关于两种常用公交车车门的力学分析
- 格式:doc
- 大小:420.00 KB
- 文档页数:4
高速摄像机在数字图像相关分析DIC的应用-汽车车门振动测试为了研究汽车车门振动的动态行为,汽车主机厂商在验证汽车结构性能时,越来越倾向于采用数字图像相关分析(DIC)的光学测量技术。
工程师们使用DIC来绘制汽车车门在快速关门瞬态下表面的应变和位移。
新拓三维自主研发的DIC高速摄像机测量系统,DIC使用两个同步成像设备——高速摄像机能够以高速记录高分辨率的图像。
通过将高速影像和DIC三维运动跟踪软件相结合,工程师们可观察到微米级别的表面变形。
汽车快速关门过程的振动,直接关系到汽车车门的密闭性、吻合度和舒适度,在高速和加速过程中要达到如此高的精度,只有通过高速摄像机和数字图像相关法DIC的能力才有可能实现,它为汽车主机制造商测试汽车结构性能提供了一种强有力的测量方案。
DIC高速摄像机测量系统某汽车研究院为了掌握汽车车门结构振动的固有频率及振型,利用新拓三维DIC高速摄像机测量系统,测量车门在开启、关闭过程中的振动变形,为减振材料性能验证,分析振动幅度,检验车门的力学性能提供数据支撑。
新拓三维DIC高速摄像机测量系统,采用两台或三台高速摄像机实时采集被测物体各个变形阶段的图像,利用准确识别的标志点(包括编码标志点和非编码标志点)实现立体匹配,重建出物体表面点的三维空间坐标,并计算得到物体的变形量、三维轨迹姿态等数据。
DIC高速摄像机测量系统典型配置型号XTDIC-STROBE-HR规格5M9M12M 高速相机参数500万×3900万×31200万×3高速相机帧率75fps42fps30fps 位移测量精度0.01pixel控制系统标准型测量幅面10000×10000~400×300,单位:mm型号XTDIC-STROBE-HS规格4M 2.5M高速相机参数满幅400万x3,最高540fps;降幅,最高1800fps满幅250万x3,最高600fps;降幅,最高204,100fps位移测量精度0.01mm控制系统高速型测量幅面1000×1000~400×300,单位:mmDIC和振动分析搭配高速摄像机,工程师可以利用DIC进行振动分析。
1 引言 随着汽车工业的发展,人们对汽车的质量要求越来越高,设计开发者不仅要考虑汽车的经济实用性,智能动感性、造型美观性、安全可靠性,还要考虑生产过程中可制造、可维修、可装配等特性。
左前门是司机进入驾驶室的一侧,也是司机控制门内外饰系统的主要装置,左前门设计从构建概念断面到完成工程设计也必须要满足法规、人机工程、可制造、可装配性能为前提,为设计出成本低、重量轻、性能好、品质好的左前门打下良好的基础。
本文将从江铃新能源汽车的左前门型式和左前门系统两方面分析左前门设计,为新能源汽车的左前门设计提供现实意义的参考。
2 文献综述 左前门通过铰链安装在车身壳体上,是保证车身使用性能的重要特性,按开启方式分不同的型式,其侧窗玻璃通常在玻璃与导轨之间装有尼绒橡胶等材料的密封槽上、下或前、后移动[1]。
设计师为了保证所设计的零部件能安全、可靠地工作,在设计之前都应满足机械零件设计的基本要求,这也是避免左前门玻璃升降失效、干涉、进行左前门设计的基础[2]。
3 江铃新能源左前门型式3.1 车门型式 江铃新能源车门型式按开启方式和组成结构,可以分为两种不同范围的型式。
(1)车门开启型式。
江铃新能源车门按其开启方式是顺开式,顺开式车门在汽车行驶时可借气流的压力关上,驾驶员倒车时很方便观察外面的情况,且不容易吹开车门。
(2)车门结构型式。
车门按其组成结构可分为两种型式:第一种是分体式车门,分体式车门本体是由车门外板、车门内板、窗框件所构成,通常是采用辊压成型,经焊接等工艺生成独立的门窗框与门内板、门外板压合或者焊接而成;第二种是整体式车门,整体式车门本体是车门内、外板整体冲压、焊接包边成车门总体框架,对玻璃导轨和密封镶嵌结构可自由设计,不受任何限制,密封条是直接装置车身上,车门减噪性强、防振力刚度高,视野性好,车门窗的造型不受限制,设计者完全可以自由设计。
