我国超临界机组的发展
- 格式:pdf
- 大小:443.49 KB
- 文档页数:7
超临界、超超临界机组发展现状、趋势和存在问题的分析研究分析报告上海电力学院2009年3月超临界、超超临界机组发展现状、趋势和存在问题的分析研究1.引言按照国家制订的2020年电力发展规划,我国发电装机容量将从目前的约8亿千瓦增加到2020年9亿千瓦,其中燃煤机组比例约占总容量75%左右。
由于电力是最大的煤炭用户,要提高煤炭的利用效率,提高燃煤电厂的效率是一个主要途径。
分析国际上燃煤发电技术的发展趋势,将采用两种技术路线来提高效率和降低排放。
其一是利用煤化工中已经成熟的煤气化技术,采用整体煤气化蒸汽燃气联合循环技术(IGCC)实现高效清洁发电,其代表技术为IGCC。
此技术提高能效的前景很好,但因系统相对复杂而造成投资偏高的问题需要解决。
目前正在烟台电厂建设一台300或400MW等级的IGCC示范机组,为今后的发展作好技术储备。
另一个发展方向是通过提高常规发电机组的蒸汽参数来提高效率,即超临界机组和超超临界机组。
超超临界机组在发达国家已经实现了大容量、大批量生产。
通过努力我国可以较快实现国产化能力,降低设备成本。
超超临界机组蒸汽参数愈高,热效率也随之提高。
热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。
在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降 1.4%~1.6%。
亚临界机组的典型参数为16.7MPa/538℃/538℃,其发电效率约为38%。
超临界机组的主蒸汽压力通常为24MPa左右,主蒸汽和再热蒸汽温度为538~560℃;超临界机组的典型参数为24.1MPa/538℃/538℃,对应的发电效率约为41%。
超超临界机组的主蒸汽压力为25~31MPa,主蒸汽和再热蒸汽温度为580~610℃。
1000MW超超临界机组技术发展的探讨摘要:根据我国对超超临界机组的技术认证,推荐超超临界汽轮机进口参数为25MPa、600/600℃,相应锅炉的设计参数为26.25MPa、605/603℃,锅炉蒸发量的选取一般与汽轮机的VWO工况相匹配。
目前我国超超临界机组已步入世界先进行列,1000MW超超临界机组采用单轴技术,蒸汽参数为25~27MPa、600/600℃,已达到世界顶级水平。
三大主要设备锅炉、汽机、发电机的生产厂家努力发展超超临界技术,促进1000MW超超临界机组技术的国产化,为我国大火电建设提供了有力的支持。
关键词:1000MW超超临界;机组技术;发展探讨引言我国燃煤火电机组技术发展已进入超超临界参数的时代,从长远发展趋势分析,一是常规火电机组将继续提高蒸汽参数,压力超过30 MPa ,温度超过700 ℃,机组的效率有望超过50% ;二是采用煤气化-联合循环发电方式,机组效率可以达到60%,这 2 种技术目前都处在发展之中。
现将我国1000MW 超超汽轮机技术概况分述如下。
1汽轮机本体概况本文以某电厂二期工程#4机组为例,该机组由东方汽轮机有限公司提供,本期工程为2×1000MW国产超超临界抽凝供热机组。
汽轮机布置在15.5m运转层,为超超临界、一次中间再热、四缸、四排汽、单轴、单抽、抽凝式汽轮机,型号:C1000/908-26.25/600/600。
汽轮机组包括两台低压缸和高、中压缸各一台。
高压缸由一个单列调节级和八个压力级构成;中压缸双分流,各由六个压力级构成;低压缸四分流,各由六个压力级构成。
总热力级21级,结构级45级。
采用自密封系统(SSR),高、中压汽封漏汽供低压缸轴封封汽用,多余蒸汽溢流至八号低加,封汽用蒸汽不足时由新蒸汽补充。
调节方式为复合调节(可实现部分进汽或全周进汽),控制系统采用高压抗燃油数字电液调节系统(DEH)。
2汽轮机本体安装工艺2.1灰浆垫块施工本机组安装采用地脚螺栓及锚固板预埋工艺,在预埋过程中必须检查、监督土建预埋质量,务必核对各设备纵横中心线应准确无误,地脚螺栓和锚固板定位尺寸、标高及垂直度均符合设计要求。
大型超超临界火电机组现状和发展趋势摘要:本文简述了上海发展超超临界火电机组的战略意义、国内外现状、关键技术和经济效益。
1. 超超临界的概念火力发电厂的工质是水,在常规条件下水经加热温度达到给定压力下的饱和温度时,将产生相变,水开始从液态变成汽态,出现一个饱和水和饱和蒸汽两相共存的区域。
当蒸汽压力达到22.129MPa时,汽化潜热等于零,汽水比重差也等于零,该压力称为临界压力。
水在该压力下加热至374.15℃时即被全部汽化,该温度称为临界温度。
水在临界压力及超过临界压力时没有蒸发现象,即变成蒸汽,并且由水变成蒸汽是连续的,以单相形式进行。
蒸汽压力大于临界压力的范围称超临界区,小于临界压力的范围称亚临界区。
从水的物性来讲,只有超临界和亚临界之分,超超临界是人为的一种区分,也称为优化的或高效的超临界参数。
目前超超临界与超临界的划分界限尚无国际统一的标准,一般认为蒸汽压力大于25MPa、且蒸汽温度高于580℃称为超超临界。
