重庆市开县德阳初级中学七年级数学上册 第三章 一元一次方程回顾与思考教案 (新版)新人教版【精品教案】
- 格式:doc
- 大小:91.01 KB
- 文档页数:5
第3章一元一次方程3.2解一元一次方程(一)——合并同类项与移项第三课时教学目标:1、经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,进一步体会模型化的思想。
2、学会探索数列中的规律,建立等量关系,通过探究实际问题与一元一次方程的关系,感受数学的应用价值。
3、能正确地求一元一次方程并判断解的合理性,通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简捷明了,省时省力。
重点:建立列方程解决实际问题的思想方法,分析实际问题中的已经量和未知量,找出相等关系,列出方程。
难点:分析实际问题中的已经量和未知量,找出相等关系,列出方程,使使学生逐步建立列方程解决实际问题的思想方法教学过程:一、创设情境,引入新课课本P91 例4设计问题:(1)你能从表中获得哪些信息,试用自己的话说。
(2)猜一猜,哪一种计费方式合算?(3)一个月内在本地通话200分和350分,按两种计费方式各需交费多少元?(4)对于某个本地通话时间,会出现两种计费方式收费一样多吗?二、讲授新课解决问题:学生充分交流讨论后,整理归纳。
(1)用“方式一”每月收月租30元,此外根据累计通话时间按0.30元/分加收通话费;用“方式二”不收月租费,根据累计通话时间按0.40元/分收通话费。
(2)不一定,具体由当月累计通话时间决定。
(3)200分:方式一:90元;方式二:80元;350分:方式一:135元;方式二:140元。
(4)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。
如果要两种计费方式的收费一样,则0.4t=30+0.3t。
移项,得0.4t-0.3t=30。
合并同类项,得0.1t=30,系数化为1,得t=300由上可知,如果一个月内通话300分,那么两种计费方式的收费相同。
问题:分小组讨论,试有框图概括“用一元一次方程分析和解决实际问题”的基本过程。
学生思考、讨论、整理。
新人教版初中七年级数学上册第三章《一元一次方程》精品教案一、教学目标:知识与技能:1.通过本节知识的学习,使学生清楚了方程、一元一次方程的概念。
2.体会字母表示数的好处,画示意图有利于分析问题、找相等关系是列方程的重要一步,从算式到方程(从算式到代数)是数学的一大进步。
过程与方法:1.会将实际问题抽象为数学问题,通过列方程解决问题;2.认识列方程解决问题的思想以及用字母表示未知数、用方程表示相等关系得符号化方法;3.能结合具体例子认识一元一次方程的定义,体会设未知数、列方程的过程,会用方程表示简单实际问题的相等关系。
情感态度与价值观:增强用数学的意识,激发学习数学的热情。
二、教学重点:会根据实际问题列出一元一次方程。
三、教学难点:会根据实际问题列出一元一次方程。
四、教学过程设计:一、选择题1.在①2x+3y-1;②1+7=15-8+1;③1-12x=x+1④x+2y=3中方程有( )个. ( ) A.1 B.2 C.3 D.42.若方程3ax -4=5(a 已知,x 未知)是一元一次方程,则a 等于( ) A.任意有理数 B.0 C.1 D.0或13.x=2是下列方程( )的解.A.2x=6B.(x-3)(x+2)=0C.x 2=3 D.3x-6=04.x 、y 是两个有理数,“x 与y 的和的13等于4”用式子表示为( ) A.1()43x y += B.143x y += C.143x y ++= D.以上都不对 二、填空题5.在方程①732-=-x ②32=-b a ③963-=+y y ④212=x ⑤y y 31421=-中是一元一次方程的是 。
三、解答题6.王浩妈妈买了6千克香蕉和3千克苹果,共花去51元钱,但她忘了香蕉的价格,只记得苹果每千克5元,她想考一考正上七年级的王浩,你能替王浩得出香蕉的价格吗? 附答案:1.B 2.C 3.D 4.A 5.①③⑤6.解:设香蕉的单价为x 元,根据题意,得51356=⨯+x七年级数学(上册)第 2 课 3.1.2 等式的性质一、教学目标:知识与技能:1.会利用等式的两条性质解方程.过程与方法:2.利用天平,通过观察、分析得出等式的两条性质.情感态度与价值观:培养学生参与数学活动的自信心、合作交流意识.二、教学重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程.三、教学难点:由具体实例抽象出等式的性质.四、教学过程设计:达标测评题(时间约5分钟,题目、题型要根据本节内容灵活把握)一、选择题1.