2018年高考数学常见题型解法归纳反馈训练第50讲通过三视图找几何体原图的方法
- 格式:doc
- 大小:235.50 KB
- 文档页数:6
高考有方法——三视图解题超级策略一、三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、还原三视图的常用方法1、方体升点法;2、方体去点法(方体切割法);3、三线交汇得顶点法方法一方体升点法例1:(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析根据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD 中,VD=VB2+BD2= 3.跟踪训练1.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练2.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练3.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.方法二方体去点法例2:如图所示为三棱锥的三视图,主视图、俯视图是直角边长为2 的等腰直角三角形,求三棱锥的表面积或体积.跟踪训练4.如图所示为三棱锥的三视图,主视图、侧视图是直角边长为4,宽为3 的直角三角形,求三棱锥的表面积或体积.跟踪训练5.如图所示为三棱锥的三视图,三视图是直角边长为4 等腰直角三角形,虚线为中线,求三棱锥的表面积或体积.方法三三线交汇得顶点法例3:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.B.6 C.D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.第二步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最后一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可跟踪训练6.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:跟踪训练7.如图所示为四棱锥的三视图,主视图是直角边长为4 等腰直角三角形,侧视图是边长为4 的正方形,求四棱锥的表面积或体积.跟踪训练8. 如图所示为四棱锥的三视图,主视图是边长为4 的正方形,侧视图是直角边长为4 等腰直角三角形,求四棱锥的表面积或体积.跟踪训练9.如图所示为四棱锥的三视图,主视图是长为4,高为5 的长方形,侧视图的长为3 的长方形,俯视图为直角三角形,求四棱锥的表面积或体积.三视图练习1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.40+2、某几何体的三视图如图所示,则该几何体的体积为_____________.3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )DA 、8πB 、252π C 、12π D 、414π4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A侧视图俯视图正视图2A 、2B、4 C 、83D 、2 5、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )81 (B )71 (C)61 (D )516、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )C A. 1727 B. 59C. 1027D. 137、一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A(A) (B) (C)(D)8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B )1()A 6 ()B 9 ()C 12 ()D 189、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D10、某几何体的三视图如图所示,则该几何体的体积为_____________.11_____________.20或1612、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于13、某几何体的三视图如图所示,则该几何体的体积为_____________.8314、某几何体的三视图如图所示,则该几何体的体积为_____________.15、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )816、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )A. B. C .6 D .417.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+323。
第50课 空间几何体的三视图和直观图1.空间几何体的直观图画法步骤具体画法画轴①原图形中,取互相垂直的x 轴、y 轴、z 轴,三轴相交于点O .②直观图中,画x '轴、y '轴、z '轴,三轴相交于点O ',使45,90x O y x O z ''''''∠=∠=o o .画线原图形中平行于x 轴、y 轴、z 轴的线段,在直观图分别画成 x y z 平行于轴、轴、轴.取长度①原图形中平行于x 轴、z 轴的线段,在直观图中长度保持不变.②原图形中平行于y 轴的线段,在直观图中长度为原来的一半.例1. 平放置的ABC ∆的斜二测直观图如图所示,若112A C =,ABC ∆的面积为22, (1)111A B C ∆ 的面积(2)求11A B 的长.【解析】由直观图可知AC BC ⊥,112BC B C =,2AC =, 又∵1222AC BC ⋅=,∴22BC =,∴ 11122B C BC ==,(1)111A B C ∆ 的面积为111111111sin 4522sin 45122A B C S AC B C ∆=⋅=⨯⨯⨯=o o(2)2201122222cos45A B =+-⨯⨯⨯2=,∴ 112A B =.练习:如图,已知ABC ∆的斜二测直观图是边长为2的等边111A B C ∆,求:(1)图中a 的值(2)原ABC ∆的面积【解析】(1)在111A D C ∆中,由正弦定理,得26sin120sin 45a a =⇒=o o(2)原ABC ∆的面积为122262ABC S a ∆=⨯⨯=归纳:直观图的面积是原平面图形面积的24倍.2.(1)空间几何体的三视图 名称 观察方向 反映物体的正视图 和 . 侧视图 和 . 俯视图和 .B 1x 'C 45o y 'C 1 A 1俯视图正视图侧视图正视图俯视图侧视图正视图侧视图C 1B 1D 1DCBA(2)空间几何体的三视图的画法原则正视图与俯视图:长对正 正视图与侧视图:高平齐 侧视图与俯视图:宽相等(3)绘制三视图时:分界线和可见轮廓线都用实线画出,不可见的轮廓线用虚线画出. 