当前位置:文档之家› 探针设计-Northern

探针设计-Northern

探针设计-Northern
探针设计-Northern

核酸分子杂交

基本原理是具有一定同源性的两条核酸单链在一定条件下(适宜的温度及离子强度等)可按碱基互补原则形成双链,此杂交过程是高度特异的。杂交的双方是待测核酸及探针。待测核酸序列为性病病原体基因组或质粒DNA。探针以放射核素或非放射性核素标记,以利于杂交信号的检测。所谓杂交(hydridization)指两个以上的分子因具有相近的化学结构和性质而在适宜的条件下形成杂交体(hybrid),杂交体中的分子不是来自一个二聚体分子。同一个二聚体中的两个分子在变性解离后重组合称为复性。利用两条不同来源的多核苷酸链之间的互补性而使它们形成杂交体双链叫核酸杂交。与核酸杂交技术相对应的另一项技术被称为探针技术,它是指利用标记分子对其它分子的识别性而实现对后者进行检测的一种技术,我们把标记的分子叫探针(Probe)。将探针技术与分子杂交技术相结合,从而使分子杂交技术得以广泛推广应用。目前所用的核酸杂交技术均应用了标记技术。

(一)DNA的变性

DNA变性是指双螺旋之间氢键断裂,双螺旋解开,形成无规则线团,称为DNA变性。加热、改变DNA溶液中的pH,或有机溶剂等理化因素的影响,均可使DNA变性。变性的DNA粘度下降,沉降速度增加,浮力上升,紫外吸收增加。

(二)DNA复性

变性DNA只要消除变性条件,二条互补链还可以重新结合,恢复原来的双螺旋结构,这一过程称为复性。复性后的DNA,理化性质都能得到恢复。核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价健的形成即出现稳定的双链区,这是核酸分子杂交的基础。杂交分子的形成并不要求两条单链的碱基顺序完全互补,所以不同来源的核酸单链只要彼此之间有一定程度的互补顺序就可以形成杂交双链。分子杂交可在DNA与DNA、RNA与RNA 或RNA与DNA的二条单链之间,由于DNA一般都以双链形式存在,因此在进行分子杂交时,应先将双链DNA分子解聚成为单链,这一过程称为变性,一般通过加热或提高pH值来实现。使单链聚合成双链过程称为退火或复性。用分子杂交进行定性或定量分析的最有效方法是将一种核酸单链用同位素标记成为探针,再与另一种核酸单链进行分子杂交。(三)探针——靶分子反应

从化学和生物学意义上理解,探针是一种分子,它带有供反应后检测的合适标记物,并与特异靶分子反应。抗体——抗体、外源凝集素——碳水化合物、亲合素——生物素、受体——配基(Ligand)以及互补核酸间的杂交均属于探针——靶分子反应,蛋白质探针(如抗体)与特异靶分子是通过混合力(疏水离子和氢键)的作用在少数特异位点上的结合,而核酸探针与互补链的反应则是根据杂交体的长短不同,通过氢键几十、几百甚至上千个位点上的结合。这就决定它的特异性。

基因探针根据标记方法不同可粗分为放射性探针和非放射性探针两大类,根据探针的核酸性质不同又可分为DNA探针、RNA探针、cDNA探针、cRNA探针及寡核苷酸探针等几类。DNA探针还有单链和双链之分。下面分别介绍这几种探针。

一、核酸探针的种类

(一)DNA探针DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获的DNA探针种类很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针,这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类ALU探针,这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,目前分子杂交技术用于细菌的分类和菌种鉴定比用G+C百分比值要准确的多,是细菌分类学的一个发展方向,加之分子杂交技术的高度敏感性,分子杂交在临床性病病原体诊断上具有广泛的前景。DNA探针(包括cDNA 探针)有三大优点:第一,这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备

方法简便。其次,DNA探针不易降解(相对RNA而言),一般能有效抑制DNA酶活性。第三,DNA探针的标记方法较成熟,有多种方法可供选择,如缺口平移法、随机引物法、PCR标记法等,能用于同位素和非同位素标记。(二)cDNA探针cDNA是指互补于mRNA的DNA分子(complementary DNA)。cDNA是由RNA经一种称为逆转录酶的DNA 聚合酶催化产生的。携带逆转录酶的病毒侵入宿主细胞后,病毒RNA在逆转录酶的催化下转化成双链cDNA,并进而整合入宿主细胞染色体DNA分子,随宿主细胞DNA复制同时复制,这种整合的病毒基因组称为原病毒。在静止状态下,可被复制多代,但不被表达,故无毒性,一旦因某种因素刺激而被活化,则该病毒大量复制。如其带有癌基因,还可能诱发细胞癌变。逆转录现在已成为一项重要的分子生物学技术,广泛用于基因的克隆和表达。从逆转录病毒中提取的逆转录酶也已商品化。最常用的有AMV逆转录酶。利用真核mRNA3′末端存在一段聚腺苷酸尾,可以合成一段寡聚胸苷酸用作引物,在逆转录酶催化下合成互补于mRNA的cDNA链,然后再用RNase H将mRNA消化掉,再加入大肠杆菌DNA 聚合酶I催化合成另一条DNA链,即完成了从mRNA到双链DNA的逆转录过程。所得到的双链cDNA分子经S1核酸酶切平两端后接一个有限制酶切点的接头(Adapter),再经特定限制酶消化产生粘性末端,即可与含互补末端的载体进行连接。常用的克隆载体是λ噬菌体DNA,如λgt、EMBL和Charon 系列等。用这类载体可以得到包含105以上转化子文库,再经前面介绍的筛选方法筛选特定基因克隆。用这种技术获得的DNA探针不含有内含子序列。因此尤其适用于基因表达的检测。(三)RNA探针RNA探针是一类很有前途的核酸探针,由于RNA是单链分子,所以它与靶序列的杂交反应效率极高。早期采用的RNA探针是细胞mRNA探针和病毒RNA探针,这些RNA是在细胞基因转录或病毒复制过程中得到标记的,标记效率往往不高,且受多种因素的制约。这类RNA探针主要用于研究目的,而不是用于检测。例如,在筛选逆转录病毒人类免疫缺陷病毒(HIV)的基因组DNA 克隆时,因无DNA探针可利用,获得HIV的全套标记mRNA作为探针,成功地筛选到多株HIV基因组DNA克隆。随着体外逆转录技术不断完善,已成功的建立了单向和双向体外转录系统。该系统主要基于一类新型载体PSP和PGEM,这类载体在多克隆位点两侧分别带有SP6启动子和T7启动子,在SP6RNA聚合酶或T7RNA聚合酶作用下可进行RNA转录。如果在多克隆位点接头中插入了外源DNA片段,则可以以DNA两条链中的一条为模板转录生成RNA。这种体外转录反应效率很高,在1小时内可合成近10μg的RNA 产物。只要在底物中加入适量的放射性或生物素标记的dUTP,则所合成的RNA可得高效标记。该方法能有效地控制探针的长度并可提高标记分子的利用率。RNA探针和cDNA 探针具有DNA探针所不能比拟的高杂交效率,但RNA探针也存在易于降解和标记方法复杂等缺点。(四)寡核苷酸探针前述三种探针均是可克隆的,一般情况下,只要有克隆的探针,就不用寡核苷酸探针。在DNA序列未知而必须首先进行克隆以便绘制酶谱和测序时,也常应用克隆探针。克隆探针一般较寡核苷酸探针的特异性强,复杂度也高,从统计学角度而言,较长的序列随机碰撞互补序列的机会较短序列少。克隆探针的另一优点是,可获得较强的杂交信号,因为克隆探针较寡核苷酸探针掺入的可检测标记基因更多。但是,较长的探针对于靶序列变异的识别能力又有所降低。对于仅是单个碱基或少数碱基不配的两个序列,克隆探针不能区分,往往杂交信号相当。这既是其优点,又是其缺点,优点是当用于检测病原微生物时,不会因病毒或细菌DNA的少许变异而漏诊,缺点则是不能用于检测突变点。这种情况,通常要采用化学合成的寡核苷酸探针。合成的寡核苷酸探针具有以下特点:第一,由于链短,其序列复杂度低,分子量小,所以和等量靶位点完全杂交的时间比克隆探针短。第二,寡核苷酸探针可识别靶序列内一个碱基的变化,因为短探针中碱基错配能大幅度降低杂交体的Tm值。第三,一次可大量合成寡核苷酸探针,使得这种探针价格低廉,与克隆探针一样,寡核苷酸探针能够用酶学或化学方法修饰以进行非放射性标记物的