下列方程的解是x=2的有().A.3x-1=2x+1 B.3x+1=2x-1 C.3x+2x-2=0 D.3x-2x+2=0 2.下列各组方程中,解相同的是().A .x=3与2x=3B .x=3与2x+6=0C .x=3与2x-6=0D .x=3与2x=5 二、填空题3.在等式2x-1=4,两边同时________得2x=5. 4.在等式5x=5y ,两边都_______得x=y . 5.在等式-13x=4的两边都______,得x=______. 三、解答题6.用等式的性质解方程(1)x+2=5; (2)-3x=15; (3)23x-1=5. 附答案:1.A2.C3. 加14. 除以55.乘-3 , x=-12 6.解:(1)两边减2,得x+2-2=5-2 ,于是 x=3(2)两边同除以-3,得31533-=--x ,于是 x=-5 (3)两边加1,得23x-1+1=5+1,化简,得23x=6,两边同乘23,得x=9。
课题: 3.1.1一元一次方程(1)教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。
教学难点均是从实际问题中寻找相等关系。
知识重点教学过程(师生活动)设计理念情境引入教师提出教科收第66页的问题,并用多媒体直观演示,同进出现下图:问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:()50701510702301513+⨯--=-()50701310502301513+⨯-+=-问题3:能否用方程的知识来解决这个问题呢?用多媒体演示的目的是使学生能直观地理解“匀速”的含义,为后面寻相等关系做准备。
培养学生读图的能力和思维的广阔性。
这样既可以复习小学的算术方法,又为后面与方程的比较打下伏笔。
提出问题:引出新课学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.2、教师引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的渗透列方程解决实际问题的思考程序。
理解题意是寻找相等的关系的前提。
考虑到学生寻找关系的难课题:3.1.1 一元一次方程(2)方法.估算求解列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以像教科书那样用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边的值相等的未知数的值,叫做方程的解.求方程的解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代人方程,看方程左右两边的值是否相等.估算是一种重要的方法,应引起重视。
13中教案第4课时--0081.2.3相反数[教学目标]1、借助数轴理解相反数的意义,2、懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;3、使学生体会相反数的意义,简化数的符号,学习观察、归纳、概括的策略与方法;[重点与难点]重点:理解相反数的意义,会求一个数的相反数。
难点:理解和掌握双重符号的简化。
[教学过程](一)复习引入:在数轴上表出下列各数:0, 2,- 2, 5,- 5 (让全班同学练习,其中一位同学到黑板上板演)引导学生观察数轴上表出的两对数(3与-3,4与-4)具有什么共同特征,以此引出课题,这样的一对数就是本节课所要学的内容。
[板书:1.4 相反数](二)新课教学:1、互为相反数概念的建立观察课本第10页的图1.2-4中的两个点,它们的位置关系如何?各表示的数有什么特点?概括:1、每一对数。
只有符号不同。
2、在数轴上表示每一对数的两个点分别在原点的两边,且离开原点的距离相等。
3、两点分别位于原点的两边,且与原点的距离相等,它们分别表示-6和6。
思考:数轴上与原点的距离是2的点有几个?这些点表示的数是什么?与原点的距离是5的点呢?归纳:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,那么称这两个点关于原点对称。
(作图示)1、定义:互为相反数的概念:只有符号不同的两个数,叫做互为相反数。
如,+3与-3互为相反数,+4与-4互为相反数。
加深理解概念:“只有”“互为”你是怎样理解的?注意:(1)互为相反数是成对出现的,不能单独存在,例如+3的相反数是-3,同时-3的相反数是+3。
(2)零的相反数是零2、找一个数相反数的方法13中教案第4课时—009处理:先让学生根据相反数的概念自己说一说怎样找一个数的相反数,然后教师再总结。