例2. (1) 一个体积为的面积为( )A .12B .8 C..【答案】D【解析】设正三棱柱的底面边长为a ,高为h , 由三视图可知:sin 60a =o4a =,∴24Vh =⨯=,解得3h =.∴3S =侧 (2)(2013广东高考)某四棱台的三视图如图所示,则该四棱台的体积是 ( )A .4B .143C .163D .6【答案】B【解析】由三视图可知,该四棱台的上下底面边 长分别为1和2的正方形,高为2, ∴22114(12)233V =⨯=,故选B . 练习:(1)某几何体的三视图如图所示,则该几何体的体积是( ) A .23 B .12 C .13D .56 【解析】该几何体是正方体被截去了一个角, 如图:∴3311511326V =-⨯⨯=.正视图侧视图俯视图11113222正视图侧视图俯视图侧视图正视图俯视图31(2)已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为()A.3242π- B.243π-C.24π-D.242π-【答案】A【解析】该几何体是一个长方体再挖去半个圆柱,∴213432132422Vππ=⨯⨯-⨯⨯⨯=-.第50课空间几何体的三视图和直观图业题1.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱 B.棱台C.圆柱 D.圆台解析:根据三视图可知,此几何体是圆台,选D.2.如图所示,△O′A′B′是△OAB水平放置的直观图,则△OAB的面积为( )A.6 B.3 2 C.6 2 D.12解析:若还原为原三角形,易知OB=4,OA⊥OB,OA=6,所以S△AOB=12×4×6=12.答案:D 3.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )解析:被截去的四棱锥的三条可见侧棱中有两条为长方体面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为长方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.答案:D4. 若正三棱柱的三视图如图所示,该三棱柱的表面积()A.623+ B.93C.63+D.3【答案】A正视图侧视图俯视图俯视图【解析】由三视图可知,三棱柱的高为1, ∴正三角形的边长为2,∴三棱柱的侧面积为2316⨯⨯=,两底面积为1222⨯⨯=,∴表面积为6+,选A.5. 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积和体积分别是( )A . B .83 C .81),3+ D .8,8【答案】B【解析】由三视图可知四棱锥的底面边长为22, ∴四棱锥侧面积为182⨯= 体积为2182233V =⨯⨯=. 6.(2013重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240 【答案】D【解析】该几何体为一个直四棱柱,底面如下: 由侧视图可知3,4AE DE ==,∴5AD ==,∴该几何体的表面积为4(28)210(2825)2402+⨯+++⨯=. 7. 某空间几何体的三视图如图所示,则该几何体的表面积为( ) A .180 B .240 C .276 D .300 【答案】B【解析】该几何体为一个长方体和四棱锥组成,∴1664664652402S =⨯+⨯⨯+⨯⨯⨯=.8. ACD BE( )A .168π+B .88π+C .1616π+D .816π+【答案】A【解析】该几何体上面是一个长方体,下面是半圆柱,如图:∴21224241682V ππ=⨯⨯+⨯⨯=+.9. 如图是一个三棱锥的直观图和三视图,其三视图均为直角三角形,则b 等于________.解析:如题图,由侧视图与俯视图知棱锥的高为32-1=2,再由正视图与侧视图知俯视图的另一直角边为62-22=2,所以b =22+12= 5.答案:510.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什 么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何 体的体积.解析:(1)正六棱锥. (2)其侧视图如其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中正六边形对边的距离,即BC =3a , AD 的长是正六棱锥的高,即AD =3a ,∴该平面图形的面积S =123a ×3a =32a 2.。
高考在考查三视图方面出题有两个方向,一是给出三视图及相关数据,求几何体的体积、表面积、内切球体积或外接球体积等;二是给出几何体,确定其中一个视图的图形.由于第二点比较简单,所以高考中考查的较少.高考中对给出三视图求相关体积、面积等题型考查较多,一般以小题形式出现,分值为5分,该类型题的本质是考查三视图还原几何体,所以能快速准确的将三视图还原几何体,是解决这类问题的关键.王康民老师给大家介绍几种快速还原几何体的方法.先来复习一下三视图的相关知识:位置主在上,俯在下,左在右大小长对正,高平齐,宽相等虚实看的见的为实线,看不见的为虚线我来介绍两种快速又好用的三视图还原方法.当然,我默认大家已经掌握了基本几何体的三视图形状,这一点很重要,没有掌握的同学请麻利的自己去翻课本或者小册子.一.升点升线法1.升点法题目特征:当主视图和侧视图的顶部都是点时,采用升点法.如:还原如图所示的三视图的直观图.分析:观察三视图知主视图和侧视图的顶部都是点,则该图形可由俯视图的一个点升高形成,升的高度为主、侧视图的高2.用斜二测法画出俯视图,如下图所示:再根据其主视图为直角三角形,且直角在左侧,所以确定上升的点只能是点A,上升高度为2,三视图还原为下图所示.方法总结主、侧视图顶为点,上升点法1、俯视画图;2、主、侧找最高点;3、在俯视图上将找到的点上升(上升高度为主视图的高)2.升线法当主视图和侧视图的顶部为一点一线时,采用升线法.如:分析观察三视图知主视图和侧视图的顶部为一点一线,则该图形可由俯视图的一条线升高形成,升的高度为主、侧视图的高.用斜二测法画出俯视图,如下图所示.根据其主视图为正方形,左视图为直角三角形,且顶点在其左侧,所以确定上升的直线为线段AB,上升高度为主视图的高,如下图(左)所示.连接上顶点和下底面对应点,三视图还原为上图(右)所示.方法总结主、侧视图顶为一点一线,以点为基准升线.1、俯视画图;2、主、侧找升高线;3、升高直线(上升高度为主视图的高),连接对应点即可二.长方体中找点找面法我们所学的立体图形中,有锥、柱、台、球及组合体,像柱体和球的三视图还原就靠你自己了,简单到我都不想说.好,那就不说吧.我们通过研究锥体和台体的三视图还原来介绍这种方法.1.锥体的三视图还原锥体的三视图的特点是三个视图中有两个三角形.也就是说,我们在看到三视图的时候,如果其中有两个是三角形,我们能确定其为锥体.