600MW超临界汽轮机介绍
- 格式:doc
- 大小:6.35 MB
- 文档页数:27
超临界600 mw汽轮机组能耗分析近年来,随着能源安全和环境保护日益受到重视,气体发电机组能效的提高成为电力工程领域的热点问题。
其中,超临界汽轮机组技术的应用受到比较广泛的关注,超临界汽轮机组的应用可以提高能源利用效率,减少煤炭的消耗,从而节约能源。
超临界600 mw汽轮机组是指有功功率超过600mw的汽轮机组。
这种机组采用超临界循环工质,可以提高增压比,减少蒸汽损失,进而提高机组效率,节约能源。
要达到节能效果,必须对其能耗进行分析与优化。
一是对超临界600 mw汽轮机组的热力学特性进行分析,包括动力学传热性能分析、摩擦因子研究以及机组内部损失分析;二是分析超临界汽轮机组能级结构,进而研究其功率曲线特性;三是分析汽轮机机组的能效曲线,确定高效运行区域,以此确定机组的最优化运行条件;四是研究超临界汽轮机组的能耗影响因素,建立相应的数学模型,进而确定机组能耗的变化规律。
超临界600 mw汽轮机组能耗分析需要借助于计算机系统。
可以使用专业的计算机软件,对机组的热力学特性进行分析,绘制出汽轮机组的功率曲线和能效曲线。
从而优化仿真结果,达到最佳的运行性能,可以极大的提高机组的效率和节能效果。
超临界600 mw汽轮机组的能耗控制必须根据实际情况进行优化设计。
通过多种方法,如减少蒸汽密度和增强导叶等,可以进一步降低超临界汽轮机组能耗。
同时,可以通过必要的节能技术,比如采暖节能和节能减排技术,实现节能减排,提高汽轮机组能效。
总之,要提高超临界600 mw汽轮机组能效和节能效果,必须对其能耗进行有效的分析和优化,并采用有效的节能技术。
可以采用热力学特性分析、能级结构分析、功率曲线分析等方法,通过计算机系统仿真,绘制出机组的能效曲线,从而确定机组最佳的运行条件。
通过采用必要的节能技术,可以进一步降低汽轮机组的能耗,使其达到最优的节能效果。
超临界600mw凝汽式汽轮机通流部分热力设计一、引言超临界600mw凝汽式汽轮机是一种高效、大功率的发电设备,其通流部分的热力设计对于设备的性能和可靠性至关重要。
本文将从热力设计的角度,对超临界600mw 凝汽式汽轮机的通流部分进行全面、详细、完整的探讨。
二、基本原理超临界600mw凝汽式汽轮机的通流部分主要包括高压缸、中压缸和低压缸。
热力设计的目标是在满足发电要求的前提下,最大限度地提高汽轮机的效率。
2.1 高压缸高压缸是汽轮机中压缩工作介质的部分,其主要任务是将高温高压的蒸汽转化为旋转能量。
在高压缸的热力设计中,需要考虑以下几个方面:1.高压缸的工作参数,包括压力、温度和流量;2.高压缸的内部结构,包括叶片和导叶的布置方式;3.高压缸的热力过程,包括熵增和能量转换效率。
2.2 中压缸中压缸是汽轮机中的中间级,其主要任务是将高压缸输出的蒸汽进一步膨胀,产生更多的旋转能量。
在中压缸的热力设计中,需要考虑以下几个方面:1.中压缸的工作参数,包括压力、温度和流量;2.中压缸的内部结构,包括叶片和导叶的布置方式;3.中压缸的热力过程,包括熵增和能量转换效率。
2.3 低压缸低压缸是汽轮机中的最后一级,其主要任务是将中压缸输出的蒸汽进一步膨胀,产生更多的旋转能量。