标记。最常用的寡核苷酸探针长18—40个硷基,目前的合成可有效地合成至少50个碱基的探针。对于合成的寡核苷酸探针有以下要求:(1)长度以18-50碱基为宜,较长探针杂交时间较长,合成量也低;较短探针特异性较差。(2)碱基成分:G+C含量为40%-60%,超出此范围则会增加非特异杂交。(3)探针分子内不应存在互补区,否则会出现抑制探针杂交的―发夹‖状结构。(4)避免单一碱基的重复出现。(5)一旦选定某一序列符合上述标准,最好将该序列与核酸库中的核酸序列比较,探针序列应与靶序列核酸杂交,而与非靶区域的同源性不应超过70%或有连续8个或更多的碱基的同源。否则,该探针不能用。

二、核酸探针的标记和检测分子杂交是核酸链以碱基配对规则的一种结合方式,是核酸的重要理化特性。利用分子杂交这一特性来对特定核酸序列进行检测,必须将杂交链中的一条用某种可以检测的进行标记,这条链就称为核酸探针。因此,核酸探针的制备是分子杂交技术的关键。放射性同位素标记是最早采用的也是目前最常用的核酸探针标记方法。常用的放射性同位素有32P和35S。32P因其能量高,信号强,所以最常用。放射性同位素标记探针虽然敏感度高,但却存在辐射危害和半衰期限制(32P半衰期为14.3天,35S半衰期为87.1天,125I半衰期为60天),3H的半衰期长达12.3年,但它所释放β射线的能量太低,只能用于组织原位杂交。由于同位素标记的探针在使用过程中存在着上述缺点,近年来,人们在寻找非放射性标记物方面取得了很大进展。国内已具备生物素类标记物的生产能力,并有相应试剂出售。目前非放射性标记物有下述几类:金属如Hg、荧光物质如F2TC、半抗原如地高辛、生物素、酶类如辣根过氧化物酶(HRP)、半乳糖苷酶或碱性磷酸酶(AKP)等,不同的标记物,所标记探针的方法及检测方法也各异。

核酸探针的常用酶促标记技术有:缺口平移;DNA快速末端标记;用T4多核苷酸酶标记DNA 5'末端,随引物延伸;聚合酶链反应。核酸探针的非放射性标记技术有:光促生物素标记核酸、酶促生物素标记核酸、寡核苷酸的生物素末端标记、酶标DNA、酶标寡核苷酸、DNA半抗原标记。

核酸(基因)探针目的核酸的制备技术

一、特异性目的核酸(或基因)的制备

核酸分子探针的制备首先需要获得所要的特异性核酸或其片段。可用以下方法制备:(1)直接分离基因核酸:即从基因组上直接用内切酶切下所需基因。(2)化学合成基因核酸:即以单核苷酸为原料,以固相磷酸三酯法合成某一结构完全清楚,分子量较小的寡核苷核。(3)酶促合成核酸:在真核细胞中获得特异的结构基因。常用方法是以mRNA为模板,利用逆转录酶合成单链cDNA,再以大肠杆菌DNA聚合酶I合成双链的结构基因。(4)RNA探针。

二、目的核酸的扩增

在获得特异的目的基因后,可用以下方法大量扩增制备:①用体外DNA重组技术与载体DNA相连,转化至大肠杆菌中进行无性繁殖。以氯化铯超速离心纯化重组质粒DNA,并以合适限制性内切酶消化,经凝胶电泳制备回收特异的目的核酸片段。②聚合酶链式反应(Poly-merase chain reaction, PCR)扩增技术:利用这种先进技术能简便快速制备大量特异性目的核酸片段。PCR技术的基本原理是利用DNA聚合酶依赖于DNA模板的特征,在体外用一对和欲扩增DNA片段的两侧序列互补的引物诱发聚合反应,即双链DNA先高温变性,然后在低温下与引物退火,再在中等温度进行链延伸反应。上述在三种不同温度下的变性、退火和延伸为一个循环反应,重复这种循环反应可使DNA获得指数性倍增,例如经过35个循环反应,DNA可扩增1×108倍以上。

非放射性标记的核酸探针放射性标记核酸探针在使用中的限制,促使非放射性标记核酸探针的研制迅速发展,在许多方面已代替放射性标记,推动分子杂交技术的广泛应用。目前已形成两大类非放射标记核酸技术,即酶促反应标记法和化学修饰标记法。酶促

反应标记探针是用缺口平移法,随机引物法或末端加尾法等把修饰的核苷酸如生物素-11-dUTP掺入到探针DNA中,制成标记探针,敏感度高于化学修饰法,但操作程序复杂,产量低,成本高。

化学修饰法是将不同标记物用化学方法连接到DNA分子上,方法简单,成本低,适用于大量制备(>50μg)如光敏生物素标记核酸方法,不需昂贵的酶,只在光照10~20min,生物素就结合在DNA或RNA分子上。

非放射性标记核酸探针方法很多,现介绍常用的几种方法如下:

一、生物素标记核酸探针方法

生物素标记的核苷酸是最广泛使用的一种,如生物素-11-dUTP,可用缺口平移或末端加尾标记法。实验发现生物素可共价连接在嘧啶环的5位上,合成TTP或UTP的类似物。在离体条件下,这种生物素化dUTP可作为大肠杆菌多聚酶I(DNA酶I)的底物掺入带有缺口的DNA或RNA,得到生物素标记的核酸探针。这种标记方法称为缺口平移法。用标记在DNA上的生物素与链霉亲合素-酶(过氧化物酶或碱性磷酸酶)标记物进行检测。缺口平移法标记生物素DNA探针:在硅化Eppendorf管(放入冰浴中)加下列反应液:待标记DNA 0.1μg/μl 5μl

10×NTB1μl

DNase I 2pg/μl 1μl

消毒三蒸水3μl

总体积达10μl,混匀,37℃,15min。离心10000r/min 1min后,放入冰浴中,继续加入下列反应液:

dNTP(ACG)0.5μg/ml2μl

Bio –11 –dUTP 0.5μg/ml2μl

10×NTb4μl

消毒三蒸水31μl

混匀,短暂离心后,加入DNA聚合酶I(5u/μl)1μl,总体积50μl,混匀,14℃过夜(10h 以上),加入终止液2μl,经Sephadex-G-50柱分离,回收生物素标记DNA。

10×NTB配法:500mmol/l Tris -HCl, Ph7.5;100mol/L MgCl2;80mmol/L β-巯基乙醇,500μg/ml BSA。终止液:0.25mol/L EDTA, 10mg/ml tRNA和10mmol/l Tris-HCl (pH7.5)。缺口平移法标记探针少量多次标记效果较好,即每次标记DNA不超过1μ.Bio-11-dUTP 要浓贮,分装,-20C保存,反复冻融常会降解失活。Bio-11- dUTP贮存液:10mmol/L即100μg Bio-11-dUTP中加入11.6μl Bio-11-dUTP稀释液,分装成3μl/支,-20℃保存。