4 江铃新能源车门系统图1 江铃新能源左前门系统左前门设计分析沈晓春 ,胡振国 , 刘 成(江铃集团新能源汽车有限公司,南昌 330001)摘 要:近几年随着国家政策的变动,国内新能源纯电动汽车企业不再是在战略机遇期盲目的批量冲刺生产;而是在建立自主知识产权的新能源技术产业链,有针对性地满足消费者市场品质需求。
毕业设计(论文)-轿车车门设计与碰撞分析摘要车门是车身结构中一个较复杂的总成。
随着社会的发展和汽车工业的繁荣,汽车作为一种交通工具,在人们生活中起着举足轻重的作用。
汽车车身是整车的重要组成部分,而车门作为车身的一个重要组成部分,又发挥着它所特定的功能。
因而对车门也有特定的要求,如开关方便,玻璃升降方便、具有良好的密封、制造工艺性好等。
由此可见,车门结构设计对车身乃至整车都有重大的影响。
本文运用CATIA软件进行车门各系统总成的设计与安装布置,并详细对防撞梁的耐撞性、抗弯性进行分析,并对其结构进行优化。
运用LS-DYNA软件建立侧面碰撞有限元模型,根据C-NCAP侧面碰撞法规要求,进行侧面碰撞CAE 仿真模拟,为进一步结构优化奠定了基础。
关键词:车门;结构;设计;侧面碰撞;计算机模拟AbstractCar body door is a more complex in the body structure. With the development of society and the prosperity of the auto industry, automobile as a traffic tool, in people life plays an important role. The car body is an important part of the whole vehicle, and the doors as an important part of the car body, and play with specific functions. So on the dooralso have specific requirements, such as switching convenient, glass lift convenient, with good sealing, manufacturing technology. Therefore, the doors of body structure design and the vehicle has significant influence.The use of software for each system CATIA the door of the design and installation arrangement and detailed to guard against the beams of the stamina to run, bent on analysis, and to optimize the use of its structure. The finite model for a certain automobile was created with the software LS-DYNA. According to the C-NCAP side impact rules the simulation analysis was finished,and it established the foundation for further structure optimization.Topic words:Car door;Structure;Design;side impact;computer simulation目录第一章绪论 1车门研究的内容和意义 1汽车CAE技术2CAE技术简介 