在低压缸的热力设计中,需要考虑以下几个方面:1.低压缸的工作参数,包括压力、温度和流量;2.低压缸的内部结构,包括叶片和导叶的布置方式;3.低压缸的热力过程,包括熵增和能量转换效率。
三、热力设计方法超临界600mw凝汽式汽轮机的通流部分热力设计需要借助一系列的方法和工具。
本节将介绍几种常用的热力设计方法。
3.1 热力计算方法热力计算方法是热力设计的基础,其目的是通过计算各个热力参数,确定合理的设计方案。
常用的热力计算方法包括:1.等熵膨胀过程计算方法;2.等熵压缩过程计算方法;3.等熵流过程计算方法。
3.2 流场分析方法流场分析方法是热力设计的重要手段,其目的是通过数值模拟和实验验证,分析流动过程中的各种参数变化和相互作用。
超临界600 mw汽轮机组能耗分析汽轮机是目前发电厂中应用最为广泛的发电设备之一,它具有较高的热效率、经济性和安全性,是我国发电能力支柱之一。
600 MW汽轮机组是汽轮机型号中相对较大的装机容量,因其具有较高的效率和较低的维护成本,已在我国发电厂中广泛应用。
为了更好地了解600 MW汽轮机组的能耗情况,本文以超临界600 MW汽轮机组为研究对象,对其运行能耗情况做出详细分析。
超临界600 MW汽轮机组采用改进型燃烧室,改进了燃烧空气预混比,实现了频繁程序和可编程控制,提高了燃烧效率,降低了燃烧后排放污染物,从而降低了汽轮机组能耗。
首先,增大蒸发器的发热量,可以直接降低蒸汽锅炉机组的能耗,此外,调整汽蒸汽发生器的运行压力,使其能量损失最小,也能降低超临界600 MW汽轮机组的能耗。
此外,超临界600 MW汽轮机组还采用了低温间歇燃烧技术,其原理是在汽轮机组闲置期间,只保持低温燃烧,排出完全燃烧的废气,消耗少量的燃料,降低汽蒸汽发生器的能耗。
此外,还采用了多级涡轮发动机,可以调节汽蒸汽发生器的负荷,有效利用汽轮机发电的能量,降低了超临界600 MW汽轮机组的运行能耗。
同时,由于超临界600 MW汽轮机组的运行温度高,为了防止过热,必须采用冷却措施来保护机组,为此,可以采用冷水冷却或空气冷却系统来降低机组温度,同时也降低了超临界600 MW汽轮机组的运行能耗。
以上是超临界600 MW汽轮机组能耗的分析,除了以上提到的技术方法外,还可以采用先进的智能控制系统,通过对系统能量的智能分配和管理,进一步降低汽轮机组的能耗,可以说汽轮机组能源利用率逐步提高是当前发电厂发展的必然趋势。
总结本文通过分析超临界600 MW汽轮机组的运行能耗情况,提出了多项技术方法以降低机组能耗,如改装燃烧室、低温间歇燃烧技术、调整汽蒸汽发生器的运行压力、采用多级涡轮发动机、冷水冷却或空气冷却系统等,从而提高汽轮机组的能源利用率,有助于实现可持续发展。
600MW级超临界直接空冷凝汽式汽轮机概述1.1概述二期工程2×600MW级超临界直接空冷凝汽式汽轮发电机组,汽轮机设备为东方汽轮机有限公司生产超临界空冷汽轮机,型号为:TC4F-26(24.2MPa/566℃/566℃),型式:超临界、一次中间再热、三缸四排汽、单轴、直接空冷凝汽式汽轮机;该机组额定出力637MW;最大连续出力为662MW,汽轮机采用复合变压运行方式;具有七级非调整回热抽汽。
给水系统采用2×50%汽动给水泵,不设备用泵,由于主汽轮机采用直接空冷汽轮机,其背压变化幅度较大,给水泵驱动汽轮机排汽不宜排入主汽轮机的空冷器中,每台给水泵汽轮机各自配置一台水冷凝汽器,给水泵驱动汽轮机排汽凝结水直接排入主汽轮机的排汽装置中,给水泵汽轮机本体疏水排入给水泵汽轮机凝汽系统中。