练习:课本第13页中的练习。
指名演板,然后评讲。
3、化简处理:教师先简说“化简”的含义,然后再举例说明怎样化简。
第三章一元一次方程活动教案教学内容课本第110页至第111页内容.教学目标1.知识与技能运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法.2.过程与方法(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,•通过分析问题中的数量关系,进行预测、判断.(2)运用所学过的数学知识进行一次市场调查,•体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力.3.情感态度与价值观通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度.重、难点与关键1.重点:经历探索具体情境中的数量关系,•体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题.2.难点:以上重点也是难点.3.关键:明确问题中的已知量与未知量间的关系,寻找等量关系.教具准备投影仪:每人一根质地均匀的直尺,一些相同的棋子和一个支架.教学过程一、活动1教师组织学生按四人小组进行合作学习,对数学活动中的三个问题展开讨论,探究解决问题方法,然后各小组派代表发表解法.1.一种商品售价为2.2元/件,如果买100件以上,超过100件部分的售价为2•元/件,某人买这种商品共花了n 元,讨论下面的问题:(1)这个人买了这种商品多少件?(注意对n 的大小要有所考虑) (2)如果这个人买这种商品的件数恰是0.48n ,那么n 的值是多少?分析:(1)根据以上规定,如果买100件,需要花220元,当n ≤220时,这个人买了这种商品件2.2n (即511n ),当n>220时,这个人买了这种商品的件数为100+2202n -件,(即202n -件). (2)这个人买这种商品的件数恰是0.48n ,即511n =0.48n ,或202n -=0.48n ,•显然方程511n=0.48n 无解.解另一个方程得n=500. 2.根据国家统计局资料报告,2006年我国农村居民人均纯收入3587元,比上一年增长10.2%,扣除价格因素,实际增长7.4%.你理解资料中有关数据的含义吗?如果不明白,请通过查阅资料或请教他人弄懂它们,根据上面的数据,试用一元一次方程求:(1)2005年我国农村居民人均纯收入(精确到1元)(2)扣除价格因素,2006年与2005年相比,我国农村居民人均纯收入实际增长量(精确到1元).建议上本节课前,•可以布置学生去查阅资料或请教他人弄清什么叫做“纯收入”、“增长10.2%”和“扣除价格因素”等含义.增长率问题有三个基本量:净增量、基础量、增长率.基本关系是:基础量×增长率=净增量(1)设2005年我国农村居民人均纯收入为x 元,由2006年比2005年增长10.2%,•得2006年比2005年人均纯收入增加了10.2%x 元,2006年农村居民人均收入为x+10.2%x=(1+10.2%)x 元,根据2006年农村居民人均收入3587元,列方程为 (1+10.2%)x=3587 解这个方程,得x ≈3255因此2005年我国农村居民人均纯收入为3255元.(2)2006年比2005年,我国农村居民人均纯收入实际增长量=2005•年农村居民人均纯收入×实际增长率,即 3255×≈241(元)活动3:内容阅读课本第111页,活动3内容,教师组织学生分小组进行实验. 活动2•建议上本节课前,•可以布置学生去查阅资料或请教他人弄清什么叫“增长约3%”和“增幅提高约1个百分点”.增长率问题有三个基本量:净增量、基础量、增长率. 基本关系有:增长率=100%,⨯=净增量净减量降低率基础量基础量×100%这里“增长约3%”是表示:2001年我国农民人均收入=2000年我国农民人均收入+2000年我国农民人均收入×3%,即2000年我国农民人均收入×(1+3%)=2320.“增幅提高1个百分点”表示:2001年我国农民人均收入比2000年增长3%,•这是2000年比1999年增长率多1%,即2000年比1999年增长2%. 设2000年我国农民人均收入约x 元,根据相等关系,列方程 (1+3%)x=2320 ()解方程,得x≈2252所以2000年我国农民人均收入约2252元.设1999年我国农民人均收入约y元,列方程(1+2%)y=2252解,得 y≈2208所以1999年我国农民人均收入约2208元.三、活动3本活动,课前布置学生做好活动前的准备工作:1.准备一根质地均匀的直尺、一些相同的棋子和一个支架.(如三棱柱)2.分组.