地高辛-dUTP标记DNA也可按此法进行。乙醇沉淀分离回收标记DNA比较方便,即加入5μl 4mmol/l LiCl, 125μl冷乙醇,混匀,-20℃放置30min,12000r/min离心5min,去上清,用70%乙醇和无水乙醇洗沉淀物,倒置离心管,晾干,用消毒三蒸水5μl溶解沉淀物(0.1μg/μl)-20。C保存。用LiCl 可较好地分离DNA和可溶性核苷酸,因为dNTPS的锂盐在乙醇中比钠盐溶解性更大。

寡核苷酸探针的制备

利用寡核苷酸自动合成仪,可很简单地合成制备寡核苷酸探针(如15~50bp),这类探针具有以下优点:①短的探针比长探针杂交速度快,特异性强。②可以在短时间内大量制备。

③在合成中进行标记制成探针。④可合成单链探针,避免了用双链DNA探针在杂交中自我复性,提高杂交效率。⑤寡核苷酸探针可以检测小DNA片段,在严格的杂交条件下,可用于检测在序列中单碱基对的错配。因此,寡核苷酸探针的研究,对于提高核酸杂交技术的特异性和敏感性,扩大应用范围有重要意义。常用的寡核苷酸探针有3种:①特定序列的单一寡核苷酸探针;②较短的简并性较高的成套寡核苷酸探针;③较长而简并性较低的成套寡核

苷酸探针。多用32P标记寡核苷酸探针,如:1)通过T4噬菌体多核苷酸激酶催化的磷酸化反应标记合成的寡核苷酸探针,在合成寡核苷酸时期5’端缺少一个磷酸基,因而易用T4噬菌体多核苷酸激酶进行磷酸化反应,而将α-32P从[γ-32P]A TP转移至其5’端。这种磷酸化反应最多能使每一寡核苷酸分子中掺入一个32P原子。2)用大肠杆菌DNA聚合酶i Klenow 片段标记合成的寡核苷酸探针,其比活性更高,每一寡核苷酸分子可带有若干个放射性原子,放射性比活度可高达2×1010计数/(min·mg)。附图DNA聚合酶i Klenow片段标记合成寡核苷酸探针。

寡核苷酸探针的非放射性标记时,可用以下几种方法:1.酶延伸法合成与探针目的基因的3’-端一段互补的寡核苷核序列,此序列的5’-端多加一个A,与目的基因片段退火,再用Klenow酶延伸,使bio -dUTP掺入探针的3’末端。2.5’磷酸末端标记法带5’-磷酸的寡核苷酸探针,在咪唑缓冲液中用水溶性碳二亚胺(EDC)处理,可生成活性的磷酸咪唑中间体,与过量的乙二胺作用,就可以引入一个带氨基的接臂。用活化生物素标记就可以得到5’-磷酸标记的寡核苷酸探针。3.酶标探针法用双功能联接剂如辛二酸双羟基琥珀亚胺酯联接寡核苷酸和碱磷酶,可以生成1:1的酶标寡核苷酸探针。此法省略了生物素-亲合素中间步骤,可减少非特异性反应。4.生物素酰肼胞嘧啶修饰法在亚硫酸盐催化下,生物素酰肼可置换寡核苷酸探针中胞嘧啶上的氨基而得生物素化寡核苷酸探针。5.寡核苷酸的酶促加尾标记法在末端转移酶的作用下,用非放射性物质修饰的核苷酸(生物素dATP;生物素-dUTP;地高辛-dUTP)可加到DNA的3’末端,每个探针DNA可加上10~20个修饰碱基。(1)取-0.5ml硅化塑料离心管,插入冰浴中,加入寡核苷酸(3pmol)×μl,5×加尾缓冲液20μl,5.0mmol/l dUTP 4μl(终浓度200μmol/L),修饰的dNTP(生物素-dUTP;生物素-dATP;地高辛-dUTP)×μl(终浓度100μmol/L),加入至100μl,混匀后加入末端转移酶5u。37℃反应1h。(2)探针纯化:乙醇沉淀法:加入50μg tRNA,15ul 4mol/L醋酸钠和375μl无水乙醇,混匀,-20℃1h,高速离心10min,弃上清,用70%乙醇和无水乙醇再反复洗沉淀,晾干,再溶于水中,浓度为500ng/ml。

常用试剂配制方法[见附录二―(四)关于探针的标记‖部分].

荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图 1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理 (1) 结合型荧光探针[21] +

Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光

结构设计常识及规范

第一章材料 SPCC 一般用钢板,表面需电镀或涂装处理 SECC 镀锌钢板,表面已做烙酸盐处理及防指纹处理 SUS 301 弹性不锈钢 SUS304 不锈钢 镀锌钢板表面的化学组成------基材(钢铁),镀锌层或镀镍锌合金层,烙酸盐层和有机化学薄膜层. 有机化学薄膜层能表面抗指纹和白锈,抗腐蚀及有较佳的烤漆性. SECC的镀锌方法 热浸镀锌法: 连续镀锌法(成卷的钢板连续浸在溶解有锌的镀槽中 板片镀锌法(剪切好的钢板浸在镀槽中,镀好后会有锌花. 电镀法: 电化学电镀,镀槽中有硫酸锌溶液,以锌为阳极,原材质钢板为阴极. 1-2产品种类介绍 1.品名介绍 材料规格后处理镀层厚度 S A B C*D*E S for Steel A: EG (Electro Galvanized Steel)电气镀锌钢板---电镀锌 一般通称JIS 镀纯锌EG SECC (1) 铅和镍合金合金EG SECC (2) GI (Galvanized Steel) 溶融镀锌钢板------热浸镀锌 非合金化GI,LG SGCC (3) 铅和镍合金GA,ALLOY SGCC (4) 裸露处耐蚀性2>3>4>1 熔接性2>4>1>3 涂漆性4>2>1>3 加工性1>2>3>4

B: 所使用的底材 C (Cold rolled) : 冷轧 H (Hot rolled): 热轧 C: 底材的种类 C: 一般用 D: 抽模用 E: 深抽用 H: 一般硬质用 D: 后处理 M: 无处理 C: 普通烙酸处理---耐蚀性良好,颜色白色化 D: 厚烙酸处理---耐蚀性更好,颜色黄色化 P: 磷酸处理---涂装性良好 U: 有机耐指纹树脂处理(普通烙酸处理)--- ---耐蚀性良好,颜色白色化,耐指纹性很好A: 有机耐指纹树脂处理(厚烙酸处理)---颜色黄色化,耐蚀性更好 FX: 无机耐指纹树脂处理---导电性 FS: 润滑性树脂处理---免用冲床油 E: 镀层厚 1-4物理特性 膜厚---含镀锌层,烙酸盐层及有机化学薄膜层,最小之膜厚需0.00356mm以上. 测试方法有磁性测试(ASTM B499), 电量分析(ASTM B504), 显微镜观察(ASTM B487) 表面抗电阻---一般应该小于0.1欧姆/平方公分. 1- 5 盐雾试验----试片尺寸100mmX150mmX1.2mm, 试片需冲整捆或整叠铁材中取下,必须在镀烙酸盐后24小时,但不可超过72小时才可以用于测试,使用5%的盐水,用含盐的水汽充满箱子,试片垂直倒挂在箱子中48小时。 测试后试片的镀锌层不可全部流失,也不能看到底材或底材生锈,但是离切断层面6mm范围有生锈情况可以忽略。