2CAE技术在汽车产品开发中的作用 2第二章车门的总成设计和要求 3车门类型的选择 3车门结构的3D建模 4567第三章车门附件的布置8门锁的布置8窗框结构确定及玻璃升降器布置9窗框结构的确定9玻璃升降器的布置 10车门铰链布置及运动校核 13151617限位器布置及运动校核1717限位器运动校核18车门的密封19车门的密封19、性能要求 20第四章防撞梁的结构优化设计21 汽车防撞梁的对比选择21汽车防撞梁碰撞性能的评价参数22汽车防撞梁的耐撞性分析 23防撞梁的抗弯性与结构优化23改变防撞梁的高度 25改变截面料厚30第五章侧面碰撞仿真分析35汽车侧面碰撞国内外研究现状35国外研究现状35国内研究现状36C-NCAP 侧面碰撞测试方法36侧面碰撞试验条件 36仿真分析模型建立37整车侧面碰撞仿真模型建立37仿真实例38第六章结论42参考文献43致谢44附录45第一章绪论车门研究的内容和意义随着社会的发展和汽车工业的繁荣,汽车作为一种交通工具,在人们生活中起着举足轻重的作用。
关于某地铁车辆立扶手安装的力学分析与结构优化
首先,对于立扶手的安装位置,应该在车厢内合适的高度和位置上进行固定。
通过对
车厢内乘客坐姿的分析,确定了立扶手的安放高度一般在0.9-1.2米之间,方便乘客抓住
使用。
同时,立扶手的安装位置需要根据车厢内的结构、窗户、车门等特点进行优化,从
而保障立扶手的有效安装。
其次,对于立扶手的材质和结构设计,需要保证其承载力。
车厢内的乘客数量不可预测,可能出现大量集中在立扶手处的情况,因此,立扶手的承载能力至关重要。
一般来说,立扶手应使用高强度材料制造,结构设计应当合理,能够分散载荷,并在承受垂直和横向
力时保持稳定。
最后,车辆立扶手的安装还需考虑乘客使用的方便性和安全性。
立扶手的表面需要采
用防滑材质,为乘客提供较好的抓握感受,减少乘车时滑动摇晃的危险。
同时,立扶手的
安装位置不能影响车内乘客的行动,还应通过科学的设计,解决残疾人、老人、孕妇等人
群的出行问题,从而提高全体乘客的舒适度和安全度。
总之,地铁车辆立扶手的安装需要进行力学分析和结构优化,确保其使用中的承载能力、方便性和安全性。
通过合理的设计和优化,让立扶手成为地铁车辆的重要配套设施,
为乘客的出行带来最大的帮助和保障。
城轨车辆门系统的工作原理与故障分析摘要:城轨车辆门系统是城轨车辆的重要组成,它的工作原理和故障分析对于保障城市轨道交通的安全和高效运营具有重要意义。
本文详细介绍了城轨车辆门系统的工作原理和故障分析方法。
首先,介绍了城轨车辆门系统的组成结构和工作原理,包括车门控制系统、门禁系统和安全系统等。
随后,针对城轨车辆门系统常见的故障,分析了故障产生原因和解决方法。
关键词:城轨车辆,门系统,工作原理,故障分析引言:城轨车辆门系统的工作原理和故障分析是城轨车辆维护和保养中的重要内容,也是城轨车辆制造商和维修厂商关注的焦点。
伴随我国人口基数的不断扩大,交通出行需求日益增加,城轨车辆的运行对于缓解交通压力、便利人民出行有着巨大的帮助。
城轨车辆门系统作为城轨车辆的主要构成,关系到广大人民的出行体验,因此逐渐成为城轨运行和管理中的重点任务。
一、城轨车辆门系统的工作原理城轨车辆门系统是城市轨道交通中最为重要的系统之一。
城轨车辆门系统主要由车门控制系统、门禁系统和安全系统三部分组成。
(一)车门控制系统城轨车辆门系统的车门控制系统是车门的主要控制部分,它主要由门控制器、门控制板、门电机、门锁、开关门按钮和车门传感器等组成。
车门控制系统的工作原理如下:当乘客需要上车或下车时,乘客可以按下车门旁边的开门按钮,门控制器就会接收到信号,门电机开始运行,车门会被打开。
当乘客进出完毕后,车门会自动关闭。
车门控制系统还具有安全保护功能,当车门无法正常关闭时,车门控制系统会自动停止运行,以确保乘客的安全。
(二)门禁系统城轨车辆门系统的门禁系统用于控制乘客进出车辆的权限,主要由车门禁控制器、车门禁读卡器和门禁卡等组成。