(2人或4人一组)开始做下面的实验:(1)把直尺的中点放在支点上,使直尺左右平衡.注意:如果把直尺中点放在支点上,但直尺左右不平衡,说明直尺质地不均匀.(2)在直尺两端各放一枚棋子,这时直尺还是保持平衡.注意:中点不要移动,还是在原来的支点上,棋子要放在直尺的末端,离中点位置相等.(3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,•然后记下支点到两端距离a和b.(不妨设较长的一边为a)(4)在有两枚棋子的一端再加一枚棋子,移动支点的位置,使两边平衡,•再记下支点到两端的距离a和b.四、在棋子多的一端继续加棋子,并重复以上操作根据统计记录能发现什么规律?以上实验过程可以填写在预先设计的记录表上.根据记录下的a、b值,探索a与b的关系,由于目测可能有点误差.根据实验得出a、b之间关系,猜想,当第n次实验时,a和b的关系如何?•(a=nb)如果直尺一端放一枚棋子,另一端放n枚棋子,支点应在直尺的哪个位置?•设直尺长为L,用一元一次方程求解.解:设支点距离放n枚棋子的一端距离为x,根据实验所得结论,支点离一枚棋子的一端距离为nx,根据相等关系,列方程:x+nx=L.合并(1+n)x=L(n为x的系数,这里1+n≠0)系数化为1,得x=1Ln.五、作业布置1.了解实际生活中的类似活动1的问题,并举出几个例子.2.从报刊、图书、网络等再收集一些数据,分析其中的等量关系,•编成问题,看看能否用一元一次方程解决这些问题.3.选用课时作业设计.课时作业设计解答题:1.在环保知识竞赛中,某校代表队的平均分是88分,其中,•女生的平均成绩比男生高10%,而男生人数比女生多10%,问男、女生的平均成绩各是多少?2.据了解,个体服装销售只要高出进价的20%便可盈利,•但老板们常以高出进价的50%~100%标价,假如你准备买一件标价为200元的服装,应在什么X围内还价?3.某开发公司生产的960件新产品,需要精加工后才能投放市场,现甲、•乙两个工厂都想加工这批产品,已知单独加工完这批产品甲工厂比乙工厂多用20元,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费每天80元,•乙工厂加工费每天120元,在加工过程中,公司需派一名工程师每天到厂里进行技术指导,并负担每天5元的误餐补助费.(1)求甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成;•也可以由两个厂家同时合作完成.请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.。
课题解一元一次方程
【教材分析】
教材是把解一元一次方程分成了两节内容约8个课时.以较为简单的实际问题为作为讨论方程解法的背景,一方面,可使学生感觉到要讨论的解法来源于实际问题的需要,另一方面,可根据实际问题列方程贯穿于全章,将列方程的教学拉长.从而达到由简单问题到复杂问题逐步提高学生列方程的能力的教学效果.
【学情分析】
已经会解一些简单的一元一次方程,根据自己现有知识,部分学生能够解出含分母的一元一次方程,所以我从学生的角度出发,由生活中的简单问题列出带有分母的一元一次方程.然后让学生尝试解这样的一元一次方程,在学生交流展示的基础上总结出解一元一次方程的一般步骤.
【教学目标】
1会解一元一次方程
2理解解一元一次方程的一般步骤
3体会解法中蕴含的化归思想
【教学重难点】
教学重点:解一元一次方程的一般步骤
教学难点:解一元一次方程的一般步骤
【教学流程】。
第3章一次方程与方程组3.1 一元一次方程及其解法第1课时一元一次方程和等式的基本性质【知识与技能】1.经历对实际问题中数量关系的分析,建立一元一次方程的过程,体会学习方程的意义在于解决实际问题.2.通过观察,归纳一元一次方程的概念.3.理解等式的基本性质,并利用等式的基本性质解一元一次方程.4.初步认识方程模型,体会数学模型思想,逐步提高学生分析问题和解决问题的能力.【过程与方法】从一个学生熟悉的实例引入一元一次方程,并通过各种师生活动加深学生对“一元一次方程”的概念和等式的基本性质的理解;并使学生会利用等式的基本性质解方程,逐步提高学生解决问题的能力.【情感态度】从学生的生活实际中提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,培养学生思维严谨的良好素养.【教学重点】重点是对一元一次方程概念的理解,会运用等式的基本性质解简单的一元一次方程.【教学难点】难点是对等式基本性质的理解与运用.一、情境导入,初步认识【情境1】实物投影,并呈现问题:判断下列各式是不是方程.(1)m=0;(2)-2+5=3;(3)x>3;(4)x+y=8;(5)2a+b;(6)2x2-4x+1=0.