 = 3650KNThere is no weight problem.CGA22-11-11ZJXB30-11-11ByChecked RevDateByCheckedRevDate ByChecked RevDatePageofCalculation Title S11A36000501Bauxite Residue Disposal (Area 3600) SubstructurePhase/CTR3.7 Distance of centriod checkRefer DESIGN CRITERIA 8.1.4.2. (Revision 2 Date of Issue:20 Sep 2011) 3.7.1 The centroid of Residue disposal pump Fp1=100KN X =Y =Fp2=350KN X =Y =Fp3=250KN X =Y =Fp4=10KN X =Y =Fp5=20KNX=Y=X =Σ(Fpi × Xi) / ΣFpi = 3.7m Y=Σ(Fpi × Yi) / ΣFpi =4.66mCG30-11-116.367 4.991.069A22-11-11ZJXBByChecked RevDateByCheckedRevDate ByChecked RevDatePageofCalculation Title S11A360005011.9497.1376.89352.287.1785.782Bauxite Residue Disposal (Area 3600) SubstructurePhase/CTR3.7.2. The centroid of footing P1= 1.544 × 1.915 × 3.65 × 25=KN X =Y =P2= 1.734 × 2.71 × 5.17 × 25=KN X =Y =P3= 1.734 × 1.57 × 3.05 × 25=KN X =Y =P4= 1.484 × 1 × 1 × 25=KN X =Y =P5= 1.376 × 1 × 1 × 25=KN X =Y =P6= 1 × 5.97 × 3.65 × 20=KN X =Y =P7= 1 × 3.154 × 1.145 × 20=KN X =Y =P8= 1 × 3.04 × 5.485 × 20=KN X =Y =P9= 1 × 2.715 × 1.766 × 20=KN X =Y =P10=1 × 8.2 × 9.4 × 25=KNX =Y =X =Σ(Fpi × Xi) / ΣFpi = 3.88m Y=Σ(Fpi × Yi) / ΣFpi=4.66mCalculation Title S11A36000501PageofRevDate ByChecked RevDateByChecked RevDateByCheckedA22-11-11ZJXB30-11-112.585CG5.0051.8257.3124.97.25.675.955435.81927333.572.23 4.12.428 4.77.885.0571.8258.397.5295.890.9587.1346.955.005269.8607.437.1207.634.4Bauxite Residue Disposal (Area 3600) SubstructurePhase/CTR3.7.3 Eccentricity checkRefer DESIGN CRITERIA 8.1.4.2. (Revision 2 Date of Issue:20 Sep 2011)the base shall be proportioned to ensure that the eccentricity between the centroid of load and the centroid of the footing base are within5%of the relevant basse dimension ΔX =0.18 m < 5%*8.2=0.41 m ∆Y =0.00 m < 5%*9.4=0.47 mThere is no decentration problem.3.8 Dynamic analysisDynamic analysis is not required by Vendor 3.9 Strength designThe loading is so much less than concrete design compressive strength that it was chosen the minimum rate of reforcement the footing size : length : 9.4m width : 8.2m thickness: 1.0m cover : 75mmAs =0.0018 × 1000 × 925=1665the main reiforcement required = 1665mm 2the reiforcement used D22-200Area As(D22-200)=1900 mm2 > 1665 mm 2the original reiforcement design is OK the stirrup reiforcement used D19-200Area As (D19-200)=1417.5mm 2CG30-11-11A22-11-11ZJXBByChecked RevDateByCheckedRevDate ByChecked RevDatePageofCalculation Title S11A36000501Bauxite Residue Disposal (Area 3600) SubstructurePhase/CTR3.10. SketchCGA22-11-11ZJXB30-11-11ByChecked RevDateByCheckedRevDate ByChecked RevDatePageofCalculation Title S11A36000501Ma'adenProject NoProject TitleMa'aden Aluminium Project Calc NoBauxite Residue Disposal (Area 3600) Substructure Phase/CTR 3.10. Sketch Calculation SheetCustomer201001-00168MD-402-3600-EG-ST-CAL-00005Calculation TitleS11A36000501Page of RevDate By Checked Rev Date By Checked Rev Date By Checked A 22-11-11ZJX B 30-11-11CG。
CALCULATION SHEET FOR COMPRESSED AIR STORAGE TANK(JOB NO.: SP09-U-001)(DRAWING NO.: SP09-001-1. REV. 1)SUZHOU PFAUDLER GLASS-LINED EQUIPMENT CO., LTD苏州法德尔搪玻璃设备有限公司.TABLE OF CONTENTS1. DESIGN DATA:(1) APPLICABLE CODECUSTOMER SPECIFICA TIONASME SEC.ⅧDIV. 1 2007EDITION AND2009 ADDENDA.DOC. NO. DC-09-1/Rev 0(2) DESIGN PRESSURE INTERNAL 1.3MPa(3) DESIGN TEMPERA TURE 50℃(4) TYPE OF JOINTS OF CA TEGORIES A AND B TYPE NO.1(5) RADIOGRAPHY SPOT per UW-11(b)(6) JOINT EFFICIENCY SHELL: 0.85, HEAD: 0.85, SHEEL to HEAD: 0.85(7) CORROSION ALLOWANCE 1 mm.(8) MA TERIAL SHELL & HEAD :SA-516M Gr.485NOZZLE: SA-106Gr.BFLANGE: SA-105MSUPPORT LEGS:20(GB/T8163-2008)SUPPORT PLA TE: SA-285M Gr.CLUG:SA-516M Gr.485(9) MAX. ALLOWABLE STRESS A T DESIGNTEMPERA TURE SA-285M Gr.C:108MPa at 50℃SA-105M: 138MPa at 50℃SA-106Gr.B: 118MPa at 50℃SA-516M Gr.485: 138MPa at 50℃(10) HEAD TYPE 2:1 Standard Ellipsoidal Head(11) TANK CAPACITY 1.5 m3(12) SERVICE FLUID COMPRESSED AIR (no lethal)(13) MIN. SERVICE TEMPERA TURE -10℃(14) THE LOADING CONSIDERED IN DESIGNING SEE TABLE 1-1(15) TANK DIMENSIONS SEE FIG. 1-1TABLE 1-1 LOADING CONSIDERED IN DESIGNINGItem Description Yes No1 Internal pressure [ √ ] [ ]2 External pressure [ ] [ √ ]3 Weight of vessel [ √ ] [ ]4 Weight of normal contents under operation conditions [ ] [√ ]5 Weight of normal contents under test conditions [ √ ] [ ]6 Superimposed static reactions from weight of attached equipment [ ] [ √ ]7 The attachments of internals[ ] [ √ ]8 The attachments of vessel supports (skirt, legs, saddles etc.) [ √ ] [ ]9 The attachments of lifting lugs [ √ ] [ ]10 Cyclic and dynamic reactions due to pressure [ ] [ √ ]11 Cyclic and dynamic reactions due to thermal variations [ ] [ √ ]12 Cyclic and dynamic reactions due to equipment mounted on the vessel [ ] [ √ ]13 Cyclic and dynamic reactions due to mechanical loadings [ ] [ √ ]14 Wind reactions [ ] [ √ ]15 Snow reactions [ ] [ √ ]16 Seismic reactions [ ] [ √ ]17 Impact reactions, such as those due to fluid shock [ ] [ √ ]18 Temperature gradients [ ] [ √ ]19 Differential thermal expansion [ ] [ √ ]20 Abnormal pressure, such as those caused by deflagration [ ] [ √ ]21 Test pressure and coincident static head acting during the test[√ ] [ ] (See UG-99)LIST OF NOZZLESFIG.1-1 Brief Drawing of Shell2. THICKNESS OF CYLINDRICAL SHELL UNDER INTERNAL PRESSUREASME SEC.Ⅷ DIV.1 UG-27 ● Part: Shell ● Design pressure P (MPa) : 1.3 ● Design temperature (℃):50● Material: SA-516M Gr.485● Maximum allowable stress value at design temperature S d (MPa) : 138 ● Maximum allowable stress value at test temperature S t (MPa) : 138 ● Height to point under considerationH (m) : 1.900 ● Density of test medium (water) at test temperature ρ (kg/m 3) : 1000 ● Type of welded joints in TABLE UW-12 : Type No. (1)● Radiographic examination:SPOT Per UW-11(b)● Joint efficiency (specified in UW-12) E : 0.85 ● Corrosion allowance (designated by customer) C (mm) : 1.0 ● N ominal shell thickness tn (mm) 10 ● Inside radius corroded R (mm) : 501 ● Final center line radiusR f (mm) : 505● Original center line radius (specified in UCS-79) R o (mm):∞(Infinity )(1) Required minimum shell thickness excluding allowance (circumferential stress)0.385SE = 0.385×138×0.85=45.16> P according to UG-27(b)&(c) (a) For design conditionmm P E S PR t d 59.53.16.085.01385013.16.01min =⨯-⨯⨯=-=(b) For hydrostatic test conditionmmH E S R H P E S PR t t t 67.508.059.5)10/1000900.181.9(6.085.013850110/1000900.181.93.16.085.01385013.1)10/81.9(6.0)10/81.9(6.066662min =+=⨯⨯⨯-⨯⨯⨯⨯+⨯-⨯⨯=-+-=ρρ (2) Design thicknessRequired minimum shell thickness including allowance t=max(t min1,t min2)+C=5.67+1.0=6.67 mm (3) Provided thicknessNominal thickness (mm) 10 > t OK(4) Check minimum required thickness for paragraph UG-16 (b) (4)Minimum thickness required (including corrosion allowance) : 2.5+1=3.5mm, nominal thickness is 10mm>3.5mm, OK(5) Check extreme fiber elongation for paragraph UCS-79Maximum allowable fiber elongation without post weld heat treatment is based on the following formula: For single curvature%5%99.0%50515051050%1500<=⎪⎭⎫⎝⎛∞-⨯⨯=⎪⎪⎭⎫ ⎝⎛-=R R R t r ff None of the conditions in UCS-79 (1~5) apply, so no heat treatment after cold forming need to apply.3.THICKNESS OF ELLIPSOIDAL HEAD, PRESSURE ON CONCA VE SIDEASME SEC.ⅧDIV.1 UG-32●Part : heads●Design pressure P (MPa) : 1.3●Design temperature (℃) : 50●Material : SA-516M Gr.485 ●Maximum allowable stress value at design temperature S d(MPa) : 138●Maximum allowable stress value at test temperature S t(MPa) : 138●Height to point under consideration (bottom head) H (m) : 2.190●Height to point under consideration (top head) H (m) : 0.400●Density of test medium at test temperature ρ(kg/m3) : 1000●Type of welded joints in TABLE UW-12 : Seamless●Radiographic examination (A) : N.A●Weld joining heads to shell : Type No. (1),SPOT Per UW-11(b)●Joint efficiency (specified in UW-12(d)) E : 0.85●Corrosion allowance (designated by customer) C (mm) : 1●Inside diameter of ellipsoidal head (corroded) D 1002●Inside spherical radius of hemispherical head L (mm) : 501R f (mm) : 905●Crown final centerline radius (specified in UG-32(d)and UCS-79)r f (mm): 174.25●Knuckle final centerline radius (specified in UG-32(d)and UCS-79)●Original center line radius (specified in UCS-79) R0 (mm): ∞(Infinity)(1) Required minimum head thicknessWithout joint, according to UW-12(d), E=0.85,L=0.9D=0.9×1002=901.8mm t s /L = 8.5/901.8=0.0094> 0.002 according to UG-32(d) (a) For the top head according to UG-32(d)(a-1) for design conditionRequired minimum head thickness excluding allowance t minmm P E S PD t d 56.53.12.085.0138210023.12.021min =⨯-⨯⨯⨯=-=(b) For the bottom head(b-1) for design conditionRequired minimum head thickness excluding allowance tminmm P E S PD t d 56.53.12.085.0138210023.12.022min =⨯-⨯⨯⨯=-=(b-2) for hydrostatic test condition(Due to same dimension for ellipsoidal heads, the bottom head will be applied forcalculation)mmH E S D H P E S PD t t t 65.509.056.5)10/1000190.281.9(2.085.01382100210/1000190.281.93.12.085.0138210023.1)10/81.9(2.02)10/81.9(2.0266663min =+=⨯⨯⨯-⨯⨯⨯⨯⨯+⨯-⨯⨯⨯=-+-=ρρ (2) Design thicknessRequired minimum head thickness including allowance t=max(t min1,t min2,t min3)+C=5.65+1.0=6.65 mm(3) Provided thicknessNominal thickness (mm) 10Minimum thickness after forming (mm) 8.5 ≥ t OK(4) Check minimum head thickness for hemispherical head from paragraph UG-32 (b) & (f)0.665SE = 0.665 × 138× 1=91.77 MPa >PRequired minimum hemispherical head thicknessmm P SE PL t h 36.23.12.0113825013.12.02min =⨯-⨯⨯⨯=-=tr=t minh /E=2.36/0.85=2.78 mm < 8.5 mm OK(5) Check minimum required thickness for paragraph UG-16(b)(4)Minimum thickness required (including corrosion allowance) : 2.5+1= 3.5mm,minimum thickness after forming is 8.5mm.>3.5mm OK (6) Check extreme fiber elongation for paragraph UCS-79Maximum allowable fiber elongation without heat treatment is based on the following formula: For double curvature Crown radius elongation%5%83.0%90519051075%1750<=⎪⎭⎫⎝⎛∞-⨯⨯=⎪⎪⎭⎫ ⎝⎛-=R R R t r ff Knuckle radius elongation%5%3.4%25.174125.1741075%1750<=⎪⎭⎫⎝⎛∞-⨯⨯=⎪⎪⎭⎫ ⎝⎛-=R r r t r f f None of the conditions listed in UCS-79(d)(1) through (5) exist, so no heat treatment of heads after cold forming need to apply for SA-516M Gr.485 (P-NO.1 Group NO.2).4. THICKNESS OF NOZZLE NECK INTERNAL PRESSURE 4-1 FOR NOZZLE aASME SEC.Ⅷ DIV .1 UG-45●Design pressure P (MPa) : 1.3 ●Design temperature T (℃) : 50●Material of nozzle neck: SA-106Gr.B ●Allowablestress of nozzle neck material at design temperatureS d (MPa):118 ●Allowablestress of nozzle neck material at test temperatureS t (MPa):118●Material of shell: SA-516M Gr.485 ●Allowable stress of shell (or head) at design temperatureS s (MPa):138 ●Height to point under considerationH (m) : 1.580 ●Density of test medium at test temperature (water) ρ(kg/m 3) : 1000 ●Typeof welded joints of nozzle neck in TABLEUW-12:Seamless●Joint efficiency of nozzle neckE : 1.0 ●Corrosion allowance (designated by customer) C (mm) : 1 ●Outside radius of nozzle neckR o (mm) : 30.15 ●Nominal thickness of the standard wall pipe(B36.10M ) t std (mm) : 3.91 ●Inside radius of shell corrodedR s (mm): 501(1) Minimum required thickness of nozzle neck for par. UG-45 (a)0.385SE = 0.385× 118 ×1.00 = 45.43 > P (a) under design condition A ppendix 1-1 Required minimum thickness including allowancemmC P E S PR t d o 33.113.14.0111815.303.14.01min =+⨯+⨯⨯=++=(b)under hydrostatic test conditionRequired minimum thickness including allowancemmC H E S R H P E S PR t t ot o 334.11004.033.01)10/1000580.181.9(4.0111815.3010/1000580.181.93.14.0111815.303.1)10/81.9(4.0)10/81.9(4.066662min =++=+⨯⨯⨯+⨯⨯⨯⨯+⨯+⨯⨯=++++=ρρ (2)(3) Minimum required thickness of shell for par. UG-45 (b) (1),and UG-16 (b) (4), Es = 1.00mm3.512.575.5175.413.16.011385013.16.0=+>=+=+⨯-⨯⨯=+-=mm C P E S PR t s s s s (4)(5) Minimum thickness of standard wall pipe including allowance for par. UG-45 (b) (4)t p = 0.875t std + C = 0.875 × 3.91 + 1 =4.42mmt = (the smaller value of t s or t p ) per UG-45(b)= 4.42mm. > t min1,t min2(6) Provided thicknessNominal thickness (mm) 5.54Minimum thickness (mm) 5.54×0.875 =4.8475 ≥ t OK4-2 FOR NOZZLE bASME SEC.