由于二期汽轮机乏汽采用空冷冷却系统,节省了一期湿冷系统的风吹、蒸发、排污等水量损失,年平均节约水量约1904m3/h。
其用水量比一期湿冷系统节水70%。
投资上与混凝式间接空冷系统相比,可降低工程投资35.7%;与表凝式间接空冷系统相比,可降低工程投资40.2%。
王曲电厂超临界机组与我厂一期亚临界机组相比汽轮机组热耗将低约4.5%。
超临界机组是指锅炉的新蒸汽的压力大于临界压力(22.115MPa)小于25MPa的锅炉和汽轮机发电机组。
在超临界和超超临界状态,水由液态直接成为汽态(由湿蒸汽直接成为过热蒸汽或饱和蒸汽),热效率高。
因此,超临界,超超临界发电机组已经成为国外,尤其是发达国家主力机组。
由于机组效率提高,污染物的排放也相应减少,经济效益十分明显。
超临界机组是火电机组大家族中的“节能减排新星”。
超临界机组和亚临界机组特点比较它具有如下特点:(1) 热效率高、热耗低。
可节约燃料,降低能源消耗和大气污染物的排放量。
(2) 超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。
600MW等级超临界和超超临界空冷汽轮机简介及选型浅析摘要:简要介绍了三大主机厂600MW等级超临界和超超临界空冷汽轮机的设计特点和性能参数,对空冷汽轮机选型进行了初步论证并提出了建议。
关键词:600MW;超临界;超超临界;空冷汽轮机随着国家“十五”重大技术装备研制计划“600MW超临界火电机组成套设备研制”项目的成功实施,带动了我国超临界燃煤火电机组的快速发展,目前国产600MW级超临界燃煤火电机组已经成为我国在建火电工程的主力机型。
这对于优化我国电网中火电机组的装机结构、提高我国火电机组技术发展的整体水平和节能降耗及减排工作等方面都起到了积极的推动作用。
其中超临界和超超临界空冷汽轮机由于具有非常显著的节水效果,在我国北方缺水地区也已有了快速的发展。
下面对三大主机厂600MW等级超临界和超超临界空冷汽轮机的设计特点和性能参数进行简要介绍,对空冷汽轮机选型进行初步论证并提出建议。
1哈尔滨汽轮机厂有限责任公司哈尔滨汽轮机厂有限责任公司(以下简称哈汽)通过引进并吸收日本三菱技术,现已具有独立开发600MW等级超临界和超超临界空冷机组的能力。
哈汽600MW等级超临界和超超临界空冷汽轮机组采用模块化的设计方法,主要有两种机型:两缸两排汽机型和三缸四排汽机型。
超临界和超超临界参数汽轮机的关键部分在高中压部分,空冷汽轮机的关键部分在低压部分,600MW等级超临界和超超临界空冷汽轮机分别采用600MW等级超临界和超超临界湿冷汽轮机的高中压模块及600MW等级亚临界空冷汽轮机的低压模块,无论是两缸两排汽机型,还是三缸四排汽机型,均采用具有成熟运行业绩的模块,从而保证超临界和超超临界空冷汽轮机组的安全可靠。
哈汽600MW等级超临界和超超临界空冷汽轮机组主要有两种机型:两缸两排汽机型和三缸四排汽机型。
两缸两排汽机型为高中压合缸,一个低压缸、两个排汽口,低压缸末级叶片长度为940mm,高中压缸采用双层缸,支持轴承采用可倾瓦式,低压缸采用落地轴承、内缸,汽轮机总长约19m(汽轮机长度指汽轮机一号轴承中心线至发电机前轴承中心线的距离,下同)。