你能说出什么是方程吗?【情境2】实物投影,并呈现问题:(1)情境漫画:好马和劣马沿同一条路径旅行,好马每天走240里,劣马每天走150里,劣马先走12天,好马若干天可以追上劣马.你能列出相应的方程吗?(2)学生问老师多少岁,老师说我像你这么大时,你才2岁,你长到我这么大时,我就41岁了.请你算算老师、学生各多少岁?你能列出方程吗?你能说出以上两个方程的共同点吗?【教学说明】学生独立思考后,小组讨论,教师注意引导学生正确地列出方程,从而得出一元一次方程的概念.情境1中(1)(4)(6)是方程,含有未知数的等式叫做方程.情境2中(1)设好马x天追上劣马,列方程240x=150×12+150xx岁,则老师(2x-2)岁,列出方程2x-2+x-2=41.两个方程都含有一个未知数,未知数的次数是1,且方程的两边都是整式.【教学说明】通过现实情景再现,让学生体会到数学模型的意义,发展学生的应用意识.通过前面的情景引入,激发学生的探究欲望,并使学生获得大量的感性材料,有趣的情境也激发了学生学习的兴趣.二、思考探究,获取新知问题1什么是一元一次方程?问题2什么是一元一次方程的解?【教学说明】学生通过阅读教材和观察生活,在经过观察、分析后能得出结论.【归纳结论】只含有一个未知数,并且未知数的次数是1,且等式两边都是整式的方程叫做一元一次方程.使方程左右两边的值相等的未知数的值叫做方程的解.一元一次方程的解也叫一元一次方程的根.问题1等式的基本性质的内容是什么?问题2什么是等量代换?【教学说明】一方面让学生经历用字母表示数,在用字母表示数和数量关系的过程中体会用字母表示数的意义,另外发展学生运用符号的意识.【归纳结论】等式的基本性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.用式子形式表示为:如果a=b,那么a+c=b+c,a-c=b-c.性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.用式子形式表示为:如果a=b,那么ac=bc,a b=c c(c≠0).性质3:如果a=b,那么b=a.(对称性).性质4:如果a=b,b=c,那么a=c.(传递性).在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换.三、运用新知,深化理解().A.S=12ab B.x-y=0 C.x=0D.123x=1 E.3-1=2 y-5=1x2+2x+1=0 H.x+2.2.说明下列变形是根据等式的哪一条基本性质得到的?(1)如果5x+3=7,那么5x=4;(2)如果-8x=16,那么x=-2;(3)如果3x=2x+1,那么x=1;(4)如果-8=y,那么y=-8.x+1=9的解.(1)x=2(2)x=3.4.利用等式的性质解方程:(1)2x-4=18(2)2y+8=5y【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识.通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识.F2.(1)等式的基本性质1(2)等式的基本性质2(3)等式的基本性质1(4)等式的基本性质33.(1)把x=2分别代入方程的左边和右边,得左边=4×2+1=9,右边=9,因为左边=右边,所以x=2是方程4x+1=9的解.(2)把x=3分别代入方程的左边和右边,得左边=4×3+1=13,右边=9,因为左边≠右边,所以x=3不是方程4x+1=9的解.4.(1)x=11(2)y=8 3四、师生互动,课堂小结1.什么叫一元一次方程?等式的基本性质是什么?2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第87页“练习”和教材第90页“”中选取.2.完成同步练习册中本课时的练习.“等量关系”,体会建立数学模型的思想.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.。
最新精品部编版人教初中七年级数学上册第3章《一元一次方程》优秀教学设计(全章完整版含教学反思)前言:该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)第三章一元一次方程课题: 3.1.1一元一次方程(1)教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。
教学难点均是从实际问题中寻找相等关系。