Ⅷ DIV .1 UG-45●Design pressure P (MPa): 1.3●Design temperature T (℃) : 50●Material of nozzle neck: SA-106Gr.B●Allowablestress of nozzle neck material at design temperatureS d (MPa):118 ●Allowablestress of nozzle neck material at test temperatureS t (MPa):118●Material of shell: SA-516M Gr.485 ●Allowable stress of shell (or head) at design temperatureS s (MPa):138 ●Height to point under considerationH (m) : 0.680 ●Density of test medium at test temperature (water) ρ(kg/m 3) : 1000 ●Typeof welded joints of nozzle neck in TABLEUW-12:Seamless●Joint efficiency of nozzle neckE : 1.0 ●Corrosion allowance (designated by customer) C (mm) : 1 ●Outside radius of nozzle neckR o (mm) : 30.15 ●Nominal thickness of the standard wall pipe(B36.10M ) t std (mm) : 3.91 ●Inside radius of shell corrodedR s (mm): 501(1) Minimum required thickness of nozzle neck for par. UG-45 (a)0.385SE = 0.385× 118 ×1.00 = 45.43 > P (a) under design condition A ppendix 1-1 Required minimum thickness including allowancemm C P E S PR t d o 33.113.14.0111815.303.14.01min =+⨯+⨯⨯=++=(b)under hydrostatic test conditionRequired minimum thickness including allowancemmC H E S R H P E S PR t t o t o 332.11002.033.01)10/1000680.081.9(4.0111815.3010/1000680.081.93.14.0111815.303.1)10/81.9(4.0)10/81.9(4.066662min =++=+⨯⨯⨯+⨯⨯⨯⨯+⨯+⨯⨯=++++=ρρ (2) Minimum required thickness of shell for par. UG-45 (b) (1),and UG-16 (b) (4), Es = 1.00mm3.512.575.5175.413.16.011385013.16.0=+>=+=+⨯-⨯⨯=+-=mm C P E S PR t s s s s(3) Minimum thickness of standard wall pipe including allowance for par. UG-45 (b) (4)t p = 0.875t std + C = 0.875 × 3.91 + 1 =4.42mm t = (the smaller value of t s or t p ) per UG-45(b) = 4.42mm. > t min1,t min2(4) Provided thicknessNominal thickness (mm) 5.54Minimum thickness (mm) 5.54×0.875 =4.8475 ≥ t OK 4-3 FOR NOZZLE dASME SEC.Ⅷ DIV .1 UG-45●Design pressure P (MPa) : 1.3 ●Design temperature T (℃) : 50●Material of nozzle neck: SA-106Gr.B ●Allowablestress of nozzle neck material at design temperatureS d (MPa):118 ●Allowablestress of nozzle neck material at test temperatureS t (MPa):118●Material of shell: SA-516M Gr.485 ●Allowable stress of shell (or head) at design temperatureS s (MPa):138 ●Height to point under considerationH (m) : 0.11 ●Density of test medium at test temperature (water) ρ(k/m 3) : 1000 ●Typeof welded joints of nozzle neck in TABLEUW-12:Seamless●Joint efficiency of nozzle neckE : 1.0 ●Corrosion allowance (designated by customer) C (mm) : 1 ●Outside radius of nozzle neckR o (mm) : 24.15 ●Nominal thickness of the standard wall pipe(B36.10M )t std (mm): 3.68●Inside diameter of ellipsoidal head (corroded)D (mm) : 1002(1) Minimum required thickness of nozzle neck for par. UG-45 (a)0.385SE = 0.385× 118 ×1.00 = 45.43 > P (a) under design condition A ppendix 1-1 Required minimum thickness including allowancemm C P E S PR t d o 265.113.14.0111815.243.14.01min =+⨯+⨯⨯=++=(b)under hydrostatic test conditionRequired minimum thickness including allowancemmC H E S R H P E S PR t t o t o 2752.110002.0275.01)10/1000110.081.9(4.0111815.2410/1000110.081.93.14.0111815.243.1)10/81.9(4.0)10/81.9(4.066662min =++=+⨯⨯⨯+⨯⨯⨯⨯+⨯+⨯⨯=++++=ρρ (2) Minimum required thickness of head for par. UG-45 (b) (1),and UG-16 (b) (4), Es = 1.00m m3.512.572.5172.413.12.01138210023.12.02=+>=+=+⨯-⨯⨯⨯=+-=mm C P E S PD t s s s(3) Minimum thickness of standard wall pipe including allowance for par. UG-45 (b) (4)t p = 0.875t std + C = 0.875 × 3.68 + 1 =4.22mm t = (the smaller value of t s or t p ) per UG-45(b) = 4.22mm. > t min1,t min2(4) Provided thicknessNominal thickness (mm) 5.08Minimum thickness (mm) 5.08×0.875 =4.445≥ t OK 4-4 FOR NOZZLE fASME SEC.Ⅷ DIV .1 UG-45●Design pressure P (MPa) : 1.3 ●Design temperature T (℃) : 50●Material of nozzle neck: SA-106Gr.B ●Allowablestress of nozzle neck material at designtemperatureS d (MPa): 118 ●Allowablestress of nozzle neck material at test temperatureS t (MPa):118●Material of shell: SA-516M Gr.485 ●Allowable stress of shell (or head) at design temperatureS s (MPa):138 ●Height to point under considerationH (m) : 2.300 ●Density of test medium at test temperature (water) ρ(kg/m 3) : 1000 ●Typeof welded joints of nozzle neck in TABLEUW-12:Seamless●Joint efficiency of nozzle neckE : 1.0 ●Corrosion allowance (designated by customer) C (mm) : 1 ●Outside radius of nozzle neckR o (mm) : 24.15 ●Nominal thickness of the standard wall pipe(B36.10M ) t std (mm) : 3.68 ●Inside diameter of ellipsoidal head (corroded)D (mm): 1002(1) Minimum required thickness of nozzle neck for par. UG-45 (a)0.385SE = 0.385× 118 ×1.00 =45.43 > P (a) under design condition A ppendix 1-1 Required minimum thickness including allowancemm C P E S PR t d o 265.113.14.0111815.243.14.01min =+⨯+⨯⨯=++=(b)under hydrostatic test conditionRequired minimum thickness including allowancemmC H E S R H P E S PR t t o t o 27.11005.0265.01)10/1000300.281.9(4.0111815.2410/1000300.281.93.14.0111815.243.1)10/81.9(4.0)10/81.9(4.066662min =++=+⨯⨯⨯+⨯⨯⨯⨯+⨯+⨯⨯=++++=ρρ (2) Minimum required thickness of head for par. UG-45 (b) (1),and UG-16 (b) (4), Es = 1.00m m3.512.572.5172.413.12.01138210023.12.02=+>=+=+⨯-⨯⨯⨯=+-=mm C P E S PD t s s s(3)Minimum thickness of standard wall pipe including allowance for par. UG-45 (b) (4)t p= 0.875t std + C = 0.875 × 3.68 + 1 =4.22mmt= (the smaller value of t s or t p) per UG-45(b)= 4.22mm. > t min1,t min2(4)Provided thicknessNominal thickness (mm) 5.08Minimum thickness (mm) 5.08×0.875 =4.445 ≥t OK4-5 FOR NOZZLE c ASME SEC.ⅧDIV.1 UG-45●Design pressure P (MPa) : 1.3●Design temperature T (℃) : 50●Material of nozzle neck : SA-106Gr.B●Allowable stress of nozzle neck material at designtemperature S d (MPa) : 118●Allowable stress of nozzle neck material at testtemperature S t (MPa) : 118●Material of shell : SA-516M Gr.485●Allowable stress of shell (or head) at designtemperature S s (MPa) : 138●Height to point under consideration H (m) : 0.55●Density of test medium at test temperature (water) ρ(kg/m3) : 1000●Type of welded joints of nozzle neck in TABLEUW-12 : Seamless●Joint efficiency of nozzle neck E : 1.0●Corrosion allowance (designated by customer) C (mm) : 1●Outside radius of nozzle neck R o (mm) : 10.65t std (mm) : 2.77●Nominal thickness of the standard wall pipe(B36.10M)Per UG45(b)(4) note26 OD38 next larger pipe size OD42.2●Inside radius of shell corroded R s(mm) : 501(1) Minimum required thickness of nozzle neck for par. UG-45 (a)0.385SE = 0.385× 118 ×1.00 = 45.43 > P (a) under design condition A ppendix 1-1 Required minimum thickness including allowancemm C P E S PR t d o 12.113.14.0111865.103.14.01min =+⨯+⨯⨯=++=(b)under hydrostatic test conditionRequired minimum thickness including allowancemmC H E S R H P E S PR t t o t o 1205.110005.012.01)10/1000550.081.9(4.0111865.1010/1000550.081.93.14.0111865.103.1)10/81.9(4.0)10/81.9(4.066662min =++=+⨯⨯⨯+⨯⨯⨯⨯+⨯+⨯⨯=++++=ρρ (2) Minimum required thickness of shell for par. UG-45 (b) (1),and UG-16 (b) (4), Es = 1.00mm3.512.575.5175.413.16.011385013.16.0=+>=+=+⨯-⨯⨯=+-=mm C P E S PR t s s s s(3) Minimum thickness of standard wall pipe including allowance for par. UG-45 (b) (4)t p = 0.875t std + C = 0.875 × 2.77 + 1 =3.42mm t = (the smaller value of t s or t p ) per UG-45(b) = 3.42mm. > t min1,t min2(4) Provided thicknessNominal thickness (mm) 4.78Minimum thickness (mm) 4.78×0.875 =4.1825 ≥ t OK 4-6 FOR MANHOLE NOZZLE eASME SEC.