超临界600 mw汽轮机组能耗分析汽轮机组是现代社会能源转换的重要设备,机组的能耗是该项技术发展的关键指标之一,超临界600 mw汽轮机组能耗分析正是由此而起。
本文旨在分析超临界600 mw汽轮机组的能耗情况,并提出具体节能建议。
超临界600 mw汽轮机组是一种具有较高效率的机组,其具有较高的涡轮机效率、较低的热耗散和较低的排放控制要求。
它的设计用于进行工业能源的调节,这一过程要求有效的能量利用,对能量消耗的分析就十分必要了。
就发电能耗而言,超临界600 mw汽轮机组的能耗比较复杂,它与机组内各种参数、各项系统及其配置有着较大的关系。
它的能量消耗取决于燃料用量、发电机效率、热效率、冷却水流量、空气温度等因素。
首先,应该尽可能降低燃料消耗。
建议改进汽轮机控制系统,增加抽油机和燃烧器设备,提高蒸汽压力,缩短转子启动时间,减少电动调节装置的能量损失。
此外,根据环境温度及气候变化情况,调整冷却系统流量及湿度等参数,可有效降低系统整体的能耗。
其次,应定期对发电机及其配套设备进行整体能耗检查,精确调整汽轮机各项参数,减少每次启动的能量损失和维护成本,从而提高整体的发电效率。
此外,可选择应用节能新技术,如新一代可变调速控制系统、可控硅调速电源等。
这些新技术可有效降低汽轮机组变频调速部分的能耗,提高整体的热效率,同时缩短调速过程的控制时间,降低系统的能量损耗。
最后,应注重汽轮机组的定期维护,包括汽轮机外壳、机舱、热交换器和气缸等部件,保证它们能够正常工作,从而减少系统内各部分能量损失,杜绝能量浪费。
总而言之,超临界600 mw汽轮机组能耗分析是复杂且棘手的问题,需要全面考虑汽轮机组系统内多种参数及条件。
只有全面、系统地考虑各种因素,才能真正分析汽轮机组的能耗情况,并找出相应的节能建议。
600MW超临界空冷汽轮机总体介绍河曲电厂二期2×600MW级超临界直接空冷凝汽式汽轮发电机组,以带基本负荷为主,并具有一定的调峰能力,汽轮机设备为东方电气集团东方汽轮机有限公司生产制造的超临界空冷汽轮机,型号为:TC4F-26(24.2MPa/566℃/566℃),型式:超临界、一次中间再热、三缸四排汽、单轴、直接空冷凝汽式汽轮机;该机组额定出力637MW;最大连续出力为662MW。
汽轮机采用复合变压运行方式;汽轮机具有七级非调整回热抽汽,设计寿命不少于30年。
汽轮机高、中压缸合缸布置;高中压缸为双层缸结构,两个低压缸为三层缸结构,高压缸1+7级,共有8级;中压缸共6级,低压缸2×2×6级,即全机结构级为38级。
三根整锻无中心孔转子分别放置在1号轴承座与2号轴承座、3号轴承座与4号轴承座、5号轴承座与6号轴承座上;1号轴承座内除1号轴承外,还装设有测速齿轮、主油泵等;2号轴承座内装设有轴向位移传感器、推力轴承、平衡盘、支持轴承、联轴器等;6号轴承座主要有支持轴承,盘车装置、测量装置等组件构成,。
汽轮发电机组轴系中除1号、2轴承采用可倾瓦式轴承外,其余均采用椭圆形轴承。
各轴承上瓦的X、Y向装有轴振测量装置,下瓦装有测温装置。
推力轴承位于高中压缸和低压第二章汽轮机总体介绍A缸之间的2号轴承座。
高中压缸的膨胀死点位于2号轴承座,低压A缸、低压B 缸的膨胀死点分别位于各自的中心附近。
死点处的横键限制汽缸的轴向位移。
同时,在前轴承箱及两个低压缸的纵向中心线前后设有纵向键,引导汽缸沿轴向自由膨胀而限制其横向跑偏。