当乘客持有有效的门禁卡时,门禁控制器会接收到信号,门电机会自动打开车门。
如果乘客没有有效的门禁卡或门禁卡失效,则车门不会打开。
(三)安全系统城轨车辆门系统的安全系统用于保护乘客的安全,主要由安全传感器和安全电路等组成。
安全传感器安装在车门周围,当检测到有人或物体靠近车门时,会发出警报信号,车门控制系统会自动停止运行,以避免人员和物品被夹伤。
某型汽车车门限位器结构及布置设计摘要:车门限位器是汽车车门系统的一个重要部件,对车门开闭舒适性与安全性有重要作用,限位器设计的好坏直接影响了整车的品质。
在本文之中,主要是针对了汽车车门限位器结构和布置设计做出了全面的分析研究,并且在这个基础上提出了下文中的一些内容。
关键词:汽车车门;限位器;结构;布置设计;分析引言:汽车车门限位器是车门启闭系统中的关键零件,其设计及布置是否合理直接关系到整车的安全性、车门启闭的灵活性以及NHV特性等,是控制车门开启角度并使车门停留在最大开度位置的装置。
主要有盒式限位器、扭杆式限位器和弹簧式限位器3大类,其中,最为常见的是盒式限位器。
盒式限位器是一种分体式的限位器,而扭杆式和弹簧式则是和门铰链固定为一体.本文采用CAD作图法求解盒式限位器臂轨迹曲线并通过计算验证其结构设计的合理性.1.车门限位器的功能与工作原理1.1车门限位器的功能车门限位器布置在车门上下铰链之间,主要起到三部分功能:1)在车门开闭过程中为车门提供2-3个限位档位;2)保证汽车停泊在坡道(上坡/下坡)时,限位器能够保证车门至少停在某一档位,车门不自动开闭;3)在操作车门开闭的过程中给予一定的阻尼,保证开关车门时具有良好的手感。
1.2车门限位器的工作原理车门限位器的工作原理是通过车门的开闭,带动安装在车门上的限位器盒,使限位器盒里的弹性元件与限位器主臂产生相对运动,靠主臂的形状使弹性元件产生或大或小的弹性力,挤压主臂产生摩擦限位力,最终达到开关门的手感要求和车门限位的目的。
1.3车门限位器的结构形式车门限位器的结构形式有很多种,使用最广泛的是拉带式限位器,除此之外还有铰链一体式限位器和限位钩+限位杆式限位器。
拉带式车门限位器结构一般包括限位盒、限位主臂、限位器安装支架和末端缓冲块四部分,其中限位主臂与限位盒是关键部件,设计难度较高。
限位器安装支架和末端缓冲块一般可参考已有结构,设计难度较低。
限位主臂一般分为包塑和冲压件两种,包塑主臂具有美观、精度高、噪音小、成本较高的特点,主要用于乘用车;冲压件主臂成本较低,但精度低、噪音大且不美观,主要用于低成本的商用车。
汽车车门过开启有限元分析作者:王峻峰刘莹王磊来源:《计算机辅助工程》2013年第05期摘要:用Abaqus中的静力学分析功能,对某款车型前门进行过开启分析,得到此车门的过开角度和卸载后车门的残余角度以及车门和限位器的受力状况.同时,利用Abaqus中的MODEL CHANGE关键词,实现车门在过开启后,只有车门重新关闭而限位器保持不动的模拟,以此来考察车门能否关闭,从而更进一步评估传统的车门过开启分析方法.仿真结果表明:该车门过开性能满足设计目标,无破坏风险,且MODEL CHANGE关键词可以为模拟车门的关闭提供极大方便.关键词:静力学分析;车门过开启; Abaqus中图分类号: U463.834; TB115.1文献标志码: B引言车门作为汽车的重要组成部分,在其设计中应该具有如下要求.[1](1)具有必要的开度,并能使车门停在最大开度上,以保证上下车方便.(2)安全可靠,车门能够锁住,行车或撞车时门不会自动打开.(3)开关方便,玻璃升降方便.(4)具有良好的密封性.(5)具有足够的刚度,不宜变形下沉,行车时不振响.(6)制造工艺性好,易于冲压并便于安装附件.(7)外形上与整车协调.车门在正常开启时,一般不会出现过度开启现象.车门过开启属于车门使用者的误操作,虽然很少出现这种情况,但是如果车门经过偶尔的过开启后性能变差,甚至无法关闭车门,那么会造成使用者对该车质量性能的担忧,降低使用者对品牌的忠信度,影响品牌形象,因而车门过开启分析仍然作为车门考察分析中的重要项目.