Ⅷ DIV .1 UG-45●Design pressure P (MPa) : 1.3 ●Design temperature T (℃) : 50●Material of nozzle neck: SA-516M Gr.485 ●Allowable stress of nozzle neck material at design temperatureS d (MPa):138●Allowable stress of nozzle neck material at test temperature S t (MPa) 138●Height to point under considerationH (m) : 1.57 ●Density of test medium at test temperature (water) ρ(kg/m 3) : 1000 ●Type of welded joints of nozzle neck in TABLE UW-12 Type No. (1) ●Radiographic examination of nozzle neckSPOT Per UW-11(b)●Joint efficiency of nozzle neck (specified in UW-12) E : 0.85 ●Corrosion allowance (designated by customer) C (mm) : 1 ●Outside radius of nozzle neck R o (mm) : 228.5 ●Inside radius of nozzle corroded R (mm) : 219.5 ●Inside radius of shell corroded R s (mm) : 501 ●Final center line radius of nozzle R f (mm) : 223.5 ●Original center line radius of nozzleR 0 (mm): ∞(Infinity)(1) Minimum required thickness of nozzle par. UG-45 (a) and UG-27 (c) (1)0.385SE = 0.385×138×0.85 = 45.16> P(a) under design conditionRequired minimum thickness including allowancemm C P E S PR t d 25.3125.213.16.085.01385.2193.16.01min =+=+⨯-⨯⨯=+-=(b)under hydrostatic test conditionRequired minimum thickness including allowancemmC H E S R H P E S PR t t t 28.3103.025.21)10/1000590.181.9(6.085.01385.21910/1000590.181.93.16.085.01385.2193.1)10/81.9(6.0)10/81.9(6.066662min =++=+⨯⨯⨯-⨯⨯⨯⨯+⨯-⨯⨯=+-+-=ρρ (c) With supplemental loading by flange and cover●Weight of flange and cover W =170kg ●Bending moment due to supplemental loadingUnder operating condition M 1 =170x9.81x0.260= 433.6N ·mUnder cover opened condition M 2 =170x9.81x0.560=933.9N ·mPer UG-27(c) and Appendix L, Use S = 138 × 1.5 = 207MPa (see UG-23(c))mmmm CSER MP SE PR t 84.1843015.11000015.0843.0185.02075.2286.4333.14.085.020725.2283.14.022213≈≈++=+⨯⨯⨯+⨯+⨯⨯⨯=+++=ππ mm C SE R M t 0.11000032.0185.02075.2289.9332224≈+=+⨯⨯⨯=+=ππ(2) Provided thicknessNominal thickness (mm) 10 > t min1,t min2,t 3,t 4 OK (3) Check extreme fiber elongation for paragraph UCS-79Maximum allowable fiber elongation without post weld heat treatment is based on the following formula: for single curvature%5%24.2%5.22315.2231050%1500<=⎪⎭⎫⎝⎛∞-⨯⨯=⎪⎪⎭⎫ ⎝⎛-=R R R t r ff None of the condition list in UCS-79 (d) (1-5) exists, so no heat treatment after cold forming need to apply.5Max. Allowable working pressure (corroded)The maximum allowable working pressure may be assumed to be the same as the design pressure when calculations are not made to determine the maximum allowable working pressure.(ASME SEC.ⅧDIV.1 UG-99 notes: 34)So we take the maximum allowable working pressure is 1.3MPa at 50 ℃6 HYDROSTATIC TEST PRESSURE AND TEMPERA TUREASME SEC. ⅧDIV.1 UG-99 ●Maximum allowable working pressure (Hot & Corroded) * (MPa) : 1.3 at 50 ℃●Hydrostatic test pressure (MPa) : 1.69●Design temperature (℃) : 50●Test temperature (℃) : 5~40●Minimum design metal temperature (℃) : -29●Material of parts of the vessel : See table 5.1●Allowable stress of vessel wall at design temperature S d (MPa) : See table 5.1●Allowable stress of vessel wall at test temperature S t (MPa) : See table 5.1*: The maximum allowable working pressure may be assumed to be the same as the design pressure.(specified in UG-99 note34)(1)Minimum required test pressure per UG-99 (b)Table 5.1 Hydrostatic Test Pressure per UG-99 (b)(2)Provided test pressure per UG-99 (h)Hydrostatic test pressure (MPa) is 1.69 at 5~40℃7REINFORCEMENT FOR OPENINGS7-1 Since the welded nozzles a(DN50)、f(DN50)、c(DN15)、d(DN40) and f(DN40) are neither subject to rapid fluctuations in pressure nor larger than 89mm, reinforcement of openings is not required. [UG-36 (c) (3)]7-2 For manhole nozzle e(DN450)per UG-37●Internal design pressure P (MPa) : 1.3●Design temperature (℃) : 50●Material of the vessel wall : SA-516M Gr.485 ●Allowable stress of the vessel wall at design temperature S V (MPa) : 138●Material of the nozzle wall : SA-516M Gr.485 ●Allowable stress of the nozzle wall at design temperature S n (MPa) : 138●Corrosion allowance (designated by customer) C (mm) : 1●Inside radius of shell corroded R (mm) : 501●Analysis thickness of the vessel wall corroded t (mm) : 9●Outside radius of the nozzle R no(mm) : 228.5●Inside radius of the nozzle corroded R n (mm) : 219.5●Analysis thickness of nozzle wall corrodedt n (mm) : 9 ●Finished diameter of opening corrodedd (mm) : 439 ●Leg length of outward nozzle fillet weldt nc (mm): 10●Angle of plane with longitudinal axis θ (deg) : 0.0 ●Correction factorF: 1.07-2-1 Size of openingSince ID is 1000mm, according to UG-36(b) (1), one half the vessel diameter is 500mm, and doesn ’t exceed 500mm, therefore, 500mm is maximum limit without considering supplemental rules of 1-7.Now, the diameter of opening is 439mm, so supplemental rules of 1-7 are not applied. 