2.1汽轮机的典型工况1.能力工况或称铭牌出力工况(TRL)汽轮发电机组能在下列条件下安全连续运行,发电机输出铭牌功率637.433MW(当采用静态励磁、电动主油泵时,扣除所消耗的功率),此工况称为能力工况,此工况也称铭牌出力工况。
此工况条件如下:1)额定主蒸汽参数及再热蒸汽参数,所规定的汽水品质;2)背压为28kPa;3)补给水率为3%;4)对应该工况的设计给水温度;5)全部回热系统正常运行,但不带厂用辅助蒸汽;6)采用2×50%汽动给水泵;7)发电机效率98.8%,额定功率因数0.85(滞后),额定氢压、额定电压、额定频率。
爨;塑!釜:凰600M W超临界机组旁路系统简介马旭涛王晓晖(广东红海湾发电有限公司,广东汕尾516600)。
?{‘t■≈脯要]现代大型燃煤积细为了键l保证杠.组安全和调峰快速启停都装配有旁路系统,本文以东方汽轮机和锅炉厂60∞膈r机组旁路系统为,,例介绍了其构成和功能,为正常启停、调峰运行和事故处理时提供参考。
一j :拱键词】旁路;旁路系统;回收工质;快速启停.,,..j..,~。
一.一。
.’i,_:?0。
.,‘一√.|,’…√?,.崩广东红海湾发电有限公司一期工程样1、掸2机组为国产600M W 超临界压力燃煤发电机组,循环冷却水取白海水,为开式循环,三大主设备由东方电气集团公司属下的东方锅炉厂、东方汽轮机厂、东方电机股份有限公司制造,容量及参数相互匹配。
汽轮机型号:N600—24.2/566/566,型式:超临界压力、一次中间再热、单轴、双背压、三缸四排汽、凝汽冲动式汽轮机。
1设备概况机组旁路采用高压和低压两级串联的旁路系统,其中高压旁路容量为40%锅炉最大容量,布置在汽机房的6.4m平台上。
低压旁路设置两套装置,总容量为高压旁路的蒸汽流量与喷水流量之和,布置在汽机房的13.7m平台上。
高、低压旁路各由一套液压控制装置驱动控制。
高压旁路系统从汽饥高压缸进口前的主蒸汽总管接出,经减温减压后接入再热蒸汽冷段总管上。
低压旁路系统从汽机中压-缶I进12]前的再热蒸汽总管接出,经两路减温减压后,分别接八久B凝汽器。
高、低压旁路各设有独立的液压控制装置,通过电液伺服阀调节。
高、低旁正常调节全行程开、关均需20—30秒,在事故状态下,高、低压旁路均可实现快开(2秒全开)和快关(2秒全关),高压旁路减温水来自给水母管,低压旁路减温水来自凝结水精处理装置出口母管。
高、低压旁路减温水调节阀也是用各自液压控制装置电液伺服阀控制。
2旁路系统的构成及主要作用2l构成由高压旁路和低压旁路串联而成,高压旁路为40%容量,低压旁路为52%容量。
600MW超临界汽轮机介绍(600-24.2/566/566型)哈尔滨汽轮机厂有限责任公司2008.10目录1 概述 (1)2哈汽公司超临界汽轮机业绩 (3)3 汽轮机主要结构 (6)3.1 叶片 (6)3.2 转子 (7)3.3 汽缸 (7)3.4 轴承 (9)3.5 大气阀 (10)3.6 阀门 (11)3.6.1 主汽阀 (11)3.6.2 调节阀 (11)3.6.3 再热主汽阀 (12)3.6.4 再热调节阀 (13)3.7 盘车装置 (13)4 防固粒腐蚀措施 (13)5 预防蒸汽激振力措施 (14)6 三缸四排汽超超临界汽轮机主要设计特点 (14)7 主要技术规范 (15)8.主要工况热平衡图 (16)9 机组运行情况 (23)9.1性能试验情况 (23)1 概述哈汽公司600MW超临界汽轮机为单轴、三缸、四排汽、一次中间再热、凝汽式机组。