real time PCRTaqman探针设计、实时多重PCR探针的选择、引物的设计及评价

real time PCRTaqman探针设计、实时多重PCR探针的选择、引物的设计及评价 一、实时荧光Taqman 探针设计 总原则:探针选择要保守,引物选择要保守,因此必须找一段100-200bp相对要保守的片段来设计引物与探针。即real-time PCR的扩增片段是50bp----150bp。当找不到150bp的保守片段时,必须确保探针的片段是保守的。 在设计探针和引物时,要同时考虑在两条链上设计引物与探针。但要注意的是:在那条链上设计探针时,就应靠近在同一条链上设计的引物(即上游引物)。这样,可保证在将来扩增时,即便没有完全扩增,也有荧光信号报告出来。两者的距离最好是探针的5’端离上游引物的3’有一个碱基,但也可以重叠。 若在原序列中找不到合适的探针与引物(1主要是探针和上游引物的距离太远,而离下游引物的距离却较近时;2突变位点要求在探针的5’ 端也能检测到荧光信号,但却是在3’端),可在互补的序列中设计引物与探针。 另real-time PCR中的探针和引物的Tm值,均要高于平常PCR的引物和杂交的探针的Tm值。 二、探针的设计 探针设计的基本原则: 1.保守:探针要绝对的保守,有时分型就单独依靠探针来决定。理论上有一个碱基不配对,就可能检测不出来。若找不到完全保守的片段,也只能选取有一个碱基不同的片段。且这个不同的碱基最好在探针的中间,对探针与目的片段的杂交影响不大,不相同的碱基最好不要在两端,因为两端不利于探针的杂交。且最好为A或T,而不能为G或A,因为A、T为双键,而G、A为三键。 2.探针长度

Taqman探针的长度最好在25-32bp之间,且Tm值在68-72℃之间,最好为70℃,确保探针的Tm 值要比引物的Tm值高出10℃,这样可保证探针在煺火时先于引物与目的片段结合。因此探针最好是富含GC的保守片段,保证其的Tm值较高。现在有Taqman MGB探针,在TAMER之后再标记一个MGB,可使探针的Tm值较高,即使探针片段较短,也可达到Taqman探针的Tm值要求(68-70℃)。 3.探针的名称 应标记探针在基因组的位置及长度。 4.探针Tm值计算 用oligo或primer preiemer软件即可计算Tm值。确保探针中GC含量在30-80%。应避免探针中多个重复的碱基出现,尤其是要避免4个或超过4个的G碱基出现。 5.探针的评价 用DNAstar软件中的Primerselect软件,点击“log”菜单中的“create primer catalog”,在“name” 中输入探针的名称、位置,按Tab键进入“sequence”,粘贴或输入要分析的探针序列。选中整个序列后,在“report”菜单下“primer self dimer”,分析探针的二聚体。弹出的窗口中就告诉此探针有多少个dime r,并对此探针用dG值进行评价(通常给出最差的dG值,理论上是dG值越大越好)。在“report”菜单下“p rimer hairpins”,分析探针的发夹结构。弹出的窗口中就告诉此探针有多少个hairpins,并对此探针的h airpins进行评价。多重荧光PCR时,要对多条探针进行“pair dimer”进行分析。 6.探针的5’端不能为G 因为即使单个G碱基与FAM荧光报告基团相连时,G可以淬灭FAM基团所发出的荧光信号,从而导致假阴性的出现。 7.Taqman探针与引物之间的位置

四探针操作手册

南开大学 硅光电子学与储能实验室 Four-Point Probe Operation | 2011 四探针操作手册

四探针操作说明书 Four-Point Probe Operation 第1章引言 (1) 1. 目的 (1) 2. 应用范围 (1) 3. 测试设备 (1) 四探针 (1) 数字电压源表 (2) 第2章原理简述 (3) 1. 薄膜(厚度≤4mm)电阻率: (3) 2. 薄膜方块电阻 (3) 第3章操作方法 (5) 1. 引言 (5) 2. 测试线连接方式 (5) 3. KEITHLEY 2400高压源表设置指南 (6) 4. 探针接触方式 (8) 5. 数据测试指南 (8) 第4章注意事项 (10) 附表 ................................................................................................................................................... I

第1章引言 1.目的 本说明书主要介绍用四探针法测试薄膜方块电阻及电阻率的原理及具体操作方法。 2.应用范围 测量参数:方块电阻,电阻率 测量样品:均匀薄膜,均匀薄片 方块电阻测试范围:0.01?~500M? 电阻率测试范围:10-5??cm~103??cm 样品大小:直径>1cm 精度:<±5% 3.测试设备 四探针 生产厂商: 广州四探针有限公司RTS-2型 基本指标: 间距:1±0.01mm; 针间绝缘电阻: ≥1000MΩ; 机械游移率: ≤0.3%; 探针:碳化钨或高速钢材质,探针直径Ф0.5mm; 探针压力:5~16 牛顿(总力); 使用环境: 温度::23±2℃; 相对湿度:≤65%; 无高频干扰; 无强光直射; 基本参数: Fsp=0.1 探针间距:1.0mm

qPCR引物设计原则及具体操作步骤

qPCR引物设计原则及具体操作步骤 1.找基因(DNA) 1)通过英文名称查找 通过查看文献或者百度搜索查找到对应基因的准确的英文名称 →进入NCBI官网 →点击网页右下角GenBank,进入GenBank界面 →在搜索框中输入准确的英文名称,点击Search搜索即可 2)通过序列号查找 通过查找文献,找到相应基因在GenBank上的登录号,直接输入上面的搜索框进行查找即可。 例如:犬冠状病毒(canine coronavirus,CCV)基因保守片段序列号为KT222978。 3)通过引物查找 通过查找文献,找到别人用过的对应的引物 →在NCBI官网右下角点击Primer-BLAST →输入正、反向引物序列 →设置对应参数 →点击“Get Primers”进行搜索即可 4)找到对应的基因后点击“FASTA”,进入相应界面,再点击“Send to”选择相应格式,保存 序列。

2.qPCR引物和TaqMan探针的设计 1)引物设计注意事项 a)引物长度17bp-25bp为佳。太短的引物容易导致扩增效率降低;太长的引物会导致出 现引物高级结构的几率增加。两者都会干扰定量结果的准确性 b)扩增片段长度为:90-150 bp(最低不能超过70,最高不能超过180) c)引物的Tm值为:最小57℃,最大63℃,最适为60℃,两条引物之间退火温度得差距 不超过1℃,推荐使用Primer Premier 5进行Tm值计算; d)引物A、G、C、T整体分布尽量要均匀,避免使用GC或者TA含量高的区域,尤其 是3’端,必须避开GC含量不均匀的区域。 e)引物设计时请尽量避开TC或者AG的连续结构。 f)3’端不能超过3个以上碱基互补,自互补碱基数不超过3;3’端最后一个碱基绝对不能 搭上 g)特异性要有保证,与非特异模板3’端互搭碱基数不超过3,不连续出现4个及以上的 GC互搭 h)引物3’端最后五个碱基不能包含超过2个以上的G或者C i)引物的GC含量控制在40%-60%之间为好,最佳为45%-55%之间 j)正向或者反向引物应尽量接近探针序列但是不能和探针序列有重合区域 k)在Primer-BLAST设计时,在Organism 处选择相应物种 l)需跨外显子设计,避免基因组污染 2)TaqMan探针设计指南 a)探针序列应尽量接近正向或者反向引物,但是不能与之有重合区域;一般相隔1~5个 碱基(一般10个以内,最好是1个碱基)。 b)应避免连续相同的碱基出现,特别是要避免GGGG或者更多的连续G出现。 c)探针5’端应避免使用碱基G,因为5'G会有淬灭作用,而且即使是被切割下来还会存 在淬灭作用 d)3’端应避免使用碱基A