7-2-2 Wall thicknesses RequiredShell Required thickness of a seamless shell t r (E=1.0)mm P E S PR t V r 75.43.16.011385013.16.0=⨯-⨯⨯=-=Nozzle Minimum nozzle thickness due to pressure t rn (E 1=1.0)mm P E S PR t n no rn 14.23.14.011385.2283.14.01=⨯+⨯⨯=+=7-2-3 Material Strength Reduction FactorStrength reduction factor for nozzle f r1 f r1=S n /S V =138/138=1.0Strength reduction factor for nozzle f r2 f r2=S n /S V =138/138=1.07-2-4 Check for limits of reinforcement: 7-2-4(a)Limit parallel to the vessel wall:larger of d=439mm or Rn+tn+t=219.5+9+9=237.5mm Use 439mm7-2-4(a)Limit normal to the vessel wall:smaller of 2.5t==2.5×9=22.5mm or 2.5tn+te==2.5×9+0=22.5mm Use 22..5mm7-2-5Area of reinforcement required Area available in shell A 1[][]()()21111175.1865075.419143912mm f Ft t E t Ft t E d A r r n r =-⨯-⨯⨯=----=()()()()()()211112153075.4191992122mm f Ft t E t Ft t E t t A r r n r n =-⨯-⨯⨯+⨯=----+= A 1=the larger of (A 11,A 12)=1865.75 mm 2 Area available in nozzle projecting outward A 2()()22217.3089114.2955mm t f t t A r rn n =⨯⨯-⨯=-=()()22227.3089114.2955mm t f t t A n r rn n =⨯⨯-⨯=-=A 2=the smaller of (A 21,A 22)=308.7 mm 2 Area available in welds A 4 Area available in outward weld A 412222341100110)(mm f t A r L =⨯==A 4=A 41+A 42+A 43=100+0+0=100 mm 2 Total Area availableTotalA=A 1+A 2+A 3+A 4=1865.75+308.7+0+100=2274.75 mm 2 Total Area RequiredTotalA mm f F t t F dt A r r n r <=+⨯⨯=-+=2125.20850175.4439)1(2So the opening is adequately reinforced.GENERAL NOTE8 Strength calculations for nozzle attachment welds for pressure loadingFor nozzle a (DN50)、b (DN50)、c(DN15)、d(DN40)、e(DN450) and f(DN40) because their welded types are follow Fig.UW – 16.1 sketch (c) so the strength calculations for nozzle attachment welds for pressure loading are not required [UW – 15 (b)].9.Check the adequacy of the attachment welds at openings9-1 For DN50 nozzle (a and b)Size of weld required [UW – 16 (c), Fig. UW – 16.1 sketch (c)]Outer fillet weld:0.7 t min= 0.7×5.54=3.88 mm (min. Throat required)t c= the smaller of (0.7 t min. or 6mm)= 3.88mmActual fillet weld sizet c = 5mm (actual) > 3.88mm OKWeld sizes are satisfactory.9-2 For DN40 nozzle (d and f)Size of weld required [UW – 16 (c), Fig. UW – 16.1 sketch (c)] Outer fillet weld:0.7 t min. = 0.7×5.08=3.56mm (min. Throat required)t c= the smaller of (0.7 t min or 6mm)= 3.56 mmActual fillet weld sizet c= 5mm (actual) >3.56mm OKWeld sizes are satisfactory.9-3 For DN15 nozzles (c)Size of weld required [UW – 16 (c), Fig. UW – 16.1 sketch (e)] Outer fillet weld:0.7 t min = 0.7 × 4.78= 3.35mmt c= the smaller of (0.7t min or 6mm)= 3.35mmActual fillet weld sizet c = 5mm (actual) > 3.35mm OKWeld sizes are satisfactory.9-4 For DN450 Manhole nozzle (e)Size of weld required [UW – 16 (c), Fig. UW – 16.1 sketch (c)] Outer fillet weld:0.7 t min= 0.7×10 =7mmt c= the smaller of (0.7t min or 6mm)=6mmActual fillet weld sizet c = 7mm (actual) > 6mm OKWeld sizes are satisfactory.10.Check flange to nozzle neck weldsSize of weld required [UW – 21 (b), Fig. UW – 21 sketch (1)] x min=the lesser of 1.4t min or the thickness of the hub,t min= the smaller thickness of nozzle or hub.t hub= the thickness of the hub of Flange accoding to ASME B16.5-2003 10-1 For DN50 nozzle (a and b)t n=5.54mm, t hub =8.05mm, t min=5.54mm.1.4t min= 1.4×5.54 =7.76mmx min=7.76mmActual fillet weld sizex = 8mm (actual) > 7.76mm OK10-2 For DN40 nozzle (d and f)t n=5.08mm, t hub =7.75mm, t min=5.08mm.1.4t min= 1.4×5.08 =7.11mmx min=7.11mmActual fillet weld sizex = 8mm (actual) > 7.11mm OK10-3 For DN15 nozzle (c)t n=4.78mm, t hub =3.95mm, t min=3.95mm.1.4t min= 1.4×3.95 =5.53mmx min=3.95mmActual fillet weld sizex = 4mm (actual) > 3.95mm OK10-4 For DN450 nozzle (e)t n=10mm, t hub =21.6mm, t min=10mm.1.4t min= 1.4×10=14mmx min=14mmActual fillet weld sizex = 14mm (actual) = 14mm OK11Design of the supporting legs according to ( Appendix A of JB/T4712.4-2007) 11-1 Actual Load Q on Supporting LegEarthquake loading and wind loading need not be considered.Installation Size D=630mmEccentric Load G e=200×9.81=1962N Height from horizontal force acting point to base plate H=1490mmUnequal Factor k=1Total Mass m0=900kgNumber of Supporting Leg n=3Vessel outside diameter D0=1020mmTotal Vessel Height H0=2525mm。
定速鏈條式輸送機設計計算書 (Calculation Sheet of Chain Conveyor)A. 工程名稱Bottom Ash Handling System (SHI VINACOAL Project)B. 工程編號111012C. 設備名稱底灰箕斗式鏈條輸送機1) 設計條件a) 輸送機形式連續式箕斗鏈運機b) 輸送機型式(Model)BE-500c) 假比重 (BD) 1.2Ton/M3d) 設計輸送量 (Q)6Ton/M3e) 預估輸送量Ton/M3f) 輸送速度 (S)6m/min(業主指定.設計速度值,可參考表1)最高速 (Vmax)m/min(變速場合), 變速比Rs =1/4最低速 (Vmin)m/min(變速場合)g) 鏈條形式1(當使用環鏈時 = 0, 使用輸送板鏈時 = 1)型式規格(Model)RF10150S Type Conveyor Plate Link ChainAttacment形式G4鏈條排數 (n)2(單排鏈時 = 1, 雙排鏈時 = 2)單排鏈重量(We)7.23kg/m (含Attachment重量,環鏈時採鏈條重量值)破斷荷重(Lb)11500kg耐力荷重 (La)kg節距 (Pc)150mm製造商鏈條每米單位重量 Ws1 = We x n Ws1 =14.46kgh) 箕斗型式EE Type長度尺寸241mm寬度尺寸300mm高度尺寸290mm箕斗重量 (Wb)11.5kg/pc箕斗容量 (Vb)9.5liter/pc配合扣環型式單扣環重量(Wk)kg/set (鏈條採用環鏈"Short Ring Chain"場合)箕斗節距 (Ps)300mm箕斗與其附件每米單位重量 Ws2 = (Wp +Wk x n) x (1000/Ps)Ws2 =38.3333kg/mi) 電源規格AC 380 V x 50 Hz x 3 Phase2) 輸送量檢討箕斗充填效率 (Ec)70% (Ec = 60~80%)輸送量Q = (60 x V x S x BD x Ec) / Ps=9576 kg/Hr ≧6000 kg/Hr由上計算得知設計輸送量大於規格要求輸送量, 故 O.K., 另設計參數修正如下修正後 Ec =43.85965%3) 鏈條規格檢討每米單位長度鏈條與括板重量(Wc)Wc = Ws1 + Ws2 =52.79333kg/M每米單位長度輸送物重量 (W)W = 16.7 x (Q/V) =16.7kg/M上部輸送鏈輪齒數12齒, 節圓直徑 Dpu =579.555mm下部被動鏈輪齒數12齒, 節圓直徑 Dpb =579.555mm輸送高度 (H)24.3m負載側輸送鏈條於上部傳動鏈輪處產生最大張力T1計算於下TFmax = T1 = (Wc + W) x (H + H0) + C x n(H0 = k x DPb, k =3) ………. (查表8)TFmax =1909.514kg單排鏈條承受最大張力TFc max = TFmax / n =954.757kg / raw鏈條設計必要張力 TF = TFc max x Sv x Fw輸送速度/溫度安全係數 Sv =7(查表8)使用時間係數 Fw =1.4(查表9)輸送速度/齒數修正係數 Sc =1(查表9)TF =9356.6173kg <11500鏈條耐力荷重(La)由上計算得知選用之輸送鏈條規格滿足使用要求,故輸送鏈條採用RF10150S Type Conveyor Plate Link Chain4) 動力計算檢討空載側輸送鏈條於上部傳動鏈輪處因自重產生之拉力T2計算於下T2 = (Wc x H) + C =1332.878kgHm = [2 x (T1 - T2) x S x k] / (6120 x Ep)動力補償係數 k = 1.2 (此為定數經驗值 )驅動機械效率Ep =0.875 (齒輪馬達減速機 94%,滾子鏈條傳動 93~95%) Hm =1.550617KW ………...…取 1.5KW5) 動力傳動零組件規格檢討 (請參閱p.11/11圖Fig..2所示)輸送鏈條速度 V =6M/min上部鏈輪齒數 Tth =12齒, 鏈輪節圓徑 Dpu =579.5555mm故輸送機傳動軸轉速Nc = 3.2953787rpm設鏈輪齒數比 Rs =2至 2.5範圍時,減速機出力軸轉速= 6.590757至8.23845rpm出力軸轉速取 Nm =7.44rpm因輸送鏈條所造成之扭距TcTc = (T1 - T2) x (Dpu/2) =167.0962kg-m查”住友定速減速機 "BEIER-CYCLO”型錄可選擇採用下述型式Model : CHHM2-6170DB, 1.5 KW x 1/195 x Nm = 7.44 rpm x 扭距 177 kg-m 或永大減速機型錄可選用機型為1.5 KW x 1/195 x 7.44 rpm永大減速機扭力Tm = 955 x Hm / Nm =192.54kg-m故減速機選取住友減速機, 動力1.5 KW x 1/195出力軸轉速為 Ng =7.44rpm出力軸動力為Hm = 1.5KW出力軸扭距為 Tm =190kg-m修正傳動鏈輪齒數比 Rs = 2.2577071 ……….. 取 Rs = 2.25取減速機側鏈輪齒數 Tthg =16T則輸送機側鏈輪計算為 Tthc =36T, 故選 Tthc =35T修正後輸送機側轉速為 Nc = 3.4011429rpm修正後輸送鏈條速度為 V = 6.1925681M/min因此輸送機動力傳動鏈輪之轉速甚低,故傳動鏈條使用安全率取St =7設傳動鏈條規格採RS鏈條 RS-100,列數 k =2查設計便覽得Pitch =25.4mm, 平均破斷強度為 Lc =11600kg/列傳動鏈條張力 TFm = (6120 x Hb)/Vt ……….. Hb為Break Housepower 制動馬力 Hb = 0.9 x Hm = 1.35KW傳動鏈輪節圓徑 DPg =130.1961mmVt = Ng x (DPg x 3.1416) = 3.04314M/minTFm = 2714.96kg安全率 St = (Lc x k) / TFm =8.54525﹥7 … 故 OK 故鏈條取RS-100雙鏈, 鏈輪取16T/35T, 動力則決定為1.5 KW6)輸送鏈條主軸部計算與檢討 (請參閱Dwg. No.)