高中压汽轮机采用合缸结构,低压积木块采用哈汽成熟的600MW超临界机组积木块。
应用哈汽公司引进三菱技术制造的1029mm末级叶片。
机组的通流及排汽部分采用三维设计优化,具有高的运行效率。
机组的组成模块经历了大量的实验研究,并有成熟的运行经验,机组运行高度可靠。
机组设计有两个主汽调节联合阀,分别布置在机组的两侧。
阀门通过挠性导汽管与高中压缸连接,这种结构使高温部件与高中压缸隔离,大大的降低了汽缸内的温度梯度,可有效防止启动过程缸体产生裂纹。
主汽阀、调节阀为联合阀结构,每个阀门由一个水平布置的主汽阀和两个垂直布置的调节阀组成。
这种布置减小了所需的整体空间,将所有的运行部件布置在汽轮机运行层以上,便于维修。
调节阀为柱塞阀,出口为扩散式。
来自调节阀的蒸汽通过四个导汽管(两个在上半,两个在下半)进入高中压缸中部,然后通入四个喷嘴室。
导汽管通过挠性进汽套筒与喷嘴室连接。
进入喷嘴室的蒸汽流过冲动式调节级,做功后温度明显下降,然后流过反动式高压压力级,做功后通过外缸下半上的排汽口排入再热器。
再热后的蒸汽通过布置在汽缸前端两侧的两个再热主汽阀和四个中压调节阀返回中压部分,中压调节阀通过挠性导汽管与中压缸连接,因此降低了各部分的热应力。
蒸汽流过反动式中压压力级,做功后通过高中压外缸上半的出口离开中压缸。
出口通过连通管与低压缸连接。
高压缸与中压缸的推力是单独平衡的,因此中压调节阀或再热主汽阀的动作对推力轴承负荷的影响很小。
汽轮机留有停机后强迫冷却系统的接口。
位于高中压导汽管的疏水管道上的接头可永久使用,高中压缸上的现场平衡孔可临时使用。
汽轮机的外形图及纵剖面图见图1。
图1 汽轮机外形及纵剖面图哈尔滨汽轮机厂有限责任公司22哈汽公司超临界汽轮机业绩哈汽公司采用三菱公司超临界汽轮机技术处于世界领先水平,对于同一等级的600MW超临界机组,目前为哈汽公司已经制造投运了多台超临界汽轮机,已经拥有丰富的制造和运行经验。
哈汽公司超临界业绩表哈尔滨汽轮机厂有限责任公司 3哈尔滨汽轮机厂有限责任公司 4哈尔滨汽轮机厂有限责任公司 53 汽轮机主要结构 3.1 叶片汽轮机通流包括1个反向布置的带有部分进汽的冲动式调节级,9级反向布置的反动式高压压力级,6级正向布置的反动式中压压力级,2×2×7双分流的低压压力级。
冲动式调节级在宽阔的负荷变化范围内有较高的运行效率,机组有较好的负荷适应性。
调节级动叶采用三支为一组的三胞胎叶片,强度好,在高温、高压下运行可靠。
中间级采用高效率的全三维设计的反动式叶片,通过控制设计参数(反动度,流量和流动角度)来使损失最小化。
反动式叶片通道,蒸汽流动速度相对较慢,摩擦损失较低,具有较好的空气动力效率。
见图2、图3。
反动式机组构造简单,采用轮鼓式转子和径向密封。
由于采用径向密封,轴向间隙大,故允许转子和汽缸之间有较大的胀差,保证机组启动灵活。
低压末几级的疏水,采用了特殊的疏水收集器结构。
在隔板外环的疏水收集器设计中充分考虑到水滴的轨迹,达到最好的疏水效果。
末级隔板采用了疏水槽结构。
见图4。