并且你要去还原它的主观图,这两个三角形就是关键!如:三视图如图所示.分析:首先三视图中有三个三角形,所以可以确定该几何体是一个椎体.俯视图就是该椎体的底面,大家要知道,一个椎体,如果底面确定了,再确定了顶点,则这个锥体就确定了.这个顶点是由主视图和侧视图的上顶点确定的,确定这个点是关键.第一步,我们取三个视图的长、宽、高分别为长、宽、高做出一个长方体,本题画出的正好是一个正方体,如图1所示.图1 图2 图3第二步:把主视图放到立方体正对着我们的这个面上,如图2所示.主视图的上顶点为图2中的顶点A,但该点不一定是锥体的顶点,由于主视图是由正前方看过去的,所以锥体的顶点应该在直线AA1上;再把侧视图放到立方体的右侧面上,如图3所示(注意侧视图是从左往右看的,不要画反了哦)侧视图的上顶点为图3中的顶点B,同理,锥体的顶点应该在直线AB上.所以直线AA1与直线AB的交点A即为锥体的顶点.第三步:将俯视图画在立方体中,由确定的底面和顶点,连接顶点与底面的各个顶点,锥体就确定了,如下图所示.直观图还原完成.步骤:1.三视图中有两个视图为三角形,确定该几何体为锥体,剩下的视图为该锥体的底面.2.将主视图和侧视图画在对应的立方体中,根据各自上顶点的投影线找其交点,确定锥体的顶点.3.俯视图作为底面,连接各顶点,锥体便还原出来了.方法:两个三角形→锥体.1、确定底面;2、确定顶点(主、侧视图上顶点的投影线交点).3、各顶点连线.【变式训练】三视图如图所示,还原几何体的主观图.【提示】将侧视图作为锥体的底面,利用主视图和俯视图寻找顶点即可.【答案】如下图所示.2.台体的三视图还原台的特点是三视图中有两个梯形,剩下的视图作为台的下底面,还原时找上底面是关键。
由三视图还原几何体的方法及技巧
通过三视图来还原几何体是许多机械设计中常用的一种方式,它
主要是将物体的三个视图分别表示为侧视、正面视图和俯视图,从而
获得物体的整体结构。
还原几何体是建立任何零部件的基础,因此学
会还原几何体的方法十分重要,这里就给大家介绍一下三视图还原几
何体的方法及技巧。
首先,需要根据所提供的三视图,在平面上画出它们的几何图形,包括侧视图正面视图和俯视图。
其次,我们需要确定几何图形的轴心,将侧视图图形看作中心轴,而正面视图图形和俯视图图形则作为各轴
的切面。
再次,把几何图形的各个边长统称为参数,将其加以记录,
以备后用。
最后,以中轴为旋转轴,将正面视图和俯视图旋转,将它
们的角度根据参数的记录,按照实际角度旋转,即可获得物体的三维
图形,从而完成几何体的还原。
通过以上步骤,我们可以轻松地还原几何体,它不仅能获得物体
的三维图形,还能按照实际角度,对物体进行设计。
当然,三视图还
原几何体也有其局限性,例如,它不能精确的反映物体的真实形状,
因此在使用时,应该谨慎考虑,以免出现设计上的错误。
总之,在机械设计中,三视图还原几何体是常用的一种方式,熟
练掌握这一技术对于我们来说非常重要,希望以上介绍能为大家在机
械设计中提供一定的帮助。
考纲要求:1。
能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,会用斜二测画法画出它们的直观图.2。
会用平行投影与中心投影两种方法画出简单空间图形的三视图或直观图,了解空间图形的不同表示形式.3。
能识别三视图所表示的空间几何体;理解三视图和直观图的联系,并能进行转化。
基础知识回顾:1.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.2.空间几何体的直观图画空间几何体的直观图常用斜二测画法,基本步骤:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°)。
(2)已知图形中平行于x轴、y轴的线段,在直观图中分别平行于x′轴、y′轴.(3)已知图形中平行于x轴的线段,在直观图中长度保持不变,平行于y轴的线段,长度变为原来的一半. (4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。
应用举例:类型一、三视图及形状的判断【例1】【福建省莆田市第二十四中学2018届高三上学期第二次月考】如果一个水平放置的斜二测直观图是一个底角为,腰和上底均为的等腰梯形,那么平面图的面积是__________.【答案】【解析】水平放置的图形为一直角梯形,由题意可知上底为1,高为2,下底为,。
故答案为:.点睛:平面图形与其直观图的关系(1)在斜二测画法中,要确定关键点及关键线段.“平行于轴的线段平行性不变,长度不变;平行于轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:.例2。
某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱解析:由于圆柱的三视图不可能是三角形所以选A。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
课时作业(十一)空间几何体的三视图、表面积和体积.②①① B.②①②.②④① D.③①①由已知可得正视图应当是②,排除D;侧视图是一个正方形,中间的棱在侧视图中表现为一条对角线,对角线的方向应该从左上到右下,即侧视图应当是①,排除该物体的表面积为S=π×12+π152+1.(2017·河北“五个一名校联盟”二模)如图,网格纸上正方形小格的边长为1 3×12×1×2×2+.如图为某几何体的三视图,则该几何体的表面积为由三视图可知,该几何体为半圆柱与正方体的组合体,则其表面积由几何体的三视图可知,该几何体是一个底面半径为的等腰直角三角形,高为3的三棱锥的组合体,2×3=π2+1.由三视图可得原几何体如图所示,由三视图知该几何体的高.如图是一个几何体的三视图,则该几何体的所有棱中,最大值是由三视图可知,该几何体如图所示,其棱共有10,故该多面体的所有棱中,最大值为.如图为某几何体的三视图,则该几何体的内切球的直径为-ABCD ,如图所示,=13S ▱ABCD ×PD =13(S ×3×4+12×3×5+12×3×5+由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为所以其侧面积S =2×2+22×2=4cm2(24+85+82)cm2如图,依题意可知四棱锥P-ABCD是此几何体的直观图,在四棱锥ABCD是正方形,△PAD≌△(2017·全国卷Ⅰ)某多面体的三视图如图所示,+×2=2答案:B该几何体为一个半径为1的半球,其表面积为半个球面面积与截.的棱长为1,E,F分别为线段的体积即为三棱锥F-DD1E的体积.因为,半径为5 cm,该纸片上的等边三角形FAB分别是以BC为折痕折起△DBC,△。