傳動鏈輪與軸承間之距離 S1 =15.3cm輸送鏈輪與傳動側軸承間之距離 S2 =25.34cm輸送鏈輪與被動側軸承間之距離 S3 =25.34cm輸送鏈輪間之距離 S4 =33.32cm (輸送鏈條採雙排鏈場合) a) 軸所承受之彎曲力距a-1) 因輸送鏈條(單排鏈條)拉力所產生之彎曲力距 ....... (M1S2與M1S2取大值) TFc = (T1 + T2)/n =1621.1959kgM1S2 = TFc x S2 =41081.103kg-cmM1S3 = TFc x S3 =41081.103kg-cma-2) 因傳動鏈條張力所產生之彎曲力距 M2M2 = TFm x S1, M2 =41538.882kg-cm軸所承受之彎曲力距取大值 M =41100kg-cm(※為降低M2值, 可增大小鏈輪齒數, 相對增加Vt值並減小傳動鏈條張力TFm值.但此時須查大鏈輪外徑尺寸是否有空間可以安置. 另亦可減小S2距離達此目的.)b) 軸所承受之傳動扭距 T1 = (97300 x Hb)/Ng =17655.2kg-cm由”住友”型錄中得此型減速機扭距資料 Tm =19000kg-cm軸所承受之扭距取減速機值 T =19000kg-cmc) 軸徑計算 (請參閱p.11/11圖Fig. 5所示)此驅動軸受上述之彎曲力距與扭距作用時之相當彎曲力距 MeMe = 0.35 M + 0.65 (T2 + M2)1/2 =43816.5kg-cm驅動主軸軸徑 d3 = (32 x Me) / (3.1416 x Ss)Ss : S35C軸材許容剪應力 =500kg/cm2d3 =892.6205cm3d =9.628431cm因最大彎曲力距為傳動鏈條張力所發生者(M2), 故計算值為軸承部直徑, 此時驅動鏈輪部軸直徑則選取大於軸承部值, 而傳動鏈輪軸徑則選取大於或等於上述計算值即可.如果最大彎曲力距為輸送鏈條張力所發生者(M1), 則計算值為輸送鏈輪部軸直徑值, 此時軸承部軸徑則須再以M2值帶入上述Me及求d之公式得之.因上述軸徑計算為採M1值, 故計算軸徑為輸送鏈輪部軸徑值.傳動鏈條張力所產生之彎曲力距 M2 =41538.9kg-cm軸承部軸徑承受最大彎曲力距取 M =35100kg-cm此驅動軸之軸承部軸受上述之彎曲力距與扭距作用時之相當彎曲力距 MeMe = 0.35 M + 0.65 (T2 + M2)1/2 =38228.1kg-cm軸承部軸徑 d3 = (32 x Me) / (3.1416 x Ss)Ss : S35C軸材許容剪應力 =500kg/cm2d3 =778.7755cm3d =9.200343cm驅動軸部之軸徑取 d =85mm軸承部之軸徑取 d =90mm輸送鏈輪部軸徑取 d =95mm輸送鏈輪間之軸徑取 d =100mmd) 防逆轉裝置檢討當逆轉時所產生之扭距 Tr = (H + Dpu) x Qt x Dpu x 1000 x Sf/ (120 x V)使用係數取 Sr = 1.5 (查表10)逆轉防止扭距 Tr =4238.562kg-m, 配合設備型錄取 Tr =kg-m 因目前使用之輸送速度極低﹤15 m/min, 故扭距計算以下述方式計算Tr = (W x H) x Dpu x Sr =352.78412kg-m配合設備型錄取 Tr =600kg-m防逆裝置設備之最小軸徑 d3 = 16 x Tr / (3.1416 x Ss)d3 =43.173535cm3d =3.5081042cm故選主軸防逆裝置型式為椿本BS85, 其容許最大扭力為600 kg-mBS85之軸孔徑為80 mm, 軸鍵為22 x 14 mmd) 軸承規格尺寸檢討因此輸送機主軸之軸承所承受之力為徑向力,故採用UCP連座滾珠軸承或自動調心球面滾珠軸承(#12/22XX)及自動調心球面滾子軸承(#222XX).其操作條件為24 Hr/day x 365 days, 故軸承壽命取L h =50000hr (查表10)壽命係數f h = (L h/500)1/3 = 4.6415888(滾珠軸承)f h = (L h/500)3/10 = 3.9810717(滾子軸承)速度係數 f n = (33.3/Nc)1/3 = 2.1393054(滾珠軸承)f n= (33.3/Nc)3/10 = 1.9826489(滾子軸承)負載係數 f w = 1.3 (查表10)軸承處之作用力檢討a) 動力傳動側 (請參閱p.11/11圖Fig. 3所示)因傳動鏈條拉力TFm所產生者, (Se = S2 +S3 +S4 =84cm)E1 = TFm x (Se + S1)/Se =3209.4701kg因輸送鏈條拉力TFc 所產生者,F1 = TFc x (n x S3 + S4) / Se F1=1621.2kg因鏈輪自重所產生者,動力鏈輪 Wg =21kg, 輸送鏈輪 Wp =45kgG1 = [Wg x (Se + S1)+Wp x (n x S3 + S4)] / Se =69.825kg故於該側軸承所承受之力 R1 (不考慮力的方向, 取全部為同向時則為最大值)R1 = E1 + F1 + G1 =4900.491kgb) 支撐側因傳動鏈條拉力TFm所產生者, (Se = S1 + S3 + S4 =84cm)E2 = TFm x (S1/Se), E2 =494.5105kg因輸送鏈條拉力TFc 所產生者,F2 = TFc x (n x S2 + S4) / Se, F2 =1621.2kg因鏈輪自重所產生者,G2 = [Wp x (n x S2 + S4) - Wg x S1)] / Se, G2 =41.175kg故於該側軸承所承受之力 R2 (不考慮力之方向, 取全部為同向時則為最大值)R2 = E2 + F2 + G2 =2156.8814kg軸承處作用力取大值 R =4900kg[Case 1]若軸承採自動調心球面滾子軸承時,其徑向力Fr = R =4900kg,軸向力 Fa = 0 kg. 此軸承為以內環迴轉, 故 V = 1.0, 設滾子公稱接觸角為 32°,則 e = 1.5 x tan 32° = 0.94Fa / (V x Fr) = 0 ﹤e 查表得 X = 1.0, Y = 0徑向活動等值荷重 Pr = X x Fr + Y x Fa = 1.0 x Fr =4900kg基本動定格荷重 C = (f h / f n) x fw x Pr =12790.7kg基本靜定格荷重 C0 = f0 x Pr =6125kg, (靜荷重比 f0 = 1.25)可使用軸承為SN520 +#22220K + H320 (C = 20200 kg, C0 = 22900 kg)[Case 2]若軸承採UCP連座單列深溝滾珠或自動調心球面滾珠軸承時,其徑向力 Fr =4900kg, 軸向力 Fa = 0 kg.此軸承為以內環迴轉, 故 V = 1.0,Fa / (V x Fr) = 0 ﹤e 查表得 X = 1.0,徑向活動等值荷重 Pr = X x Fr + Y x Fa = 1.0 x Fr =4900kg基本動定格荷重 C = (f h / f n) x f w x Pr =13820.8kg基本靜定格荷重 C0 = f0 x Pr =6125kg, (靜荷重比 f0 = 1.25)可使用軸承為UKP318 (C = 12300 kg, C0 = 10100 kg)或 S620+2320K+H2320 (C = 11700 kg, C0 = 7500 kg)因可用軸承之C值均小於計算值, 故不可使用.故選輸送機主軸處軸承為SN520(軸徑為90mm)7)輸送鏈條尾軸部計算與檢討a)軸所承受之彎曲力距(請參閱Dwg. No.)輸送鏈輪間之距離 (雙排鏈場合) S4 =33.32cm輸送鏈輪與Take-up軸承(1)間之距離 S5 =14.34cm輸送鏈輪與Take-up軸承(2)間之距離 S6 =14.34cm輸送機尾軸為僅受輸送鏈條(單或雙排)張力作用,故其張力TFt = n x C = 100kgM = TFt x S5 =1434kg-cmd3= (32 x M) / (3.1416 x Ss)Ss : S35C中碳鋼軸材許容剪應力 =500kgd3 =29.21314cm3輸送機尾軸徑 d = 3.079822cm, 取 d =50mm尾軸軸承部軸徑取 d =50mm輸送鏈輪部軸徑取 d =60mm輸送鏈輪間之軸徑取 d =70mmb) 軸承規格尺寸檢討因輸送機尾軸之軸承所承受之力為徑向力且作Take-up用,故採用UCT連座滾珠軸承, 尾軸軸徑為50mm,軸承型式選 UCT210, (C = 3400 kg, C0 = 2550 kg ), 但已採UKT211輸送機尾軸處軸承取UKT211,(軸徑為50mm)其操作條件為24 Hr/day x 365 days, 故軸承壽命取L h =50000hr (查表10)壽命係數f h = (L h/500)1/3 = 4.6415888速度係數 f n = (33.3/Nc)1/3 = 2.1393054(滾珠軸承)負載係數 f w = 1.3 (查表10)軸承處之作用力檢討a) 支撐側 (R1側)因傳動鏈條拉力TFt所產生者, (Sk = S4 + S5 + S6 =62cm)F1 = TFt x (S4 + n x S6 )/ Sk, F1 =100kg因鏈輪自重所產生者, 尾軸輸送鏈輪重約 Wp =45kgG1 = Wp x (S4 + n x S6) / Sk, G1 =45kg故於該側軸承所承受之力 R1 (不考慮力之方向,取全部為同向時則為最大值)R1 = F1 + G1 =145kgb) 支撐側 (R2側)因傳動鏈條拉力TFt所產生者,F2 = TFt x (S4 + n x S5) / Sk, F2 =100kg因鏈輪自重所產生者G2 = Wp x (S4 + n x S5) / Sk, G2 =45kg故於該側軸承所承受之力 R2 (不考慮力之方向,取全部為同向時則為最大值)R2 = F2 + G2 =145kg軸承處作用力取大值 R =145kg軸承採UCT連座單列深溝滾珠軸承時,其徑向力Fr =145kg軸向力Fa = 0 kg, 此軸承為以內環迴轉, 故V = 1.0,Fa / (V x Fr) = 0 ﹤e 查表得 X = 1.0,徑向活動等值荷重 Pr = X x Fr + Y x Fa = 1.0 x Fr =145kg基本動定格荷重 C = (f h / f n) x f w x Pr =408.983kg基本靜定格荷重 C0 = f0 x Pr =181.25kg, (靜荷重比 f0 = 1.25)可使用軸承為UCT210 (C = 3400 kg, C0 = 2550 kg), 但已選UKT211故選輸送機尾軸處軸承為UKT211,(軸徑為50mm)8) 鏈輪處軸鍵計算與檢討(請參閱p.11/11圖Fig. 6所示)a) 減速機軸鍵檢討減速機出力軸徑為 d =70mm, 扭距Tm =19000kg-cm若減速機T值大於1.5Tc, 則以T = 1.5 x Tc計算, 並加裝設剪力銷(Shear Pin).若小於1.5 x Tc時, T採Tm 值計算. ( 1.5xTc =25064.4kg-cm)計算結果檢討選擇鍵的尺寸或直接採用減速機之規格軸鍵.計算扭距 T =17700kg-cm ( Tm / Tc = 1.13707)鍵尺寸為 W20mm x H 12mm x L85mm(t1 =7.5mm, t2 = 4.5mm)鏈輪轂徑 d1 = 1.8 x d =126mm, 取107mm 鍵採平頭鍵有效長Leq = L - (W/2) =75mm鍵所承受之壓縮力 P =T / (d/2) =5057.14kg鍵所承受之壓縮應力 (S)S = P / (Leq x t2) =1498.4127kg/cm2﹥1200 kg/cm2因計算值與比較值相差在設計許容余裕20%範圍外, 但決定採其規格軸鍵品.故選減速機軸鍵為W 20 x H 12 x L 85 mm, (此為制式產品標準規格)減速機側傳動鏈輪為 RS100 雙排 x 16T x 轂徑 107 mm x 轂長 85 mmb) 輸送機動力軸鍵檢討輸送機出力軸徑為 d =85 mm, 扭距 T =19000kg-cm傳動動力鏈條採 RS-100雙鏈者, 輸送機側傳動鏈輪為 RS-100 x 35T雙排鏈輪轂徑 d1 = (1.5 - 1.8) x d =127.5mm, to153mm鏈輪轂長 L = (1.15 - 1.3) x d =97.75mm, to110.5mm取鏈輪轂徑為127mm, 鏈輪轂長為63mm鍵尺寸為 W22mm x H 14mm x L110mm(t1 =9mm, t2 =5mm)鍵採平頭鍵有效長Leq = L - (W/2) =99mm鍵所承受之壓縮力 P =T / (d/2) =4470.59kg鍵所承受之壓縮應力 S = P / (Leq x t2) =903.149kg/cm2 ﹤1000 kg/cm2故選輸送機主軸軸鍵為W 22 x H 14 x L 110 mm,輸送機側傳動鏈輪為 RS100雙排 x 36T x 轂徑 127 mm x 轂長 110 mmc) 輸送機主軸輸送鏈輪軸鍵檢討主軸輸送鏈輪軸徑為 d =95 mm, 扭距 T =19000kg-cm 鏈輪轂徑 d1 = (1.5 - 1.8) x d =142.5mm, to171mm鏈輪轂長 L = (1.15 - 1.3) x d =109.25mm, to123.5mm取鏈輪轂徑為188mm, 鏈輪轂長為132mm鍵尺寸為 W25mm x H 14mm x L132mm(t1 =9mm, t2 =5mm)鍵採埋頭鍵有效長 Leq = L - W =107mm鍵所承受之壓縮力 P = T / (d/2) =4000kg鍵所承受之壓縮應力 S = P / (Leq x t2) =747.664kg/cm2 ﹤1000 kg/cm2故選輸送機主軸軸鍵為W 25 x H 14 x L 132 mm,輸送機主軸輸送鏈輪為 RF10150S-12T x 轂徑 188 mm x 轂長 132 mmd) 輸送機尾軸輸送鏈輪軸鍵檢討尾軸輸送鏈輪軸徑為 d =60 mm鏈輪轂徑 d1 = (1.5 - 1.8) x d =90mm, to108mm鏈輪轂長 L = (1.15 - 1.3) x d =69mm, to78mm取鏈輪轂徑為188mm, 鏈輪轂長為132mm鍵尺寸採 W18mm x H 11mm x L132mm(t1 =7.5mm, t2 = 4.5mm)鍵採埋頭鍵有效長 Leq = L - W =114mm尾軸扭距 T = 鏈輪張力TFt x (鏈輪節圓直徑 / 2), T =2897.777kg-cm 鍵所承受之壓縮力 P =T / (d/2) =965.926kg鍵所承受之壓縮應力 S = P / (Leq x t2) =188.29kg/cm2 ﹤1000 kg/cm2故選輸送機尾軸軸鍵為W 18 x H 11 x L 132 mm,輸送機尾軸輸送鏈輪為 RF10150S-12T x 轂徑 188 mm x 轂長 132 mm9) 剪力銷計算與檢討輸送鏈條所產生之扭距Tc =167.0962kg-m減速機之87.5%扭距為 Tms =166.25kg-m倘 Tms ≦ Tc 時, 此輸送機原則上不須加裝剪力銷, Ts值可為零.倘 Tms ≦ 1.5 x Tc (250.6443kg-m)時, 剪斷扭力設計值取 Ts = Tms,反之取 Ts = 1.5 x Tc, 剪斷扭力取 Ts =0kg-m剪力銷材質採SS400,其抗拉強度為41~50 kg/mm2, 降伏點為33 kg/mm2以上,假設剪斷強度為抗拉強度之70%時, 則為 Sa = 28.7 kg/mm2.減速機側傳動鏈輪PCD =130.1961mm, =0.1302m取剪力銷位置於傳動鏈輪半徑162.8325%處,故作用力位置R =106.00079mm, 取132.5mm則其剪斷力為 Ft = Ts/R =0kg剪力銷直徑d2 = (4 x Ft) / (3.1416 x Sa) =0mm2故 d =0mm, 取0mm故選剪力銷尺寸為φ x mm L~以上計算~。