甲基化引物探针设计方法

本文叙述了一种用于甲基化分析的探针法定量PCR的引物和探针设计方法,目前用于甲基化检测的引物探针设计工具非常多,都有使用成功的案例,经过初步多方尝试,本文中叙述的为本人认为较为靠谱的方法。Oligo7的优势在于专业,参数详尽且可自由设置,模块化设计,学会后使用便利。专业的活就是要专业的用专业的工具干。

首先是进行序列转换,有较多的在线工具和联机软件都可实现,这里使用https://www.doczj.com/doc/a29242358.html,/methprimer/,较为简单直观。

直接将目标序列放入如上图的编辑框中,此也可直接用于相关引物的设计,不过本人没使用过,因为不能设计探针。submit后就有转化后的序列信息,如下图: 以上详细标记了CpG位置和非CpG位置的C,可直接复制到Word标注使用,下面就可以使用Oligo7利用上边的序列设计引物和探针了,如果是设计非甲基化引物探针,则使用原始序列。

关于引物和探针的一些主要参数,主要参考invtrogen的建议: Primer设计的基本原则: a)引物长度一般在18-35mer。 b)G-C含量控制在40-60%左右。 c)避免近3’端有酶切位点或发夹结构。 d)如果可能避免在3’端最后5个碱基有2个以上的G或C。 e)如果可能避免在3’端最后1个碱基为A。 f)避免连续相同碱基的出现,特别是要避免GGGG或更多G出现。 g)退火温度Tm控制在58-60C左右。 h)如果是设计点突变引物,突变点应尽可能在引物的中间。 T aqMan 探针设计的基本原则: a)T aqMan 探针位置尽可能靠近扩增引物(扩增产物50-150bp),但不能与引物重叠。 b)长度一般为18-40mer 。 c)G-C含量控制在40-80%左右。 d)避免连续相同碱基的出现,特别是要避免GGGG或更多G出现。 e)在引物的5’端避免使用G。 f)选用比较多的碱基C。 g)退火温度Tm控制在68-70℃左右。 另:目标变异碱基最好在3’末端或3’末端-1位置,保证扩增特异性,对于甲基化,则最好是C。

两种定量分析方法的比较及Taqman探针引物设计原则

两种定量分析方法的比较及Taqman 探针、引物设计原则 遗传物质DNA 首先要把所携带的遗传信息转录成为信使RNA (mRNA ),携带遗传信息的mRNA 从细胞核进入到细胞质中与核糖体结合,在核糖体中mRNA 携带的遗传信息被翻译成为多肽,多肽经过进一步加工后变成蛋白质,至此遗传物质DNA 完成了表达过程。期间的转录过程是基因表达中非常重要的调节步骤,所转录的mRNA 的多少直接影响着相关最终蛋白质的多少,所以通过对细胞内某条基因mRNA 含量多少的分析,就能大致判断出该条基因的表达是否活跃。 定量PCR 仪是在普通PCR 仪的基础上加装了荧光激发装臵和荧光检测装臵,PCR 扩增和检测同时进行;在PCR 反应体系中加入荧光基团,利用荧光信号的积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析。该技术于1996年由美国Applied Biosystems 公司推出,由于该技术不仅实现了PCR 从定性到定量的飞跃,而且与常规PCR 相比,它具有特异性更强、有效解决PCR 污染问题、自动化程度高等特点,目前已得到广泛应用。 定量PCR 常用的三个常用概念 扩增曲线、荧光阈值、Ct 值 扩增曲线:反映PCR 循环次数和荧光强度的曲线,定量PCR 仪每次轮PCR 扩增都会自动记录 荧光强度的变化 荧光阈值:样本的荧光背景值和阴性对照的荧光值,手动 设臵的原则要大于样本的荧光背 景值和阴性对照的荧光最高值,同时要尽量选择进入指数期的最初阶段,并且保 证回归系数大于0.99。 CT 值: PCR 扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。 扩增曲线 阈值及CT 值 荧光定量PCR 的数学原理 理想的PCR 反应: X=X0*2n 非理想的PCR 反应: X=X0* (1+Ex)n (n :扩增反应的循环次数;X :第n 次循环后的产物量;X0:初始模板量;Ex :扩增效率) 在扩增产物达到阈值线时 : C(t) value

探针的设计原则

实时荧光Taqman 探针设计的几个要点 实验室很多同学都要做Real time PCR实验,实验室的师兄师姐都会有很多宝贵意见,不过也有实验室前没有做过的,查找了下资料和大家分享下关于实时荧光Taqman探针设计、实时荧光PCR探针的选择、 引物的设计及评价。 荧光探针法是用序列特异的荧光标记探针来检测产物,探针法的出现使得定量PCR技术的特异性比常规PCR技术大大提高。目前较常提及的有TaqMan探针、FRET杂交探针(荧光共振能量传递探针)和分子信 标Molecular Beacon。 广泛使用的TaqMan探针法是指PCR扩增时在加入一对引物的同时另外加入一个特异性的荧光探针,该探针只与模板特异性地结合,其结合位点在两条引物之间。探针的5′端标记有荧光报告基团(Reporter, R),如FAM、VIC等,3′端标记有荧光淬灭基团(Quencher, Q),如TAMRA等。当探针完整的时候,5′端报告基团经仪器光源激发的荧光正好被近距离的3′端荧光基团淬灭,仪器检测不到5′端报告基团所激发的荧光信号(就是说5’荧光基团的发射波长正好是3’ 荧光基团的吸收波长,因而能量被吸收传递到3’荧光基团而发出其它荧光)。随着PCR的进行,Taq酶在链延伸过程中遇到与模板结合的探针,其5′-3′外切酶活性(此活性是双链特异性的,游离的单链探针不受影响)就会将切割探针,释放5′端报告基团游离于反应体系中,远离3′端荧光淬灭基团的屏蔽,5′端报告基团受激发所发射的荧光信号就可以被探头检测到。也就是说每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。报告信号 的强度就代表了模板DNA的拷贝数。 (请注意,该图显示的不是普通的Taqman探针法,而是Taqman MGB探针法)Taqman探针检测的是积累荧光。常用的荧光基团有FAM,TET,VIC,HEX等等。当探针完整的时候,由于3′端的荧光淬灭基团在吸收5′端报告基团所发射的荧光能量,本身会发射波长不同的荧光而导致本底高,因此TaqMan探针近来又有新的发展——TaqMan MGB探针。MGB探针的淬灭基团采用非荧光淬灭基团(Non-Fluorescent Quencher),本身不产生荧光,可以大大降低本底信号的强度。同时探针上还连接有MGB (Minor Groove Binder)修饰基团,可以将探针的Tm值提高10°C左右。因此为了获得同样的Tm值,MGB探针可以比普通TaqMan探针设计得更短,既降低了合成成本,也使得探针设计的成功率大为提高——因为在模板的DNA碱基组成不理想的情况下,短的探针比长的更容易设计。实验证明,TaqMan MGB探针对于富含A/T 的模板可以区分得更为理想。 Taqman探针法已经得到广泛使用,不过有人认为这种技术利用了Taq酶5`—3`外切酶活性,一般试剂厂家只给Taq酶的聚合酶活性定标,没有同时给Taq酶5`—3`外切酶活性定标,不同批号试剂之间会给定量带来差异。另外对探针的熔点温度(Tm)仅要求其高于60°C,这就使不同试剂盒之间的特异性参差不齐,难 于做质控检测。 Real time PCR Taqman探针设计、实时多重PCR探针的选择和引物的设计及评价 一、实时荧光Taqman探针设计 总原则:探针选择要保守,引物选择要保守,因此必须找一段100-200bp相对要保守的片段来设计引物与探针。即real-time PCR的扩增片段是50bp----150bp。当找不到150bp的保守片段时,必须确保探针的 片段是保守的。

