第5章 马氏体相变
- 格式:ppt
- 大小:5.55 MB
- 文档页数:90
马氏体相变条件《马氏体相变条件》话说我有个朋友小李,他在材料学这块钻研得挺深的。
有一天我们凑一块儿唠嗑,他特兴奋地跟我讲起他正在搞的马氏体相关的研究。
我就好奇地问这马氏体相变到底是咋回事啊。
他看我一脸懵,就说这马氏体相变可是有条件的。
这不,把我的好奇心一下就勾起来了,今天我也和大家好好唠唠马氏体相变条件这事儿。
马氏体相变啊,首先温度是个很关键的因素。
马氏体相变往往是在冷却条件下发生,一般需要快速冷却。
你想啊,就像热锅里的水分子,要是慢慢冷却,它就规规矩矩地变成液态水珠变小那样降温。
但材料里的马氏体相变,可不是这么悠闲的过程。
就好比一个着急赶场的演员,温度得迅速降下来,它才能完成从奥氏体到马氏体的转变。
要是冷却速度不够快,晶格就会有别的变化,就变不成马氏体啦。
化学成分也在其中起着重要的作用。
不同的合金元素,那可是各有各的性格。
比如碳元素,这个在马氏体相变里就像个强心剂。
碳含量高一些的时候,马氏体的硬度会噌噌往上冒。
我问小李为啥呢,他就和我比划着说:“你看啊,碳就像是一个个小钉子,嵌在晶格里面,让晶格变扭,这变形的晶格就是马氏体的特点了,所以碳多了硬度就大了。
”除了碳之外,像铬啊,镍啊这些元素也在马氏体的相变里凑着热闹,它们能影响原子之间的键能,改变相变的行为。
应力状态也不容忽视。
就像是一群人排队,如果四周都很宽松,大家站得就很散漫。
但要是周围有一股压力让他们必须紧凑起来,形式就不一样了。
材料在有应力存在时,原子的排列也会根据应力的状态调整。
比如说有的时候,一个方向上的拉应力或者压应力,会促使马氏体相变更容易发生在特定的晶面上。
我又问小李说:“那这个应力怎么就这么神奇呢?”小李给我一个小螺母,示意我握住,他在另一头拧,说:“你看啊,这个力一加,就好像给里边的原子团喊了个号子,让它们按照应力指挥的方向站队变化呢。
”我觉得,要是想深入研究马氏体相变条件,那可不能纸上谈兵。
咱们得像小李那样,亲自去做实验,不断调整温度、研究化学成分,试试不同的应力状态。
马氏体转变的热力学过去,曾有不少人认为,马氏体转变不是热学性的,转变的驱动力不是马氏体与奥氏体的自由能之差。
四十年代,人们在大量工作的基础上得出马氏体转变与液态金属的凝固以及钢的加热转变等是一样的,即转变的驱动力也来自新旧相的化学自由能差。
但也应看到,马氏体转变确有很多不同于其它转变的在表面上看来难以用热学性质观点加以解释的特点,现已逐步弄清,这些特点是马氏体转变的特定条件所决定的。
(一)马氏体转变热力学条件1、相变驱动力马氏体转变和一般相变一样,相变的驱动力是新相与母相的化学自由能差。
同一成分合金的马氏体与奥氏体的化学自由能和温度的关系如图25所示。
图中T 0为两相热力学平衡温度,即温度为T 0时αγ'=G G式中为高温相之自由能,G αˊ为马氏体之自由能。
在其它温度两相自由能不相等,则γααγG G G -=∆''→当上式为正时,马氏体自由能高于奥氏体的自由能,奥氏体比马氏体稳定,不会发生奥氏体向马氏体转变;反之,当上式为负时,则马氏体比奥氏体稳定,奥氏体有向马氏体转变的趋势,ΔGγ→αˊ即称为马氏体相变的驱动力。
显然,在T0温度处,ΔGγ→αˊ=0。