低压末叶片为1029mm ,为减小末级叶片水蚀,末级动叶的进汽边嵌入司太立合金;图2 全三维设计静、动叶片图3 全三维设计叶片流场示意图 图4 低压疏水结构保证静叶和动叶之间合适的间隔,以使水滴形成较好的水雾;此外从湿汽区抽出蒸汽排到给水加热器,适当设计给水加热器的抽汽口,以使抽取的蒸汽水分最大。
在末级动叶的顶部导流板上设置疏水槽。
所有的叶片都仔细设计,具有足够的振动强度裕度。
特别是长叶片,设计时考虑自振频率、工作转速、1-6节径数无三重点共振。
在开发这些叶片时,相同的叶片和叶轮均进行了全比例的转动频率试验,并且确认叶片组运行时无三重点共振。
末级叶片采用耐腐蚀和侵蚀合金制造,严格控制质量保证较好的振动阻尼特性。
3.2 转子高中压转子采用具有高蠕变断裂强度的实心合金钢锻件加工而成。
在高压端连接一个独立的短轴,装有推力盘、主油泵叶轮和超速跳闸装置。
低压转子同样采用高抗拉强度的实心合金钢锻件加工而成,具有很好的延展性。
转子直径和轴承跨距合理选择,使转子的临界转速远离工作转速。
转子表面的几何结构进行详细的设计,使转子的瞬时热应力和弯曲应力的应力集中最小。
高中压转子中压进汽区由来自调节后的节流蒸汽进行冷却,冷却蒸汽覆盖在转子的表面,高温再热蒸汽不会接触转子。
见图5。
当装有叶片的整个转子加工完成后,需做超速试验和精确动平衡试验。
高中压转子和1号低压转子之间装有刚性的法兰联轴器。
1号低压转子和2号低压转子通过中间轴刚性联接、2号低压转子和发电机转子通过联轴器刚性联接。
转子系统由安装在前轴承箱内的推力轴承定位,并有8个支撑轴承支撑。
3.3 汽缸合理的汽缸的结构类型和支撑方式,保证在热态膨胀自如,且热变形对称,从而使扭曲变形降到最小。
最优的排汽涡壳设计,压力损失最小。
高中压外缸是由合金钢铸件制成,在水平中分面分为两半形成上,下半。
高压内缸同样是合金钢铸件,在水平中分面分为两半形成上,下半。
内缸支撑在外缸水平中分面上,通过定位销在顶部和底部导向,以保持中心线的准确位置,并在同时图5 冷却蒸汽示意图允许零件根据温度变化自由膨胀和收缩。
高压汽轮机的喷嘴室也由合金钢铸成,并通过水平中分面形成了上下两半。
它采用中心线定位,支撑在内缸中分面处。
喷嘴室的轴向位置由上下半的凹槽与内缸上下半的凸台配合定位。
上下两半内缸上均有滑键,决定喷嘴室的横向位置。
这种结构可以保证喷嘴室根据主蒸汽温度变化沿汽轮机轴向正确的位置收缩或膨胀。
主蒸汽进汽管与喷嘴室之间通过弹性密封环滑动连接,这样可把温度引起的变形降到最低限度。
外缸上半及内缸下半可采用顶起螺钉抬高,直到进汽管与喷嘴室完全脱离,然后按常规方法用吊车吊起。
在拆卸外缸上半或内缸下半时,尽量保持进汽密封处蒸汽室的形状,当汽缸放下时与密封环同心。
汽轮机高压隔板套和高中压进汽平衡环支撑在内缸的水平中分面上,并由内缸上下半的定位销导向。
汽轮机中压1号隔板套﹑中压2号隔板套和低压排汽平衡环支撑在外缸上,支撑方式和内缸的支撑方式一样。
高中压外缸是由四只“猫爪”支托的,这四只“猫爪”与下半汽缸一起整体铸出,位于下半水平法兰的上部,因而使支承面与水平中分面齐平。
在电端“猫爪”搭在位于轴承箱两侧的键上,并可以在其上自由滑动。
轴承箱是落地的。
在调端“猫爪”以同样方式搭在前轴承箱下半两侧的支承键上,并可以同样方式自由滑动。