1/9AN2129APPLICATION NOTE1IntroductionThanks to the high efficiency and reliability, super high brightness LEDs are becoming more and more important when compared to conventional light sources. Although LEDs can be sup-plied directly from a simple voltage source (like battery with resistor), for most applications it is better to use a switching current source to get not even higher efficiency but also to get a better light output. This paper will focus on a L6902D based DC/DC converter with dimming interface. For more details about other converters and applications for LEDs available from STMicroelectronics please refer to other application notes ([1] and [2]).2Dimming ConceptsThere are two basic principles how the light output of the LED can be controlled. Since the light brightness is proportional to the current, both methods are dealing with current regulation. The first and the easiest way is to control the LED current itself, with the principal sketch in Figure 1, where current is changed proportionally with the dimming signal. Disadvantage of this ana-log control is that there can be a significant change of color (wavelength difference could be several nanometers) in deep dimming (less that 10%). This potential disadvantage is compen-sated by a very simple control circuit (usually a simple potentiometer is enough).Figure 1. Analog current controlFigure 2. Average current control by PWMThe second method is based on an average current control (digital control) as can be seen in Figure 2. The current is switched between zero and the nominal current with a frequency high-er than 100Hz (to avoid flickering). The change of duty cycle and hence the average current change will be seen as a brightness change, because human eye reaction is slow enough to "integrate" the light output and it will not be noticed as a blinking.This method avoids the color change problem, but on the other hand it needs more sophisti-cated control circuits (usually a microcontroller or another simple PWM generator).3L6902D DC/DC ConverterThe L6902D is a complete and simple step down switching regulator with adjustable current and voltage feedback. Thanks to its current control loop with external sense resistor it is able to work in a constant current mode, providing up to 1A output current with an accuracy of 5%.Among other features there can be also found general purpose 3.3Volts precise (2%) refer-ence voltage or 2.5A (typical value) internal current limit for short circuit protection.DIMMING OF SUPER HIGH BRIGHTNESS LEDSWITH L6902DAN2129/0705Rev. 2AN2129 APPLICATION NOTEIn Figure 3 is the internal structure of the L6902D converter, the datasheet [3] should be re-ferred for more details.Figure 3. L6902D Block diagram (see [3] for details)4Application BoardAn application board using the dimming principles described above has been designed and its schematic is in Figure 5. There is only a single dimming input connector on the board; usable for both dimming methods (either analog or PWM control can be used, as preferred). There were made some changes compared to the application circuit presented in datasheet [3] al-lowing this dimming. First of all, the sense resistor has been moved from higher voltage path (coil output) to the lower one (output ground). Then three resistors were added (R4, R5 and R6) for modifying the current sense feedback.A signal between 0 and 3.3V should be used for analog (peak current) dimming. When the dimming pin is grounded (0V) the maximum output current is provided (350mA) and vice versa when 3.3V is applied to the pin, the current provided is zero and so the LED is off. There are two more pins on the board: 3.3V reference voltage pin and ground pin (a jumper can be used to connect the dimming pin to the ground pin for the maximum output). For the easiest way of dimming just connect the 10kΩ potentiometer between 3.3V and ground pins. The potentiom-eter slider should be connected to the dimming pin (as it can be seen in Figure 4).2/9AN2129 APPLICATION NOTE Figure 4. Connecting the potentiometer for analog dimmingThe second dimming method implemented on this board is a PWM control of average LED cur-rent. This control needs a digital PWM signal (amplitude can be either 3.3V or 5V) between dimming pin and ground pin. Then varying the duty cycle will change the LED brightness (100% means LED off and 0% means LED fully on).With the closer look on the application (Figure 5) it is noticeable that cathode of the LED mustnot be connected to the ground of the circuit, because there is a sense resistor between cath-ode and the ground. If by any accident, LED cathode is grounded, the current feedback loop will be inactivated and the L6902D will set the maximum output voltage (as set by the voltage divider R1 and R3) regardless the current which can eventually destroy the LED. Also care must be taken on input voltage polarity together with output LED polarity. If the input polarity is twisted, the whole IC could be damaged. While with the output polarity reversed, the board itself cannot be damaged, but the LED will see the maximum voltage (as limited by the voltage divider R1 and R3) in reverse direction.Figure 5. Board schematic (order code STLEDDCDIM-EVAL1)3/9AN2129 APPLICATION NOTE 4/9Figure 6. PCB layoutTable 1. Bill of materialsThe calculation of the resistor current feedback network can look relatively complicated, butwith few simplifications it becomes easy to take in. First assumption is that all the current flows only through the R sense (i.e. neglecting voltage drop on the resistors R4,R5 and R6); the value of R sense is defined by