本文以某款车型的前门作为分析对象,利用Abaqus软件的静力学算法,在传统的车门过开启分析方法基础上,进一步考察车门在过度开启后能否实现车门的关闭,使得该分析的评价方法更加全面.同时,也可以在车门的设计阶段为设计人员提供参考依据.1分析过程1.1车门自重分析车门自重始终要考虑,并且车门从过开启到重新关闭后的自重下沉量应保持不变,将得到的自重下沉量用于后期评估车门是否能够关闭.利用Abaqus软件中DLOAD关键字下的GRAV 选项对车门和车身施加重力载荷,并作为车门过开启分析的第一个分析步.1.2车门过开启分析过开启分析是指当车门已经位于设计最大开启角度时,在车门锁点位置沿车门开启方向施加载荷,以强迫车门继续开启.此时车门靠铰链和限位器等部件限制车门继续开启,并保持静力平衡状态,因而可以使用Abaqus软件隐式求解器中的Static分析方法完成此问题.在过度开启工况中,主要考察车门的过开启角度及其受力状态,以评判车门过开性能和钣金件及限位器能否损坏.同时,也需要考察卸载后车门的残余变形量,即残余开启角度.1.3车门重新关闭车门在过度开启之后能否关闭也是重点关注的考察项,因而需要在同一个分析中模拟车门的关闭过程,并且只需要车门重新关闭,而限位器则保持在过开卸载工况结束时的位置.通过求得车门在初始关闭状态下锁点的z向坐标与过开后车门重新关闭时的锁点z向坐标之差,确定车门在过开启后最终的下沉量,从而判断车门能否关闭.为实现此过程,需要用到Abaqus软件中的MODEL CHANGE关键词.该关键词用于在分析中移除或重新激活单元或接触对;对于单元,此关键词可以以无应变或带应变的方式重新激活单元;对于接触,当某个接触对在分析中不需要时进行移除可以节省计算时间;此关键词只能用于通用分析步中.本文分析主要使用该关键词移除接触对的功能,即“*MODEL CHANGE, TYPE=CONTACT PAIR,REMOVE”来实现上述模拟.2模型建立2.1车门和限位器有限元模型采用壳单元建立车门的有限元模型及实体单元.限位器有限元模型均处于车门开启到最大角度时的位置.车门与限位器的铰链均采用Connector单元中的Hinge类型来模拟,同时应保证Hinge单元位于车门铰链和限位器铰链的设计轴线上,以保证车门能够正确开启和关闭.在车门锁点与车门铰链轴线之间建立垂直于车门铰链轴线的Slot类型Connector单元,该单元的作用是从位于车门铰链轴线上的参考节点(Slot单元的节点1)中读取过开角度和残余过开角度,并在此节点上施加强迫位移,实现车门关闭的模拟,见图1.(a)整体过开启模型(b)Slot单元图 1车门和车身有限元模型限位器压块上、下端与座板和滑块之间采用Tie接触连接.使用Contact Pair类型的接触方式在限位器滑块与拉板之间,缓冲块与座板之间以及铰链与车门和车身之间等多处进行接触设置,防止穿透,以保证分析的真实性.限位器有限元模型见图2.图 2限位器有限元模型2.2边界条件和分析步分4个分析步,均采用Static分析方法.第一个分析步为车门的自重工况.该分析步需要约束车身全部自由度(Slot单元节点1,包括参考节点上除绕车门铰链轴的旋转自由度和沿铰链轴线的平移自由度之外的自由度),车门锁点y向自由度以及约束限位器铰链轴上Hinge单元的绕限位器铰链轴的旋转自由度等,防止车门和限位器在重力载荷作用下出现绕各自转轴旋转而导致计算无法收敛.第二个分析步为过开启加载工况,即在锁点位置沿车门开启方向施加500 N载荷,强迫车门继续开启.此分析步应移除对限位器转轴绕其轴线的旋转约束以及车门锁点的y向自由度,其他位置约束保持不变.第三个分析步为过开启卸载工况,即移除加载在锁点位置上的载荷.第四个分析步为车门重新关闭工况.此工况需在参考节点上施加强迫位移,使车门重新关闭,并且使限位器保持原位置不动.