马氏体转变开始点M S必定在T0以下,以便由过冷提供相变所需要的化学驱动力。
而逆转变开始点A S必然在T0以上,以便由过热提供逆转变所需要的化学驱动力。
通常把M S与T0之差称为热滞,热滞的大小视合金的各类和成分而异。
Fe系合金热滞可高达200℃以上,而有的合金的热滞仅十几度到几十度,如Au-Cd、Ag-Cd合金。
铁系合金观马氏体转变的热力学特点是,具有很大的热滞,即必须在很大的过冷度下才能发生马氏体转变,一般的马氏体转变都需要在降温过程中不断进行,等温保持马氏体转变将立即中止进行。
逆转变的热力学特征与冷却时的则好相反,相变必须在一定的过热度下才能进行,只有在A S点以上相变才能进行,而且转变是在升温过程中进行的,终了点为A f。
马氏体相变及其在材料中的应用摘要:本文综述了马氏体相变的定义、分类、相变特征认识的进程, 以及与马氏体相变密切相关的形状记忆材料的发展。
以及形状记忆效应、铁基合金马氏体研究进展作总结。
对马氏体相变,形状记忆合金的继续研究和应用作了展望。
关键词:马氏体相变形状记忆合金形状记忆效应1前言马氏体相变定义: 替换原子经无扩散变换位移 (均匀和不均匀形变 )并由此产生形状改变和表面浮突呈不变平面应变特征的一级形核长大型的相变或简单地将马氏体相变称之为替换原子经无扩散切变(原沿相界面作协作运动 )并使其形状改变的相变[1]。
Delaey [2,3]将存在马氏体相变的不同合金系分为 : (l)溶剂原子具有同素异构转变的合金如铁及铁基合金;密排结构间的切变如Co及Co合金、稀土及其合金; (2 )具β相 Hume-Rothery结构及Ni基的形状记忆合金;(3)具有立方-正方(四角)的应力弛豫孪生马氏体的合金, 如镍基、锰基合金及Al5化合物等。
按动力学的不同特征将相变分为变温相变和等温相变;按热力学和相面动态将相变分为热弹性相变半热弹性相变和非热弹性相变。
,2马氏体相变分类马氏体相变动力学特征可分为四类: 变温式、等温式、爆发式和热弹性马氏体相变。
(1)变温马氏体大多数合金系具有变温马氏体相变特征。
如图1所示,成分为C的马氏体点为M s,在冷却过程中,温度降低到 Ms以下发生相变,不断降温,不断转变,转变量取决于冷却到达的温度 Tq。
如图所示,奥氏体冷却到马氏体点 Ms时,开始形成马氏体,其转变量f随着温度的降低而不断增加到达马氏体转变终了点( Mf) 温度时,并没有得到100% 的马氏体,而是尚有残余。
图 1 碳素钢变温马氏体相变动力学曲线多数钢的过冷奥氏体经变温转变形成马氏体,因此钢经淬火至室温时的残留奥氏体由马氏体点Ms、M f 来决定。
当马氏体点低时,Mf在室温以下时,将有较多的残留奥氏体。
如图2所示。
马氏体相变姓名:蔡安琪班级:材料物理1303 学号:1309050308【引言】人们最早在钢中发现了马氏体转变,后来陆续在有色金属、陶瓷、半导体材料中也发现了马氏体相变,所以关于马氏体相变和马氏体的认识也经历了一系列历史性的变迁。
然而,直至目前还是有许多问题很不清楚,有待于进一步研究。
【摘要】淬火硬化是钢的最重要的工艺过程之一。
如果钢从奥氏体区以足够快的速度淬火,就没有充分的时间产生扩散控制的共析分解过程,钢就变成了马氏体,或在某种情况下是马氏体并有少量的残余奥氏体。
马氏体是物理冶金中的一个术语,用于描述任何无扩散型转变的产物。