the output current and the threshold voltage on CS+ pin (100mV). Un-fortunately this calculation will give uncommon values (e.g. for 350mA it gives 0.2857Ω) thus the nearest higher standard (e.g. E24 series) value for Rsense should be selected (e.g. 0.33Ω)and then the difference between ideal and standard value is compensated by R4, R5 and R6to receive precise output current.The application is shifting between two limit states with dimming; maximum current (zero dim-ming voltage) and zero current (full dimming voltage). In Figure 7, the dimming network with grounded dimming input (Equation 1 describes the circuit) is shown, it means when the current flowing through the LED is on its maximum (i.e. 350mA on this board).Type ReferencePartSupplier O rder CodeCeramic Capacitor C1 10uF N/A T antal Capacitor C2 10µF; 35V N/A Capacitor SMD 0805 C3 22nF N/A Capacitor SMD 0805 C4 220pF N/ASchotky DiodeD1STPS340USTMicroelectronics Connector J1 8 -24V N/A Connector J2 Output N/A Connector J3 3.3V Vref N/A Connector J4 Dimming Input N/AConnector J6 GND N/A Coil L1 100µH ; 1.2A; 0.33ΩWürth Elektronik 744 562 0Resistor SMD 2010 Rsense 0.33 N/A Resistor SMD 0805 R1 9k1 N/A Resistor SMD 0805 R2 5k1 N/A Resistor SMD 0805 R3 510 N/A Resistor SMD 0805 R4 1k N/A Resistor SMD 0805 R5 8k2 N/A Resistor SMD 0805R627kN/AConverter U1L6902DSTMicroelectronics5/9AN2129 APPLICATION NOTEFigure 7. Dimming network with zero dimming voltage (maximum current)Eq 1The second limit state is depicted in Figure 8. In this case the current through the Rsense is zero (LED is off) and thus on point A there is a zero voltage (i.e. ground). The Equation 2shows the calculation for this state.Figure 8. Dimming network with maximum dimming voltage (zero output current)Eq 2V dimm = 0V100mV R5R6I LED R sense⋅⋅⋅R4R5⋅R4R6⋅R5R6⋅++--------------------------------------------------------------------------=V dimm = 3.3V100mV V dimMAX R4R5⋅R4R5⋅R4R6⋅R5R6⋅++--------------------------------------------------------------------------=AN2129 APPLICATION NOTE6/9Both equations (Equation 1 and Equation 2) must be valid together, i.e. two equations for three variables (I LED , R sense and V dimMAX should be selected before). One resistor must be chosen before and than the other resistors calculated from the equations mentioned. This process should be iterative (calculated for different chosen resistors) to get resistor values as close to the industrial standard values as possible. The Table 2 can help for work simplification, be-cause it contains resistor values for the most common super high brightness LEDs.Table 2. Pre-calculated standard values for feedback loop* ILED is a nominal LED current obtained with minimum dimming voltage (Vdimm=0V)**VdimMAX means dimming voltage for maximum dimming i.e. zero output current (ILED=0A)5MeasurementA couple of measurements have been performed on the board; the results are on the graphs below. One up to six LEDs in serial string have been used as load (Golden Dragon LW W5SG from OSRAM)In Figure 9 there is a LED current waveform during dimming with PWM signal at 100Hz fre-quency. It could be noticed a waveform rounding during turning-on and off, which is caused by charging the output capacitor C2. If the sharper on and off edges are needed a smaller capac-itor should be used (e.g. 1µF), but on the other side it must be taken in account that it will rise the current ripple.I LED [mA]*V dimMAX[V]**R sense [mΩ]R4 [Ω]R5 [Ω]R6 [Ω]350 3.33301000820027000700 3.320091024002000010003.3120910560024000Figure 9. PWM dimming (50%)Figure 10. Current ripple (1 LED, 15V input, 0% dimming)AN2129 APPLICATION NOTE In Figure 10 the detail of output current is depicted, where the ripple during all the measure-ment stayed below ±5mA, (i.e. less than 2%). And as mentioned above, if a less wavy output is needed, bigger output capacitor should be used, but then a slower on and off edges will ap-pear.Efficiency of the converter is processed in Figure 11 and Figure 12, where it is showed that more difference between input and output voltage or lower load current, causes lower efficien-cy. For six LEDs in one serial string (voltage drop around 20Volts) and input voltage 25V the efficiency was measured above 93%.Figure 11. Efficiency vs. input voltage (@ 350mA output current)Figure 12. Efficiency vs. number of LEDsFigure 13. Output current variation@ 25VIncreasing the number of LEDs in series in one string (on Figure 13) a lower output current can be observed (for six LEDs it is 341mA instead of 350mA). That means less than 3% difference, what should be still acceptable especially considering 5% precision of the current sensing am-plifier in L6902D.7/9AN2129 APPLICATION NOTE8/9The average value of the output current during dimming is depicted in Figure 14 and Figure 15. Almost ideal dimming curve can be observed during digital control (Figure 15). On the an-alog dimming curve (Figure 14) it can be seen that current is already zero for 3.1V in place of 3.3V. This behavior is caused by the use of industrial resistances (E24 values) instead of the exact values calculated from Equation 1 and Equation 2 and it allows to have LED safely off when maximum dimming voltage is applied.Figure 14. Output Current during analog dimmingFigure 15. Output current during digitaldimming6References and Related Materials[1]AN1891 - Application ideas: Driving LEDs using L497x, L597x, L692x DC-DC converters families[2]AN1941 - Low voltage LED driver using L6920D, L4971 and L6902D [3]L6902D Datasheet7Revision HistoryTable 3. Revision HistoryDate RevisionDescription of Changes02-Mar-20051First Issue05-Jul-20052Corrected the Eq. 2 to page 5/9AN2129 APPLICATION NOTE The present note which is for guidance only, aims at providing customers with information regarding their products in order for them to save time. As a result, STMicroelectronics shall not be held liable for any direct, indirect or consequential damages with respect to any claims arising from the content of such a note and/or the use made by customers of the information contained herein in connection with their products.Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners© 2005 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America9/9。