在前后端,高中压外缸与相邻轴承箱之间都用“H”型定中心梁连接,它们与汽缸及相邻轴承箱间由螺栓及定位销固定。
这些定中心梁保证了汽缸相对于轴承箱正确的垂直向与横向位置。
前轴承箱与台板之间轴向键(位于轴向中心线上),可在其台板上沿轴向自由滑动,但是它的横向移动却受到轴向键的限制,轴承侧面的压板限制了轴承座产生任何倾斜或抬高的倾向,这些压板与轴承座凸肩间留有适当的间隙,允许轴向滑动,每个“猫爪”与轴承座之间都用双头螺栓连接,以防止汽缸与轴承座之间产生脱空。
螺母与“猫爪”之间留有适当的间隙,当温度变化时,汽缸“猫爪”能自由胀缩。
本机组具有两个低压缸。
低压外缸全部由钢板焊接而成,为了减少温度梯度设计成3层缸。
由外缸、1号内缸、2号内缸组成,减少了整个缸的绝对膨胀量。
,汽缸上下半各由3部分组成:调端排汽部分、电端排汽部分和中部。
各部分之间通过垂直法兰面由螺栓作永久性连接而成为一个整体,可以整体起吊。
低压缸调速器端的第1、2级隔板安装在隔板套内。
此隔板套支撑在1号内缸上,第3、4、5级隔板安装在1号内缸内,第6、7级隔板安装在2号内缸内,内缸支撑在外缸上。
低压缸发电机端的第1-4级隔板安装在隔板套内,此隔板套支撑在1号内缸上,第5级隔板安装在1号内缸内,第6、7级隔板安装在2号内缸内,内缸支撑在外缸上。
排汽缸内设计有良好的排汽通道,由钢板压制而成。
面积足够大的低压排汽口与凝汽器弹性连接。
低压缸四周有框架式撑脚,增加低压缸刚性,撑脚座落在基架上承担全部低压缸重量,并使得低压缸的重量均匀地分在基础上。
在一号低压缸撑脚四边通过键槽与预埋在基础内的锚固板配合形成膨胀的绝对死点。
在蒸汽入口处,1号内缸、2号内缸通过1个环形膨胀节相连接,1号内缸通过1个承接管与连通管连接。
内缸通过4个搭子支承在外缸下半中分面上,1号内缸、2号内缸和外缸在汽缸中部下半通过1个直销定位,以保证三层缸同心。
为了减少流动损失,在进排汽处均设计有导流环。
每个低压缸两端的汽缸盖上装有两个大气阀,其用途是当低压缸的内压超过其最大设计安全压力时,自动进行危急排汽。
大气阀的动作压力为0.034—0.048Mpa(表压)。
低压缸排汽区设有喷水装置,空转或低负荷、排汽缸温度升高时按要求自动投入,降低低压缸温度,保护末叶片。
3.4 轴承汽轮机每根转子均有两个径向轴承支撑,整个轴系有一个推力轴承。
它们均是强迫润滑型的。
高中压转子的径向轴承,采用无扭转4瓦可倾瓦支撑轴承,增强抵抗由于调节级负荷变化引起的蒸汽力的能力,提高轴系稳定性。
见图6、7。
图6、7 四瓦块可倾瓦轴承低压缸同样采用4瓦可倾瓦轴承,具有良好的对中性能。
推力轴承是自位式京士伯里型轴承。
利用平衡桥的摇摆运动,使所有巴氏合金表面载荷中心处在相同的平面内,使每一个瓦块受力均匀。
见图8。
图8 京士伯里式推力轴承通过高中压转子上的推力盘,把转子推力传到瓦块上。
机组的高中压缸反向流动、低压缸双分流结构,故蒸汽产生的推力在每个缸上保持平衡,因此阀门的开度对推力轴承载荷影响很小。
通过调整轴承键与壳体之间的调整垫片可保证轴承的位置。
轴承与轴承箱下半之间装有制动销,防止轴承相对轴承箱转动。
润滑油的强制供给通过轴承箱、键、轴承壳体中的通道保证。
所有的轴承均带有检测金属温度的热电偶。
汽轮机装有防止轴电压事故的接地装置。
3.5 大气阀安装在汽轮机排汽缸上半部的大气释放膜,保护低压缸。