三视图问题解决三视图问题,尤其是一些比较复杂的三视图还原问题,需要极强的空间想象能力.这给好多同学(包括一些空间想象能力挺强的同学)造成了一定的压力,如果在高考中碰到一个稍有些不常规的三视图,绝对会给在高考中以数学成绩为倚傍的同学设置了一道拦路虎,要是稍微一心慌,那我们与这一道5分题就失之交臂了,也会给后面的答题造成心理影响.比如2014年全国1卷第12题,当时就将相当大一部分同学斩于马下.本文就三视图还原总结为“三线交汇得顶点”现从这道高考题入手.2014年高考全国I卷理科第12题:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.B.6C.D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.第二步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最后一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可大家是不是体会到了用这种方法还原三视图的妙处呢?这种方法的核心其实就是七个字:“三线交汇疑似点,虚实搭配真顶点”.这样是不是比我们以前那种天马行空的遐想接地气一些呢?由此,我们在三视图还原上就可以七字真言扫天下了.此方法更适用于解决三棱锥的问题,画直观图后需要验证一下是否符合。
由三视图画直观图的方法由立体图形的三视图想象直观图一向是诸多考试的必考项目,而这也恰好是很多空间想象能力不足的同学的噩梦.其实利用三视图的原理可以很有效的帮助直观图的建立,下面结合一例说明这一方法,三视图选自2015年北京市东城区高三一模理科数学选择第7小题.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:。
专题3.2 简单几何体的三视图【八大题型】【浙教版】【题型1 判断组合体的三视图】 (1)【题型2 判断非实心几何体的三视图】 (3)【题型3 由一种或两种视图判断其他视图】 (6)【题型4 画几何体的三视图】 (8)【题型5 由三视图还原几何体】 (11)【题型6 由三视图求值】 (13)【题型7 由三视图判断小立方体个数】 (15)【题型8 由三视图求最多或最少的小立方块的个数】 (18)【知识点三视图】三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。
三视图就是主视图、俯视图、左视图的总称。
另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
2.主视图:在正面内得到的由前向后观察物体的视图。
3.俯视图:在水平面内得到的由上向下观察物体的视图。
4.左视图:在侧面内得到的由左向右观察物体的视图。
5.三个视图的位置关系:①主视图在上、俯视图在下、左视图在右;②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。
③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。
6.画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。
【题型1判断组合体的三视图】【例1】(2023秋·陕西·九年级西北大学附中校考期中)如图,这是一个机械模具,则它的俯视图是()A.B.C.D.【答案】D【分析】找到从上面看所得到的图形即可,注意看见的线用实线表示.【详解】解:从上面看可得两个并排放着两个正方形,左边正方形内有一个内切圆.故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.【变式1-1】(2023秋·江苏南通·九年级校考期中)如图是由五个相同的小正方体搭成的一个几何体,它的主视图是( )A.B.C.D.【答案】B【分析】主视图就是正面看去所得图形,左起第一列为两个小正方形,第二列只有一个小正方形.【详解】解:主视图从左往右,每一列的小正方形数量分别为2、1,故选择B.【点睛】本题考查了主视图的概念.【变式1-2】(2023秋·辽宁朝阳·九年级统考期末)如图是由7个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A.主视图改变,俯视图改变B.左视图改变,俯视图改变C.俯视图不变,左视图改变D.主视图不变,左视图不变【答案】D【分析】根据主视图、俯视图、左视图是否发生改变,即可判定.【详解】解:将正方体①移走后,所得几何体的主视图和左视图没有发生改变,俯视图改变了,故选:D.【点睛】本题考查了组合体三视图的识别,熟练掌握和运用组合体三视图的识别方法是解决本题的关键.【变式1-3】(2023秋·福建三明·九年级统考期中)桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.B.C.D.【答案】C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.【题型2判断非实心几何体的三视图】【例2】(2023秋·山西太原·九年级统考期末)一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是()A.B.C.D.【答案】A【分析】主视图是从几何体的正面看所得到的视图,注意圆柱内的长方体的放置.【详解】从正面看外边是一个大矩形,大矩形的里面是一个较大的矩形,内矩形的宽是虚线.故选A.【点睛】此题主要考查了三视图,关键是要注意视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.【变式2-1】(2023秋·贵州六盘水·九年级统考期末)如图所示的“中”字,俯视图是()A.B.C.D.【答案】D【分析】找到从几何体的上面看所得到的图形即可.【详解】解:这个几何体的俯视图为:故选:D.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.【变式2-2】(2023秋·山西太原·九年级校联考期末)从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )A.B.C.D.【答案】C【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13故D错误,所以C正确.故此题选C.【变式2-3】(2023春·山西晋城·九年级统考期中)水盂是文房第五宝,古时用于给砚池添水,如图是清晚时期六方水盂,则它的主视图是()A.B.C.D.【答案】B【分析】结合图形,根据主视图的含义即可得出答案.【详解】解:结合图形知,可看到外面正六棱柱的4条棱,里面的圆柱的主视图是矩形,但因在内部看不到,故应用虚线,所以该几何体的主视图如下图:故选:B.【点睛】本题考查了三视图,注意:内部看不到的部分用虚线.【题型3由一种或两种视图判断其他视图】【例3】(2023秋·江西吉安·九年级统考期末)下图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A.B.C.D.【答案】A【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:由俯视图可知,主视图有两列:左边一列有2个小正方形,右边一列3个小正方形,即主视图是:,故选A.