两种定量分析方法的比较及Taqman探针引物设计原则

两种定量分析方法的比较及Taqman探针、引物设计原则 遗传物质DNA首先要把所携带的遗传信息转录成为信使RNA(mRNA),携带遗传信息的mRNA从细胞核进入到细胞质中与核糖体结合,在核糖体中mRNA携带的遗传信息被翻译成为多肽,多肽经过进一步加工后变成蛋白质,至此遗传物质DNA完成了表达过程。期间的转录过程是基因表达中非常重要的调节步骤,所转录的mRNA的多少直接影响着相关最终蛋白质的多少,所以通过对细胞内某条基因mRNA含量多少的分析,就能大致判断出该条基因的表达是否活跃。 定量PCR仪是在普通PCR仪的基础上加装了荧光激发装置和荧光检测装置,PCR扩增和检测同时进行;在PCR反应体系中加入荧光基团,利用荧光信号的积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析。该技术于1996年由美国Applied Biosystems公司推出,由于该技术不仅实现了PCR从定性到定量的飞跃,而且与常规PCR 相比,它具有特异性更强、有效解决PCR污染问题、自动化程度高等特点,目前已得到广泛应用。 定量PCR常用的三个常用概念 扩增曲线、荧光阈值、Ct值 扩增曲线:反映PCR循环次数和荧光强度的曲线,定量PCR仪每次轮PCR扩增都会自动记录荧光强度的变化 荧光阈值:样本的荧光背景值和阴性对照的荧光值,手动设置的原则要大于样本的荧光背景值和阴性对照的荧光最高值,同时要尽量选择进入指数期的最初阶段,并且保 证回归系数大于0.99。 CT值: PCR扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。 C(t) value 扩增曲线阈值及CT值 荧光定量PCR 的数学原理

定量PCR Taqman探针设计要领

定量PCR+Taqman探针设计要领 自90年代Taqman探针诞生以来,虽然荧光探针(引物)不断有新的技术出现,但是作为一种经典的定量PCR技术,Taqman探针技术仍然是许多实验研究人员进行定量检测的首选,这主要是因为相对于SYBR 荧光染料,Taqman探针具有序列特异性,只结合到互补区,而且荧光信号与扩增的拷贝数具有一一对应的关系,因此特异性强灵敏度高,而且条件优化容易;而相对于杂交探针,Taqman探针只要设计一条探针,因此探针设计较便宜方便,而且也能完成基本的定量PCR要求。当然Taqman定量方法由于还是要合成探针,也给实验操作带来了挑战。 一般Taqman定量PCR实验过程为:目的基因查找比对→探针与引物设计→探针与引物合成→配置反应体系→反应参数→重复实验,优化条件→获得曲线数据,比对标准曲线→再重复验证。 第一步:在第一步目的基因查找比对过程中可以利用NCBI genbank序列以及DNAstar等软件完成目的DNA 或者RNA的查找与比对——这在分析测序报告的时候相信很多人操作过,这一步需要注意的就是要保证所分析的序列在一个contig(重叠群,即染色体的一些区域中毗邻DN***段重叠的情况)内。 第二步:如果其它条件一致,那么这个第二步——引物探针的设计就可以说是定量PCR成败的关键了,通过各方面经验的总结有以下几个基本的原则: 总体原则 * 先选择好探针,然后设计引物使其尽可能的靠近探针。 * 所选序列应该高度特异,尽量选择具有最小二级结构的扩增片段——这是因为二级结构会影响反应效率,而且还会阻碍酶的扩增。建议先进行二级结构检测,如果不能避免二级结构,那么就要相应提高退火温度。* 扩增长度应不超过400bp,理想的最好能在100-150bp内,扩增片段越短,有效的扩增反应就越容易获得。较短的扩增片段也容易保证分析的一致性。 * 保持GC含量在20%和80%之间,GC富含区容易产生非特异反应,从而会导致扩增效率的降低,以及出现在荧光染料分析中非特异信号。 * 为了保证效率和重复性,应避免重复的核苷酸序列,尤其是G(不能有4个连续的G) * 将引物和探针互相进行配对检测,以避免二聚体和发卡结构的形成。 引物设计原则 * 序列选取应在基因的保守区段 * 避免引物自身或与引物之间形成4个或4个以上连续配对,避免引物自身形成环状发卡结构 * 典型的引物18到24个核苷长。引物需要足够长,保证序列独特性,并降低序列存在于非目的序列位点的可能性。但是长度大于24核苷的引物并不意味着更高的特异性。较长的序列可能会与错误配对序列杂交,降低了特异性,而且比短序列杂交慢,从而降低了产量。 * Tm值在55-65℃(因为60℃核酸外切酶活性最高),GC含量在40%-60% * 引物之间的TM相差避免超过2℃ * 引物的3’端避免使用碱基A,引物的3’端避免出现3个或3个以上连续相同的碱基 * 为避免基因组的扩增,引物设计最好能跨两个外显子。 * Taqman探针技术要求片段长度在50bp-150bp

PCR和定量PCR的引物和探针设计

引物和探针设计 – PCR 和定量PCR 基本原理 引物设计的重要因素 针对特殊应用的其他提示 引物的质量和纯度目录 1247

基本原理 引物是短的寡核苷酸,充当DNA复制的起始点。因为几乎所有DNA聚合酶都不能从头合成,所以它们需要一个3'-羟基作为DNA合成的起始点。这个3'-羟基由相配的引物提供。引物在体内由RNA聚合酶(称为引物酶)生成。这些引物(在此为小RNA)由DNA聚合酶用作延长的起始点。在延长过程中,RNA引物降解并由DNA取代。 体外扩增反应,如聚合酶链反应(PCR)或逆转录(RT),需要引物。通过选择特异的引物序列,DNA 片段的所需区域可得到扩增。 对于大多数PCR反应,决定整个反应成功与否的最重要因素是引物的序列和质量。 在开始引物设计之前,必须弄清以下几点: PCR的目的(例如定量检测、克隆、基因分型) PCR类型(定量PCR、RT-PCR、长片段PCR) 样品材料(基因组DNA、RNA、微小RNA) 可能的问题(例如假基因、SNP) 1