由于限位器与车门之间通过接触作用来实现车门的限位,所以此分析步需使用MODEL CHANGE关键词来移除这些接触定义.同时,约束限位器铰链轴绕其轴线的旋转自由度,防止因限位器出现刚体运动而计算不收敛.另外,为提升该分析的收敛性能,每个分析步中还使用了CONTROLS关键字.3分析结果评价3.1过开性能评估通过Abaqus中的Visualization后处理模块,得到车门在过开启加载工况下的旋转位移云图,见图3.从图3中可以得到参考节点上的旋转角度,即加载工况下车门的过开角度,将此值转换为角度值后与设计目标值进行对比,评判车门过开性能.计算得知,该车门的过开角度为5.4°.图 3过开加载工况下的旋转位移云图用同样的方法,可以得到过开卸载工况下的残余过开角度为2.4°,见图4.图 4过开卸载工况下的旋转位移云图3.2车门和限位器受力评估车门及限位器在加载时所受应力见图5.可以看出,车门所受最大应力位于车门限位器安装孔附近,其应力值为327.3 MPa,小于此零件所用材料的最大抗拉应力,无破坏风险.图 5车门应力云图限位器拉杆应力云图见图6.限位器最大应力位于限位器拉杆上,其最大应力值为300 MPa,小于此零件所用材料的最大抗拉应力,其他位置所受应力均满足要求,亦无破坏风险.图 6限位器拉杆应力云图3.3车门关闭情况评估从第四个分析步中可以得到车门在重新关闭后的最终位置,此时测得锁点的z向坐标为447.234,见图7.图 7参考节点在车门重新关闭工况下的z向坐标值由于车门过开启后存在残余过开启角度,因而此时的位置实际上是车门开启到残余过开启角度时的状态,即车门开启2.4°时的状态.将原模型中的车门调整到开启2.4°的位置可以得到初始状态下的锁点z向坐标为448.694,那么该车门经过过开启后最终的下沉量为1.46 mm,此值小于车门设计员提供的许用下沉量,可以关闭车门.4结论利用Abaqus软件隐式算法求解器中的静力学分析,在一个分析中实现车门过开启分析并考察车门过开后能否关闭,对车门的过开启进行更全面的评估.通过分析得到以下结论。
关于两种常用公交车车门的力学分析
车门是各种车的重要组成部分,同时也是车的各个部件中鱼人联系紧密的重要部分。
在实现车的用途的过程中,车门的作用往往不可忽视。
事实上,要实现门的作用功能,需正确选择合适的车门开闭结构,因而了解车门的开闭结构至关重要。
在此,我们介绍两种常用车门的开闭结构。
1,曲柄滑块开门机构
曲柄滑块车门开闭机构如图所示(门分左右两扇,下图为一边门的结构简图),杆件1为主动杆件,1向左运动的过程中,使2杆转动一定的角度拉动3杆的移动,其中3杆是门的一部分的简化,3杆转动即门转动,滑块4只能在门上方的滑槽内滑动,整个系统组成一个稳定的曲柄滑块机构,从而实现门稳定安全的启动。
已知:2杆长为L,3杆与4杆间夹角α,1杆以w逆时针转动。
当2和3杆间夹角θ时,求4的速度V2。
运算过程如下图:(鼠标绘图无力。
)
这种属于内摆式车门,占地空间小,使乘客上下车没有逆向乘客出现,不会产生拥挤碰撞现象。
2,双曲柄车门开闭机构
此类车门启闭机构利用了反平行四边形双曲柄中两曲柄反向运动的特点。
运动简图如图所示,杆AB与左边门固结,CD与右边门固结,主动曲柄AB转动时,通过连杆BC 带动从动曲柄CD朝着相反方向转动,门随即打开,并且此机构可以保证两扇门同时开启关闭。
模型图:
试说明车门同时开闭的条件。
(绘图无力,自行想象。
)
使车门同时打开,则AB杆与CD杆有同样的角速度
B点与C点速度一致。
作BC杆的速度瞬心P,为AB杆与CD杆的延长线交点。
使B点与C点速度一致,则必须PB=PC。
三角形PBC为等腰三角形。
所以,车门能同时开闭的条件是:
当车门关闭时,角ABC与角DCB的和为180度,且AB=DC。
这种属于顺开式车门,现在较少应用于公交车车门,常用于汽车车门,在汽车行驶时仍可以借助气流关上,并且便于驾驶员在倒车时向后观察
另外,常见的与理论力学有关的还有曲柄摇杆车门。
精力有限,不做说明。