【点睛】本题主要考查了由三视图判断几何体,准确判断是解题的关键.【变式3-1】(2023秋·四川雅安·九年级雅安中学校考期中)如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图是()A.①②③B.①③④⑤C.①②④D.③④⑤【答案】A【分析】根据几何体的主视图和左视图用正方体实物搭出图形判断,或者根据主视图和左视图想象出每个位置正方体的个数进行计算.【详解】综合左视图跟主视图,从正面看,第1行第1列有3个正方体,第1行第2列有1个或第2行第2列有1个或都有1个,第2行第1列有2个正方体,第2行第2列有2个正方体.故选:A.【点睛】本题考查了学生的空间想象能力和三视图的综合能力,解题关键是熟练掌握三视图,充分发挥空间想象.【变式3-2】(2023秋·河南平顶山·九年级校考期中)甲和乙两个几何体都是由大小相同的小立方块搭成,它们的俯视图如图,小正方形中数字表示该位置上的小立方块个数()A.甲和乙左视图相同,主视图相同B.甲和乙左视图不相同,主视图不相同C.甲和乙左视图相同,主视图不相同D.甲和乙左视图不相同,主视图相同【答案】D【分析】根据俯视图,即可判断左视图和主视图的形状.【详解】由甲俯视图知,其左视图为,由乙俯视图知,其左视图为,故它们的左视图不相同,但它们两个的主视图相同,都是.故选:D.【点睛】本题考查了三视图的知识,关键是根据俯视图及题意确定几何体的形状,从而可确定其左视图和主视图.【变式3-3】(2023秋·四川雅安·九年级雅安中学校考期中)一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=.【答案】16【分析】主视图、俯视图是分别从物体正面、上面看所得到的图形.【详解】易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,m=4+3+2=9,n=4+2+1=7,所以m+n=9+7=16.故答案为:16.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.【题型4画几何体的三视图】【例4】(2023秋·江苏南京·九年级统考期末)如图是7个大小相同的小正方体组合成的简单几何体,请在方格纸中用实线画出该几何体的主视图,左视图和俯视图.【答案】见解析【分析】根据简单几何体三视图的画法即可解答.【详解】【点睛】本题考查了简单几何体三视图的画法,熟练掌握上述知识点是解答本题的关键.【变式4-1】(2023秋·辽宁朝阳·九年级统考期末)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).【答案】见解析【分析】认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个等腰三角形,俯视图为两个同心圆(中间有圆心).【详解】解:三视图如图所示:【点睛】本题考查简单组合体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.【变式4-2】(2023秋·陕西汉中·九年级统考期末)图中几何体是将大长方体内部挖去一个小长方体后剩余的部分,请画出该几何体的三视图.【答案】见解析【分析】利用三视图的作法,画出图形即可.【详解】解:三视图如图所示:【点睛】本题考查了画三视图的知识,用到的知识点为:主视图,左视图,俯视图分别为从正面,左面,上面看得到的图形.【变式4-3】(2023秋·甘肃张掖·九年级校考期末)正方体是特殊的长方体,又称“立方体”、“正六面体”.(1)用一个平面去截一个正方体,截面可能是几边形?(写出至少两种情况)(2)下图是由几个小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数.请你画出这个几何体的主视图、左视图.【答案】(1)截面可能是三角形,四边形,五边形,六边形;(2)图形见详解.【分析】(1)正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.由此截面可能为三角形、四边形(梯形,矩形,正方形)、五边形、六边形共有四种情况;(2)画出从正面,从左面看到的图形即可.主视图从左往右3列正方形的个数依次为3,4,2;左视图从左往右2列正方形的个数依次为4,2.【详解】解:(1)正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.截面可能是三角形,四边形,五边形,六边形;(2)这个几何体的主视图、左视图如图所示:【点睛】本题考查了正方体的基本构成、用一个面去截几何体、三视图等知识.锻炼学生的空间想象能力是解题的关键.【题型5由三视图还原几何体】【例5】(2023秋·甘肃酒泉·九年级统考期末)下面的三视图所对应的物体是().A.B.B.C. D.【答案】A【分析】本题可利用排除法解答.从俯视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B,C,D.【详解】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D选项,从上面物体的三视图看出这是一个圆柱体,故排除B选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选:A.【点睛】此题考查由三视图还原实物基本能力,还原实物的形状关键是能想象出三视图和立体图形之间的关系,从而得出该物体的形状.本题只从俯视图入手也可以准确快速解题.【变式5-1】(2023秋·湖南邵阳·九年级校考期末)一个几何体的三视图如图所示,这个几何体是( )A.圆柱B.棱柱C.圆锥D.球【答案】A【分析】根据三视图判断几何体的形状即可;【详解】由已知三视图可知,主视图、左视图为长方形,俯视图为圆,则符合条件的立体图形是圆柱;故选A.【点睛】本题主要考查了三视图的判断,准确分析是解题的关键.【变式5-2】(2023秋·广东深圳·九年级校联考期中)如图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是( )A.4B.5C.6D.7【答案】B【详解】根据题意可知:第一行第一列只能有1个正方体,第二列有3个正方体,第一行第3列有1个正方体,共需正方体1+3+1=5.故选B.【变式5-3】(2023秋·山西太原·九年级统考期末)如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.【答案】D【分析】根据几何体的主视图确定A、B、C选项,然后根据俯视图确定D选项即.【详解】解:A、B、D选项的主视图符合题意;C选项的主视图和俯视图都不符合题意,D选项的俯视图符合题意,综上:对应的几何体为D选项中的几何体.故选:D.【点睛】考查由视图判断几何体;由俯视图得到底层正方体的个数及形状是解决本题的突破点.