对于钢中的马氏体,其冷却速率使大多数固溶在fcc的γ—Fe中的碳原子能保留在α—Fe相固溶体内。
这样,钢中的马氏体只是碳在α—Fe中的过饱和固溶体。
这种转变是一个复杂的过程,甚至到今天对这一转变的机制也没有很好地理解,至少在钢中是如此。
本文主要讲述马氏体相变的一些特征,马氏体相变热力学。
【关键词】无扩散型转变马氏晶体学核心【正文】一、马氏体相变的主要特征1.1切片共格和表面浮突现象马氏体相变时在预先磨光的试样表面上可出现倾动,形成表面浮突,这表明马氏体相变是通过奥氏体均匀切边进行的。
奥氏体已转变为马氏体的部分发生了宏观切变而使点阵发生改组,且一边凹陷,一边凸起,带动界面附近未转变的奥氏体也随之发生转变,如图一。
由此可见,马氏体的形成是以切变方式进行的,同时马氏体和奥氏体之间界面上的原子是共有的,整个界面是互相牵制的。
这种界面称为切变共格界面。
图一1.2无扩散性从马氏体相变的宏观均匀切变现象可以设想,在马氏体相变过程中原子是集体运动的,原来相邻的原子相变后仍然相邻,他们之间的相对位移不超过一个原子间距,即马氏体相变是在原子基本上不发生扩散的情况下发生的。
1.3在一定温度范围内完成相变必须将奥氏体快速冷却至某一温度以下才能发生马氏体相变,这一温度称为马氏体相变开始点,以M s表示。
§1—4 马氏体转变钢经奥氏体化后,快速冷却,抑制其扩散性分解,在较低温度下发生的转变,为马氏体转变。
马氏体转变是钢件热处理强化的主要手段之一。
因此,马氏体转变理论的研究与热处理实践有着十分密切的关系。
早在战国时期,人们已经知道可以用淬火,即将钢加热到高温后淬入水或油中急冷的方法提高钢的硬度。
经过淬火的钢制宝剑可以“销铁如泥”。
但是在当时,对于淬火能提高钢的硬度的本质还不清楚。
直到十九世纪未期,人们才知道,钢在加热与冷却过程中,内部相组成发生了变化,因而引起了钢的性能的改变。
为了纪念在这一发展过程中作出杰出贡献的德国冶金学家Adolph Martens(阿道夫,马顿斯),法国著名的冶金学家Osmond(奥斯门德)建议将钢经淬火所得高硬度相称为马氏体,并因此而将得到马氏体相的转变过程称为马氏体转变。
马氏体的英文名称为-Martensite,常用M表示。
由于钢在生产上得到了最广泛的应用以及马氏体转变最先在钢的淬火过程中发展,因此,在十九世纪未,二十世纪初对马氏体的研究,主要局限于研究钢中的马氏体转变及转变所得的马氏体。
二十世纪三十年代,人们用X射线结构分析方法测得钢中马氏体是C溶于α-Fe而形成的过饱和固溶体。
马氏体中的固溶碳即原奥氏体中的固溶碳。
因此,曾一度认为所谓马氏体即碳在中α-Fe的过饱和间隙固溶体。
对于马氏体转变的研究,初期着重于了解马氏体转变与钢中其它转变的不同点,正是由于观察到了一系列不同于其它转变的特点,曾经有人认为马氏体转变与其它转变不同,是一个由快冷造成的内应力场所引起的切变过程。
四十年代后,在Fe-Ni、Fe-Mn合金以及许多有色金属及合金中也发现了马氏体转变。
不仅观察到了冷却过程中发生的马氏体转变,还观察到了加热过程中所发生的马氏体转变。
新观察到的马氏体转变的特征和钢中马氏体转变的特征相似,基于这一新的发现,人们不得不把马氏体的定义修正为:凡相变的基本特征属于马氏体型的产物统称为马氏体。