引物设计的重要因素 2 有一些不同的软件工具可用于引物设计和序列分析。它们能简化相配引物对的搜索,一般考虑以下标准。 最流行的软件为Primer 3(https://www.doczj.com/doc/a29242358.html,),它是大多数基于网络引物设计应用的基础。典型的引物长度为18-30个碱基。 短的引物(15个核苷酸以下)能非常高效地结合---但是它们的专一性不够。 非常长的引物能提高专一性,但是退火效率低,从而导致PCR 产物量低下。 应避免编码单一序列和重复序列的引物。 引物长度和专一性 引物的GC 含量应介于40%和60%之间。应避免聚-(dC )-或聚(dG )-区域,因为它们会降低退火反应的专一性。聚-(dA )-和聚(dT )-也应避免,因为这会生成不稳定的引物-模板复合物,从而降低扩增效率。 平衡GC含量,避免GC-和AT-富集区域 退火温度是基于引物的解链温度(Tm )计算。最常用的解链温度计算公式显示如下。“2+4”法则,亦称华莱士法则,对于极短的寡核苷酸(最多14个碱基)有效,该法则提出每个AT 对能将双链DNA 的解链温度提高2°C ,每个GC 对则能提高4°C 。 GC 法则(适用于长于13个碱基的序列)也是一种简单但同时相当不准确的方法。 两种法则都假设退火发生于以下标准条件下: 50 nM 引物、50 mM Na + 和pH 7.0。 “盐调整”法稍微准确一些,考虑到了反应缓冲液中的Na+离子浓度。 最复杂的方法称为“碱基堆积”法。这里的计算中包括了杂交期间的焓(H )和熵(S )。 计算出的解链温度可用于估算最佳退火温度。 但是,经常需要经验性地估算最佳温度。 所选引物的解链温度应允许退火温度介于55°C 和65°C 之间。一个引物对的两条引物都应具有相同或极相近的解链温度。 退火温度 Tm = 2 °C ? (A + T) + 4 °C ? (G + C) Tm = 64.9 °C + 41 °C ? (G + C -16.4)(A + T + G + C) Tm = 100.5 °C + 41 °C ? ? 16.6 ? log 10([Na + ]) C + G A + C + G + T 820A + C + G + T 提示

实时定量PCR引物和探针设计操作步骤Primer Express软件

实时定量PCR引物和探针设计操作步骤Primer Express软件 Primer Express 是实时定量PCR引物和探针设计的专用软件。遵守以下三个原则有助于快速建立定量PCR反应体系: 1.所有扩增按照同样的原则设计 (Primer Express); 2.所有PCR反应在ABI PRISM ?7000/7900上使用同样的热循环条件; 3.所有反应使用相同的PCR试剂。 引物和探针的设计原则 下述原则的重要程度由上往下越来越低,请尽量满足编号靠前的条件。它们中有的已经在Primer Expre软件中设置成缺省值,有的则需要在选择引物和探针时由设计者加以运用。如果是设计SYBRGreen 引物,也要选择TaqMan Primer and Probe design并遵守这些规则,但是只需要合成引物就可以了。 TaqMan 探针: 1. 保持G-C含量在30-80%之间。 2. 避免同一碱基重复过多。特别是G,不可超过4个及以上。 3. 5' end不能是G。 4. 尽量使探针中的Cs多于Gs。如果不能满足,则使用互补链上的探针。 5. 对于单探针反应,用Primer Express?软件计算出来的Tm值应当在68-70 °C 之间。 引物:1. 在探针确定以后再选择引物。 2. 引物要尽可能地接近探针,但是不要重叠。 3. 保持G-C含量在30-80%之间。 4. 避免同一碱基重复过多。特别是G,不可超过4个及以上。 5. 用Primer Express?软件计算出来的Tm值应当在58-60 °C之间。 6. 3' end 的5个碱基中G and/or C碱基的总数不能超过2个。 实时TaqMan 引物和探针设计 Begin by opening Primer Express and selecting "File", "New", and "TaqMan? Primer & Probe Design". The following screen will appear. You can close the TaqMan? Primer & Probe Data box as shown.

定量PCR引物探针设计原则完整版

定量P C R引物探针设计 原则 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

定量PCR引物、探针设计原则 自90年代Taqman探针诞生以来,虽然荧光探针(引物)不断有新的技术出现,但是作为一种经典的定量PCR技术,Taqman探针技术仍然是许多实验研究人员进行定量检测的首选,这主要是因为相对于SYBR荧光染料,Taqman探针具有序列特异性,只结合到互补区,而且荧光信号与 扩增的拷贝数具有一一对应的关系,因此特异性强灵敏度高,而且条件优化容易;而相对于杂交探针,Taqman探针只要设计一条探针,因此探针设计较便宜方便,而且也能完成基本的定量PCR 要求。当然Taqman定量方法由于还是要合成探针,也给实验操作带来了挑战。 一般Taqman定量PCR实验过程为:目的基因查找比对→探针与引物设计→探针与引物合成→配置反应体系→反应参数→重复实验,优化条件→获得曲线数据,比对标准曲线→再重复验证。第一步:在第一步目的基因查找比对过程中可以利用NCBIgenbank序列以及DNAstar等软件完成目的DNA或者RNA的查找与比对——这在分析测序报告的时候相信很多人操作过,这一步需要注意的就是要保证所分析的序列在一个contig(重叠群,即染色体的一些区域中毗邻DNA片段重叠的情况)内。 第二步:如果其它条件一致,那么这个第二步——引物探针的设计就可以说是定量PCR成败的关键了,通过各方面经验的总结有以下几个基本的原则: 总体原则 先选择好探针,然后设计引物使其尽可能的靠近探针。 所选序列应该高度特异,尽量选择具有最小二级结构的扩增片段——这是因为二级结构会影响反应效率,而且还会阻碍酶的扩增。建议先进行二级结构检测,如果不能避免二级结构,那么就要相应提高退火温度。 扩增长度应不超过400bp,理想的最好能在100-150bp内,扩增片段越短,有效的扩增反应 就越容易获得。较短的扩增片段也容易保证分析的一致性。 保持GC含量在20%和80%之间,GC富含区容易产生非特异反应,从而会导致扩增效率的降低,以及出现在荧光染料分析中非特异信号。 为了保证效率和重复性,应避免重复的核苷酸序列,尤其是G(不能有4个连续的G) 将引物和探针互相进行配对检测,以避免二聚体和发卡结构的形成。 引物设计原则 序列选取应在基因的保守区段 避免引物自身或与引物之间形成4个或4个以上连续配对,避免引物自身形成环状发卡结构? 典型的引物18到24个核苷长。引物需要足够长,保证序列独特性,并降低序列存在于非目的序列位点的可能性。但是长度大于24核苷的引物并不意味着更高的特异性。较长的序列可能会与错误配对序列杂交,降低了特异性,而且比短序列杂交慢,从而降低了产量。 Tm值在55-65℃(因为60℃核酸外切酶活性最高),GC含量在40%-60% 引物之间的TM相差避免超过2℃ 引物的3’端避免使用碱基A,引物的3’端避免出现3个或3个以上连续相同的碱基 为避免基因组的扩增,引物设计最好能跨两个外显子。 Taqman探针技术要求片段长度在50bp-150bp? 引物末端(最后5个核苷酸)不能有超过2个的G和C。

原位杂交探针设计原则

原位杂交探针大体可分为三类:寡核苷酸探针,CDNA探针,RNA探针。 寡核苷酸探针由25bp左右的核苷酸组成,通常可以由公司合成,由于其序列较短,因此特异性较强,原位杂交时可以区分家族基因,同一基因的不同剪切体,cDNA探针长约500bp左右,可以通过非对称PCR扩增合成,由于探针式DNA,可以有效的避免降解,但DNA和RNA的结合不如RNA与RNA结合强,通常不采用,RNA探针长约500bp左右,通过体外转录合成,如果设计合理,其特异性是可以得到保证的,其主要缺点是容易被RNAse酶降解。 查看原位杂交相关的文献发现,2000年以前的原位杂交常使用放射性标记的寡核苷酸探针,通过胶片曝光来显色,2000年以后的文献常使用RNA探 针。许多肾脏发育的文献虽然有很多原位杂交数据,但却没有附带上探针序列或者用于探针模板克隆的引物,通过了解厦门黄老师斑马鱼和昆明毛炳宇爪蟾中原位杂交探针设计方法,我们可以采用 RNA探针。文献中很难找到关于 RNA探针设计的原则,有的文献报道直接用cDNA合成RNA探针。借鉴爪蟾中原位杂交探针设计流程,以小鼠FGF10的探针设计为例进行介绍。 1.在NCBI数据库中下载该FGF10的mRNA全序列,然后用FGF10的全长在NCBI中进行BLAST 比对 分析,比对数据库选择mouse genome+transcript,比对程序选择somewhat similar sequenee 。 Zebrafish seqRNAs Choose Search Set O Human genomic 卑transcript @Mouse genom c ■+ trans匚「ipt O Others (nr etc.) Manse genomic plus hanscript Mcuss G+T