【题型6由三视图求值】【例6】(2023春·黑龙江大庆·九年级校考期末)李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?【答案】17πcm3【分析】根据三视图可知该几何体是两个圆柱体叠加在一起,体积是两个圆柱体的体积的和.【详解】解:根据三视图可知该几何体是两个圆柱体叠加在一起,底面直径分别是2cm和4cm,高分别是4cm和1cm,∴体积为:4π×22+π×12×1=17π(cm3).答:该工件的体积是17πcm3.【点睛】本题考查了由三视图判断几何体和圆柱的计算,正确的得到几何体的形状是解题的关键.【变式6-1】(2023春·江苏连云港·九年级连云港市新海实验中学校考开学考试)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是( )m m2A.200B.280C.350D.以上答案都不对【答案】A【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【详解】解:根据三视图可得:上面的长方体长4 mm,高4mm,宽2mm,下面的长方体长8mm,宽6mm,高2mm,∴立体图形的表面积是:4×4×2+4×2×2+4×2×2+6×2×2+8×2×2+6×8×2﹣4×2×2=200(m m2).故选:A.【点睛】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.【变式6-2】(2023春·黑龙江大庆·九年级大庆一中校考期末)如图是一个包装盒的三视图,则这个包装盒的体积是.【答案】3【分析】根据展开图可知几何体是正六棱柱,再求出底面积,根据体积公式计算即可.【详解】根据题意可知这个几何体是正六棱柱,底面是六个等边三角形,AO=AB=4cm,∠AOC=30°,在Rt△AOC中,cos30°=OC,OA=OC4,解得OC可知S 六边形=6×12×4×所以这个包装盒的体积是cm 3).故答案为:3.【点睛】本题主要考查了求几何体的体积,将三视图还原为几何体是解题的关键.【变式6-3】(2023春·湖南衡阳·九年级统考期中)用三个大小不等的正方体拼成了一个如图所示的几何体,若该几何体的主视图、左视图和俯视图的面积分别表示为S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是 (用“<”从小到大连接).【答案】S 3<S 2<S 1【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,根据边角面积的大小,可得答案.【详解】解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,故S 3<S 2<S 1,故答案为:S 3<S 2<S 1.【点睛】本题考查了简单组合体的三视图,分别得出三视图是解题关键.【题型7 由三视图判断小立方体个数】【例7】(2023秋·广东河源·九年级校考期末)下图是由一些相同长方体的积木块拾成的几何体的三视图,则此几何体共由 块长方体的积木搭成.【答案】4【分析】由几何体的三视图的情况结合模型即可得.【详解】由俯视图知,最底层有3块长方体,由主视图和左视图知,此图有两层,最上层有1块长方体,因此此几何体共有4块长方体的积木块搭成.故答案为:4.【点睛】本题考查了三视图,掌握对空间想象能力是解题的关键.【变式7-1】(2023春·浙江杭州·九年级校联考期中)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3B.4C.5D.6【答案】B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:从俯视图中可以看出最底层小正方体有3个,从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,所以此几何体共有四个正方体.故选B.【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.【变式7-2】(2023秋·山东淄博·九年级校考期末)用相同的小正方体摆成某种模型,其三视图如图所示,则这个模型是由个小正方体摆放而成的.【答案】5【分析】由主视和左视图可知,由模型有两层,上层有一列,下层有两列;由俯视图可知,该模型上层有1个,下层有4个,即可得出答案.【详解】解:由主视和左视图可知,由模型有两层,上层有一列,下层有两列;由俯视图可知,该模型上层有1个,下层有4个,∴这个模型是由5个小正方体摆放而成,故答案为:5.【点睛】本题主要考查了由三视图还原几何体,解题的关键是掌握三视图的定义,根据三视图还原几何体.【变式7-3】(2023秋·河南南阳·九年级统考期末)桌子上摆放若干碟子,从三个方向看得到的平面图形如下图所示,则这张桌子上的碟子数可能是个.【答案】10或11或12或13【分析】从主视图可知,碟子包括左右两叠,左边有5个,右边有4个,从左视图可知,左右两叠,左边有4个或3个或2个或1个,从俯视图可知,左上,左下,右上三叠,则左视图中的左边必须有1个,由此即可求解.【详解】解:主视图,有两叠,分为左右,且左边有5个,右边有4个,左视图,有有两叠,分为左右,且左边有4个或3个或2个或1个,右边有5个,俯视图,有三叠,左上,左下,右上,∴碟子数为:5+4+1=10或5+4+2=11或5+4+3=12或5+4+4=13,故答案为:10或11或12或13.【点睛】本题主要考查立体几何的三视图,理解并掌握三视图中各图示的特点,学会数形结合思想是解题的关键.【题型8由三视图求最多或最少的小立方块的个数】【例8】(2023秋·福建漳州·九年级漳州实验中学校考期中)如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,搭成一个大正方体,至少还需要的小立方块个数是().主视图左视图从上面看A.50B.51C.54D.60【答案】C【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64−10=54个小正方体.故选:C.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.【变式8-1】(2023春·黑龙江大庆·九年级校考期中)一个几何体由若干个大小相同的小立方块搭成,如图分别是它的主视图和俯视图,若该几何体所用小立方块的个数为n个,则n的最小值为()A.9B.11C.12D.13【答案】A【分析】根据主视图、俯视图确定摆放最少时的正方体的个数即可解答.【详解】解:根据主视图、俯视图,可以得出最少时,在俯视图的相应位置上所摆放的个数,其中的一种情况如下:最少时需要9个,因此n的最小值为9.故选:A.【点睛】本题主要考查了由三视图判断几何体,在俯视图上相应位置标出所摆放的个数是解答本题的关键.