知识重点教学过程(师生活动)设计理念情境引入教师提出教科收第66页的问题,并用多媒体直观演示,同进出现下图:问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:用多媒体演示的目的是使学生能直观地理解“匀速”的含义,为后面寻相等关系做准备。
培养学生读图的能力和思维的广阔性。
这样既可以复习小学的算术方法,又为后面与方程的比较打下伏笔。
提出问题:引出课题:3.1.1 一元一次方程(2)。
4.1.1 几何图形【教学目标】:知识与技能:通过实物,经历探索物体与图形的形状、大小、位置关系的过程,能认识常见的几何图形,并能用自己的语言描述常见几何图形的特征。
过程与方法:在探索几何图形的形状、位置和大小的过程中,建立空间观念,发展几何直觉,能从实物中抽象出几何体。
情感态度与价值观:体验在实际生活中几何图形的广泛存在与应用;认识几何图形与生活的紧密联系。
【重点难点】:重点:认识几何图形。
难点:从具体事物中抽象出几何体。
关键:建立好实物与几何图形两者之间的联系,发展几何直觉。
【教学过程】:一、引入新课:教师出示图形并提出问题:1、请大家看下图,看谁能画出北京天坛主体建筑物的图画?(学生动手画图。
)2、感到无从下手的同学,看一下虚景图形,它们是你小学学过的哪种图形?(分层教学)3、教师先引导会画的学生口述画法,之后,用多媒体课件展示,把建筑物的各部分分割成小学学过的几何图形:圆锥、圆柱、三角形、长方形等。
(学生从多渠道增加感知。
)二、新课探究一:教师再出示另一幅图形并提问。
1、上面各实物图片中,有多少个物体?2、这些物体的哪些形状类似?属于哪种几何体?你能说出理由吗?3、你能说出现实生活中还有哪些实物具有上面几何体的特征?(学生思考,小组交流,讨论完成三个题目)教师归纳:对于各种物体,如果不考虑它们的颜色、材料、质量等,而只注意它们的形状(如方的、圆的)、大小(如长度、面积、体积等)和位置(如平行、相交、垂直等),就得到我们今后要学习的几何图形。
把下面的实物与相应的几何体用线连接起来:(学生独立完成,动手操作。
)三、新课探究二:1、各组讨论,上边练习中的六种几何体可以分哪几类?2、总结出这样分类的理由。
引导学生分两类:一类是长方体、棱柱、立方体;另一类是球体、圆柱、圆锥。
分类依据:第一类表面都是平面,第二类表面有曲面。
(用课件展示平面与曲面)(学生分组讨论,组内选一名代表回答,各组在全班交流结果。
第三章一元一次方程-回顾与思考教案
复习内容
第三章一元一次方程所有内容.
复习目标
1.知识与技能
熟练掌握一元一次方程的解法,会运用方程解决实际问题.
2.过程与方法
通过回顾与思考,使学生有目的地梳理所学的知识,形成知识体系,促使学生反思知识获得的过程,形成自己对所学知识较为深刻、独特的理解,在此过程中提高自己的归纳、概括等能力,形成反思的意识.
3.情感态度与价值观
培养学生对知识的适移意识,合作交流能力,体会数学的应用价值.
复习过程
一、引导学生回顾本章知识内容,建立以下知识结构图
二、回顾与思考
1.方程是刻画现实世界的有效数学模型,运用方程解决问题,•关键是分析问题中的数量关系,找出其中能表示题目全部含义的相等关系,在寻找相等关系中,一种是明显的相等关系,它是通过问题中的一些关键性词语表现出来的.另一种是隐晦的相等关系,必须在审题时,分析题意而得到,有时我们可以借助图表等分析,在得到方程的解后,要检验它是否符合实际意义,你怎样判断一个方程的解是否符合要求?请举例说明.
2.你是如何解一元一次方程的?举一个例子说明解方程过程.
解一元一次方程的一般步骤是:去分母、去括号、移项、合并、系数化为1.
三、巩固练习
1.课本第113页复习巩固第1题.
(1)最高温度为(t+15)℃;
(2)男生人数是(1-49%)a=1020;
(3)80%b-10=70;
(4)
45000
30
a
=200.
2.解方程1
6
(3x-6)=
2
5
x-3
解法1:去括号,得1
2
x-1=
2
5
x-3
去分母,得5x-10=x-3
移项,合并,得x=-20
解法2:去分母,得5(3x-6)=12x-90
去括号,得15x-30=12x-90
移项,合并得3x=-60
系数化为1,得x=-20
解方程的五个步骤并不是一成不变的,应该根据题目特点灵活进行.总之,想办法将一元方程变形,最终变形为x=a形式,•变形的依据是等式性质和有理数运算法则.求出x 值后,将其代入方程两边,检验.
3.一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,试讨论并回答:
(1)什么情况下,购会员证与不购证付一样的钱?
(2)什么情况下,购会员证比不购证更合算?
(3)什么情况下,不购会员证比购证更合算?
分析:这是一个探索性问题,购会员证合算,还是购证合算,这与进入游泳馆的次数有关,我们可以用方程解决这个问题.