KEITHLEY四探针操作手册

南开大学硅光电子学与储能实验室四探针操作手册 Four-Point Probe Operation | 2011

四探针操作说明书 Four-Point Probe Operation 第1章引言 (1) 1. 目的 (1) 2. 应用范围 (1) 3. 测试设备 (1) ?四探针 (1) ?数字电压源表 (2) 第2章原理简述 (3) 1. 薄膜(厚度≤4mm)电阻率: (3) 2. 薄膜方块电阻 (3) 第3章操作方法 (5) 1. 引言 (5) 2. 测试线连接方式 (5) 3. KEITHLEY 2400高压源表设置指南 (6) 4. 探针接触方式 (8) 5. 数据测试指南 (8) 第4章注意事项........................................................................................错误!未定义书签。附表 ...................................................................................................................错误!未定义书签。

第1章引言 1.目的 本说明书主要介绍用四探针法测试薄膜方块电阻及电阻率的原理及具体操作方法。 2.应用范围 测量参数:方块电阻,电阻率 测量样品:均匀薄膜,均匀薄片 方块电阻测试范围:0.01?~500M? 电阻率测试范围:10-5??cm~103??cm 样品大小:直径>1cm 精度:<±5% 3.测试设备 ?四探针 生产厂商: 广州四探针有限公司RTS-2型 基本指标: 间距:1±0.01mm; 针间绝缘电阻: ≥1000MΩ; 机械游移率: ≤0.3%; 探针:碳化钨或高速钢材质,探针直径Ф0.5mm; 探针压力:5~16 牛顿(总力); 使用环境: 温度::23±2℃; 相对湿度:≤65%; 无高频干扰; 无强光直射; 基本参数: Fsp=0.1 探针间距:1.0mm

MGB探针设计原则

总体原则 ?先选择好探针,然后设计引物使其尽可能的靠近探针。 ?所选序列应该高度特异,尽量选择具有最小二级结构的扩增片段——这是因为二级结构会影响反应效率,而且还会阻碍酶的扩增。建议先进行二级结构检测,如果不能避免二级结构,那么就要相应提高退火温度。 ?扩增长度应不超过400bp,理想的最好能在100-150bp内,扩增片段越短,有效的扩增反应就越容易获得。较短的扩增片段也容易保证分析的一致性。 ?保持GC含量在20%和80%之间,GC富含区容易产生非特异反应,从而会导致扩增效率的降低,以及出现在荧光染料分析中非特异信号。 ?为了保证效率和重复性,应避免重复的核苷酸序列,尤其是G(不能有4个连续的G) ?将引物和探针互相进行配对检测,以避免二聚体和发卡结构的形成。 引物设计原则 ?序列选取应在基因的保守区段 ?避免引物自身或与引物之间形成4个或4个以上连续配对,避免引物自身形成环状发卡结构?典型的引物18到24个核苷长。引物需要足够长,保证序列独特性,并降低序列存在于非目的序列位点的可能性。但是长度大于24核苷的引物并不意味着更高的特异性。较长的序列可能会与错误配对序列杂交,降低了特异性,而且比短序列杂交慢,从而降低了产量。 ?Tm值在55-65℃(因为60℃核酸外切酶活性最高),GC含量在40%-60% ?引物之间的TM相差避免超过2℃ ?引物的3’端避免使用碱基A,引物的3’端避免出现3个或3个以上连续相同的碱基 ?为避免基因组的扩增,引物设计最好能跨两个外显子。 ?Taqman探针技术要求片段长度在50bp-150bp ?引物末端(最后5个核苷酸)不能有超过2个的G和C。 探针设计原则

EAST装置的磁探针设计

第28卷 第1期 核 聚 变 与 等 离 子 体 物 理 V ol.28, No.1 2 0 0 8年 3 月 Nuclear Fusion and Plasma Physics March 2008 文章编号:0254?6086(2008)01?0073?04 收稿日期:2007?03?07;修订日期:2007?09?06 基金项目:国家自然科学基金资助项目(10405024) 作者简介:奚维斌(1970?),男,安徽肥东人,博士研究生,研究方向:EAST 电磁测量系统研究和设计。 EAST 装置的磁探针设计 奚维斌,武松涛,沈 飚,万宝年,宋云涛 (中国科学院等离子体物理研究所,合肥 230031) 摘 要:介绍了EAST 装置中磁探针设计中的结构、安装位置、匝面积的标定、幅频响应,并给出了该磁探针的标定误差和Mirnov 线圈幅频响应特征图。两轮EAST 放电试验表明,电磁测量的信号满足装置运行和等离子体控制的需要。 关键词:EAST 装置;磁探针;幅频响应;工程设计 中图分类号:TL65+5 文献标识码:A 1 引言 EAST 是全超导托卡马克核聚变实验装置,它的物理目标[1]是研究并实现稳态的高参数等离子体。为了实现确定的物理目标,电磁测量中磁探针的设计是重要的。在托卡马克中安装在等离子体边界处的磁探针是一种最简单、最重要的提供运行等离子体信息的工具。这些磁探针也提供用于对等离子体的位置、位形和磁流体动力学(MHD)不稳定控制所需要的各种信号。 本文首先介绍磁探针设计的原理;其次详细地叙说EAST 装置中磁探针的结构、安装位置、匝面积标定及幅频响应;最后给出该磁探针的标定误差及幅频响应特征图。 2 磁探针的测量原理 磁探针是安装在等离子体中或边界处的小螺线管线圈,其工作原理是根据电磁感应定律,当线圈所在空间中的磁场发生了变化时,由于穿过线圈横截面的磁通Φ发生变化,在线圈两端将产生一个感应电动势ε: t B S t Φd d d d eff ?=?=ε (1) 式中,B 为磁探针所在空间磁感应强度在线圈轴向的分量;S NS S Δ+=eff ,N 为线圈匝数,S 为线圈 横截面,?S 是引出线和接头所形成的附加的杂散面积。在EAST 装置中设计了两种骨架尺寸相同的磁探针。一种是测量等离子体位置和形状的磁探针叫小探针。小探针测量的信号经过积分器积分,即ε积分就得到小探针几何中心处的磁场B ,磁场方向是线圈的轴线方向。在托卡马克中一般在垂直于等离子体小环方向的截面上安装一组小探针,来反演等离子体的位置和形状。另一种是测量MHD 的不稳定性的磁探针,叫Mirnov 线圈。Mirnov 线圈测量的信号不经过Mirnov 积分器积分。在托卡马克中Mirnov 线圈安装位置和数量都与小探针相同。 满足EAST 装置电磁测量要求的磁探针必须满足如下条件: a. 所有磁探针安装的空间位置精确; b. 所有磁探针有标定精确的匝面积; c. Mirnov 线圈有100kHz 频率响应, 以使探针输出的信号能真实反映磁场的变化。 3 磁探针的设计 3.1 EAST 装置磁探针结构和安装位置 在EAST 装置中,磁探针是安装在真空为1×10?6Pa 、内部部件的烘烤温度为350℃,承受的磁场为3.5T ,等离子体电流为1MA 的真空室内部。磁探针线圈是采用玻璃丝布套管绝缘的裸铜线。玻

相关主题
文本预览
相关文档 最新文档