【变式8-2】(2023秋·福建宁德·九年级统考期中)把边长为1个单位的9个相同小正方体摆成简单几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为______________;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加______________个小正方体【答案】(1)见解析(2)36(3)3【分析】(1)利用三视图的画法画图即可;(2)利用几何体的形状计算其表面积;(3)利用左视图和俯视图不变,得出可以添加的位置.【详解】(1)解:如图所示:(2)几何体的表面积为:(6+5+6)×2+2=36;(3)如图,最多可以再添加3个正方体.【点睛】本题考查作图—三视图、几何体的表面积等知识,是常见考点,难度较易,掌握相关知识是解题关键.【变式8-3】(2023春·湖北襄阳·九年级统考期中)由一些完全相同的小正方体搭成的几何体,它的主视图和左视图如图所示,组成这个几何体的小正方体的个数最少和最多分别是()A.5,10B.6,10C.6,9D.5,9【答案】A【分析】由主视图和左视图确定俯视图的形状,再判断最少和最多的正方体的个数.【详解】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共3行,且正方体在搭建过程中在底层必须能棱与棱一起,∴小正方体的个数最少的几何体为:第一列2个小正方体,第二列3个小正方体,其余位置没有小正方体,即组成这个几何体的小正方体的个数最少为:2+3=5(个);小正方体的个数最多的几何体为:第一列5个小正方体,第二列5个小正方体,其余位置没有小正方体,即组成这个几何体的小正方体的个数最多为:5+5=10(个).故选:A.【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.。
高考数学中三视图还原空间几何体的解题技巧考纲解读与命题趋势探究空间立体几何的三视图是高中数学新课程的新增内容之一,也是近几年全国各地高考的热点内容,考纲不仅要求学生掌握『画空间几何体的三视图』还要求掌握它的逆过程,前者比较容易掌握,后者对空间想象力较弱的同学来说往往无从下手,特别是复杂一点的问题更是怎么也想象不出来。
Mr.Yang总结了一个简单可行的方法,虽不能解决所有三视图还原的问题,但对高中阶段的大部分问题都可解决,这里呈现出来,以期抛砖引玉,也请同行斧正。
一、简单几何体的三视图还原规律复杂的几何体是由简单几何体组合而成的,简单几何的分类:柱体(圆柱和棱柱);椎体(圆锥和棱锥);台体(圆台和棱台);球体.要掌握复杂几何体的三视图还原,先要搞清楚简单几何体的三视图还原规律,一般情况下简单几何体的三视图还原有如下规律:1. 三视图中如果其中两个视图是矩形(不要管内部的细节,只要外轮廓线为矩形就称该视图为矩形)那么该空间几何体为柱体.当第三个试图为圆时,该空间几何体为圆柱,否则为棱柱.2. 三视图中如果其中两个视图是三角形(不要管内部的细节,只要外轮廓线为矩形就称该视图为三角形)那么该空间几何体为锥体,当第三个试图为圆时,该空间几何体为圆锥,否则为棱锥.3. 三视图中如果其中两个视图是梯形(不要管内部的细节,只要外轮廓线为矩形就称该视图为梯形)那么该空间几何体为台体.当第三个试图两个同心圆时,该空间几何体为圆台,否则为棱台.球体的三视图很简单,这里就不加论述.以上规律简单好记,按照以上规律解决简单的三视图还原都不在话下,下面举例说明.例1:(2013年全国高考陕西卷理科试题)若某空间几何体的三视图如下,求其体积 .例2:(2012年全国高考江西卷理科试题)若某空间几何体的三视图如下,求其体积()例3:(2014年全国高辽宁卷理科试题)若某空间几何体的三视图如下求其体积()二、叠加式组合体的三视图还原方法组合体的组合形式可分为三种:叠加式、切割式、综合式.切割式与综合式在高中阶段见到的不是很多,这里只对高中阶段出现较多的叠加式组合体的三视图还原方法进行论述.既然组合体是由简单几何体组合而成的,那么就可以“化整为零”,把组合体的三视图划分为一个个简单几何体的三视图,再分别根据这些简单几何体的三视图按照上面论述的简单几何体三视图的还原规律把它们还原成简单几何体,再“积零为整',把这些简单几何体组合在一起就得了组合体的三视图.这样就将复杂的三视图问题转化成最基本的简单几何体的三视图还原问题来解决了,大大降低了对空间想象能力的要求,这一方法的难点在于如何把组合体的三视图划分为一个个简单几何体的三试图,该方法的具体过程如下:1. 分线框.一般从主视图入手,将主视图划分成一个个线框(一般是封闭的线框,但有时也可不完全封闭),这些线框就是组成组合体的一个个简单几何体的主视图.2. 对投影.在俯视图和左视图上把主视图中每个线框对应的投影找出来,主要是根据“长对正,高平齐,宽相等”和'三视图所反映的组合体各部分的方位”来找.3. 识形体.根据每一部分的三视图,逐个想象出每一部分所对应的几何体4. 合起来,想整体. 每一部分的形状确定后,再根据各部分的相对位置关系组合成整个组合体的形状.下面看该方法在高考题中的运用.例4 :(2015年全国高考天津卷试题)一个几何体的三视图如图4所示,则该几何体的体积为 .解析:如图4所示,第一步:分线框. 将主视图分为上面一个直角梯形与下面一个矩形两个线框.第二步:对投影. 这里只须用长对正,高平齐就可找到相对应的投影,如图5和图6中的加粗部分相对应.第三步:识形体. 由简单几何体三视图的还原规律知图5中加粗的三个视图对应的几何体为底面为直角梯形的直四棱柱. 图6中加粗的三个视图对应的几何体为长方体.第四步:合起来,想整体.由主视图知该组合体是一个底面为直角梯形的直四棱柱叠放在一个长方体上面组合而成的,如图7所示,进一步易求几何体体积为30.如果不用此方法,此题对很多同学来说都是一道较难想象的题,但用了以上方法后就可以化整为零,化难为易,将复杂的三视图还原问题转化为基本的简单几何体的三视图还原问题,大大降低了难度.例5 :(2015年全国高考山东卷试题)一个几何体的三视图如下图所示,则该几何体的体积为 .解析:如图下所示,第一步:分线框. 将主视图分为上面一个等腰三角形,下面一个正方形两个线框.第二步:对投影. 利用高平齐知主视图中的三角形与左视图中的三角形相对应,主视图中的正方形与左视图中的正方形相对应,利用长对正知主视图中的三角形与俯视图中的圆和正方形都是对正的,那到底哪一个与它相对应呢?这还要结合三视图所反应的各部分的方位来判断. 主视图中三角形在上,正方形在下,这说明原几何体中三角形所对应的简单几何体在正方形所对应的简单几何体的上面.在俯视图中正方形在圆的里面而且是用实线画的,所以俯视图中正方形所对应的简单几何体在圆所对应的简单几何体的上面.因此主视图中的三角形与俯视图中的正方形相对应,主视图中的正方形与俯视图中的圆相对应,第三步:识形体.由简单几何体三视图的还原规律知两部分所对应的几何体分别为正四棱锥和圆柱. 第四步,合起来想整体,由主视图知该组合体是上面一个正四棱锥下面一个圆柱组合而成的.进一步易求答案为C.。
第50讲 通过三视图找几何体原图的方法
【知识要点】
一、三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形.