(1)设在6~8月期间共购x张入场券,购会员证与不购证付一样的钱.
购会员证:x张入场券共需费用是(80+x)元;
不购会员证:x张入场券共需费用为3x元.
根据相等关系,列方程:
80+x=3x
解方程,得x=40
所以在6~8月期间,共购入场券40张时,购会员证与不购会员证付一样的钱.
(2)购入场券多于40张时,购会员证比不购证合算.
(3)购入场券小于40张时,不购会员证比购证合算.
4.你能利用一元一次方程解决下面的问题吗?
在3时和4时之间的哪个时刻,钟的时针与分针:
(1)重合;(2)成平角;(3)成直角.
分析:①分针每分钟转过多少度?
②分钟转过一周要多少时间?时针转过一周要多少时间?从而知道时针旋转的速度与分针旋转的速度之间有什么关系?
③3时整时钟的时针与分针的夹角是多少度?
④本问题的相等关系是什么?
分针旋转一周(360°)要60分钟,所以分针每分钟转360
60
=6°.
分针旋转一周要1小时,时针旋转一周要12小时,•所以时针的旋转速度是分针的
1 12
.
3时整时,时钟的时针与分针的夹角是90°.
解:(1)设3时x分时,钟的时针与分针重合,那么这时分针旋转了6°x,•时针旋
转了6
12
x
.相等关系是:时针旋转的度数+90°=分针旋转的度数.(如右图)
列方程:
6
12
x
+90=6°x
解方程,得x=
180
11
=16
4
11
(分)
所以约在3时16
4
11
分时,时钟的时针与分针重合.
(2)设3时x分时,时钟的时针与分针成平角,这时,相等关系是:
时针旋转的度数+90°+180°=分针旋转的度数(如右图).
列方程为:
6
12
x
+90+180=6x
解方程,得x=
540
11
=49
1
11
(分)
所以约3时49
1
11
分时,钟的时针与分针成平角.
(3)设3时x分时,时钟的时针与分针成直角,相等关系是:时针旋转的度数+90°
+90°=分针旋转的度数(如右图).
列方程为:6
12
x
+90+90+6x
解方程,得x=360
11
=32
8
11
(分)
所以约在3时328
11
分时,钟的时针与分针成直角.
思路点拨:如何找出问题的相等关系是难点,我们可以先用图解法分析题意,即用图把分针和时针原来所在的位置(3点整),•以及重合时所在的位置表示出来,并且假设x 分重合,那么,从图里可以看出,两针重合时,•分针转过的度数等于时针转过的度数+原来时针与分针的夹角90°,然后凭我们的生活经验,求出分针旋转速度、时针的旋转速度,从而得到方程,同样方法可得到另外两种情况.
5.儿子今年13岁,父亲今年40岁,父亲的年龄可能是儿子4倍吗?
解:设过x年父亲的年龄是儿子的4倍,那么x年后儿子(13+x)岁,父亲(40+x)岁,•列方程为:
40+x=4(13+x)
解得x=-4(问题有解吗?x表示什么?)
过-4年就是4年前,
所以4年前父亲的年龄是儿子年龄的4倍.
四、作业布置
1.课本第113页至第114页复习题2第2(1)(2)(3)、3、4、5、6、9题.
2.选用课时作业设计.
课时作业设计
二、选择题:
5.在方程3x+5=0;x=1+2x ;x 2-9=0;1x
+1=5;2x 2=2(x-1)中是一元一次方程的个数为(• ).
A .1个
B .2个
C .3个
D .4个
6.解方程21336
x x -+-=1,去分母正确的是( ). A .2(x-2)-(1+3x )=1 B .2(x-2)-1+3x=6
C .2x-2-1+3x=6
D .2(x-2)-(1+3x )=6
7.某机关现有工作人员x 人,现在的人数比三年前减少40%,原有人数为( ).
A ..(140%).(140%).140%140%
x
x B x C x D +-+- 三、解方程.
8.(1)2x-23(x+3)=-x+3; (2)5415523412
x x x +-++=-. 四、解答题.
9.某车间加工螺丝和螺母,一个螺丝配两个螺母就可以包装运进库房,该车间现有工人60名,一个工人每小时能加工15个螺丝或10个螺母,问:工人怎样分配工作,才能保证生产出的产品及时包装运进库房?。