它具体包括正视图(又叫主视图,从几何体的正前方观察几何体画出的轮廓线,只能反映物体的高度
和长度)、侧视图(又叫左视图,从几何体的正左方观察几何体画出的轮廓线,只能反映物体的高度和宽度)
和俯视图(从几何体的正上方观察几何体画出的轮廓线,只能反映物体的长度和宽度).
二、三视图的画法规则
(1)在画三视图时,重叠的线只画一条,能看见的轮廓线用实线表示,不能看见的轮廓线要画成虚线;
尺寸线要用细实线标出;d表示直径,R表示半径;单位不注明,则按mm记.
(2)基本原则:“正俯一样长,俯侧一样宽,正侧一样高” 即:长对正、宽相等、高平齐.
(3)三视图的排放顺序:先画主视图,再将左视图放在主视图的水平右边,最后将俯视图画在主视图
的正下面.
三、通过三视图找几何体原图的方法有三种:直接法、拼凑法和模型法.
【方法讲评】
方法一 直接法
使用情景 三视图比较容易观察出原图.
解题步骤 直接利用三视图的规则,不断调整,画出原图.
【例1】某几何体的三视图如图所示,则该几何体的体积是( )
A.36a B.33a C.323a D.3a
【点评】本题比较容易通过三视图得到几何体的原图,所以直接找到原图解答即可.
【反馈检测1】【2017课标II,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的
三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )
A. 90 B.63 C.42 D.36
方法二 拼凑法
使用情景 三视图比较简单容易找到原图.
解题步骤
第一步:画出正视图,第二步:平移俯视图到恰当的位置(长对正,高平齐),使它和正视
图在一起,第三步:把侧视图顺时针旋转090再平移到恰当的位置(高平齐,宽相等),使
它和正视图、俯视图在一起,第四步:调整它们的位置,找到顶点,找到原图.
【例2】【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为( )
A. 60 B.30 C.20 D.10
【点评】(1)利用拼凑法找原图时,关键是第四步,结合三视图从那些顶点里找到原几何体的顶点. 这
需要有空间观察力和分析能力. (2)本题如果熟练,也可以直接画原图.
【反馈检测2】【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )
A.32 B.23 C.22 D.2
方法三 模型法
使用情景 三视图不容易观察出原图.
解题步骤 第一步:画出一个长方体或正方体或其他几何体;第二步:补点;第三步:结合三视图排除某些点;第四步:确定那些排除的点附近的点是否是几何体的顶点;第五步:结合实线虚线
和确定的点找到几何体的顶点,从而找到符合三视图的原图.
【例3】 某几何体的三视图如上右图所示,则该几何体的表面积为_______.
A.54 B.60 C.66 D.72
【解析】第一步:画一个长4宽3高5的长方体;第二步:补点E,O;第三步:从正视图空白可以
排除点M,N;从俯视图的空白可以排除点O,G;第四步:看点M左边的点F,从左视图可以确定点F一定是几
何体的顶点;看点N左边的点D,从左视图可以确定点D一定是几何体的顶点;看点N下面的点E,从正视
4
3
正视图 侧视图
俯视图
5
2
由三视图得几何体的原图是图中的几何体ABCDEF.此图形共有5个面,底面113462S,竖直的
三个面面积分别为234(25)535(25)43515,,14222SSS,剩下的一个面是一个直角边
长为3,5的直角三角形,51153522S.所以表面积为=60S总,所以选择B.
【点评】(1)本题中的几何体的原图直接观察可能不是很方便,所以可以尝试在长方体中寻找几何
体的原图.(2)在求表面积时,一是解三角形把边算对,二是计算表面积时,不要漏掉了某些面.
【反馈检测3】某三棱锥的三视图如图所示,则该三棱锥的表面积是_________.
高中数学常见题型解法归纳及反馈检测第50讲:
通过三视图找几何体原图的方法参考答案
【反馈检测1答案】B
4
4
2
3
4
正视图 侧视图
俯视图
【反馈检测2答案】B
【反馈检测2详细解析】如下图所示,按照拼凑法得到三视图对应的原图是图中的四棱锥PABCD.
该四棱锥的最长棱的长度为PC,22222222(22)223PAPC,故选B.
【反馈检测3答案】3065
【反馈检测3详细解析】三视图复原的几何体是三棱锥PABC,它是底面为直角边长为4和5的三角形,
一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图所以1=45=102S底,1=54=102S后,
1=45=102S右,221
=2541(5)=652S左()
所以几何体的表面积为:+++=3065SSSSS后右底左.
25
41
41
5
4
4
3
2
B
C
A
P