2. 发展超超临界火电机组的战略意义2003年7月中国机械联合会根据对我国能源结构、国家能源政策和未来发电用能源供应状况的分析,在充分考虑水电、天然气、核电和新能源资源的开发基础上,再考虑煤电的开发,经过分析、测算,推荐的全国发电能源需求预测方案见表1。
表1 全国电能源构成项目单位2000实际2020预测全国总装机容量万千瓦31932.09 90000 比重% 100 100 1、水电万千瓦7935.22 22000比重% 24.9 24.4 2、火电万千瓦23746.96 63500比重% 74.4 70.6 其中:煤电万千瓦23223.96 58000 比重% 72.7 64.4 气电万千瓦511.8 5500项目单位2000实际2020预测比重% 1.6 3690 3、核电万千瓦210 4.1比重% 0.7 800 4、其他万千瓦39.91 90000比重% 0.12 100 可以看出,虽然煤电所占比重从2000年到2020年在逐年下降(从72.7%下降到64.4%),但煤电在电源结构中的主导地位没有改变。
亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告一、问题的提出通过书本上的学习我们初步了解了火电厂的工作流程和原理,在整个流程中机组选择的不同使得火电厂对发电用的蒸汽的各项参数、工件的选择、材料的要求等提出不同的标准。
本小组通过对亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势进行研究,找出了他们的一些不同与相同之处,陈列如下不对之处还望指正。
二、调查方法1.从书籍中查找有关资料2.在英特网中查阅有关资料三、正文我国自1882年在上海建立第一座火力发电厂开始, 火力发电已走过100多年发展历程。
新中国成立以后, 特别是改革开放以来, 我国的火力发电事业取得了煌的成就。
全国电力装机到1987年跨上100GW的台阶后, 经过7年的努力, 在1995年3月份突破200GW至1995年底我国电力装机容达到217.224GW,其中水电52.184GW,火电162.94GW,核电2.1GW.1995年全国发电装机容量跃居世界第三位、发电量居世界第二位。
火力发电在电力结构中一直占有重要地位。
从全球范围看, 火电在电力工业中起着主导作用。
对中国而言, 火电在电力工业中所占比重更大, 其中煤电所占比例要比全世界平均水平更高。
国内外一些机构曾对我国能源结构进行过预测分析, 虽然数字有些差异, 但结论大致相同,火力发电特别是燃煤发电在未来几年及21世纪上半叶, 甚至更长时间内在我国电力工业中将起主导作用。
我国火电机组的研制从50年代中期6MW中压机组起步, 到70年代已具备设计制造200MW超高压机组和300MW亚临界压力机组的能力, 但我国最大单机容量同国外先进水平的差距一般为30-40年, 我国机组的技术性能和可靠性水平与国外先进水平相比有相当大的差距( 以当时的亚临界300MW汽轮机为例, 其热耗值比国外同类机组高出约209KJ/(KW·h), 按每台机组每年运行7000h 计算, 仅此一项每台机组每年就需多消耗近2000t标准煤。
发展超临界发电机组若干技术问题探讨(doc 15页)发展超超临界发电机组若干技术问题探讨摘要:总结国外超临界和超超临界机组的发展现状及趋势,探讨超超临界机组技术选型的若干问题,提出了我国发展超超临界机组的发展思路。
0 前言我国在未来相当长的时期内电力生产仍是以煤为主的格局。
为保证电力工业可持续发展,加快电力结构调整的步伐,最现实、最可行的途径就是加快建设超临界机组,配备以常规的烟气脱硫系统。
目前,CFB,PFBC,IGCC等技术仍处于试验或示范阶段,在大型化方面还有很长的路要走,而超临界和超超临界机组的发展已日趋成熟,其可用率、可靠性、运行灵活性和机组寿命等方面已接近亚临界机组。
超临界机组是指主蒸汽压力大于水的临界压力(22.12 MPa)的机组。
习惯上又将超临界机组分为2个层次:①常规超临界参数机组,其主蒸汽压力一般为24MPa左右,主蒸汽和再热蒸汽温度为540~560℃;②高效超临界机组,通常也称为超超临界机组或高参数超临界机组,其主蒸汽压力为25~35MPa及以上,主蒸汽和再热蒸汽温度为580℃及以上。
理论和实践证明常规超临界机组的效率可比亚临界机组高2%左右,而对于高效超临界机组,其效率可比常规超临界机组再提高4%左右。
1 国外超临界机组的发展状况与计划1.1 发展现状大型超临界机组自20世纪50年代在美国和德国开始投入商业运行以来,随着冶金工业技术的发展,提供了发电设备用的碳素体钢、奥氏体钢及超合金钢。
到今天超临界机组已大量投运,并取得了良好的运行业绩。
近十几年来,发达国家积极开发应用高效超临界参数发电机组。
美国(169台)和前苏联(200多台)是超临界机组最多的国家,而发展超超临界技术领先的国家主要是日本、德国和丹麦。
德国是发展超超临界技术最早的国家之一,在早期追求高参数,但后来蒸汽参数降低并长期稳定在25 MPa/545 ℃/545 ℃的水平上,其后蒸汽参数逐步提高。
2003年投产的N iederaussen电厂参数为965MW26MPa/580 ℃/600 ℃,设计热效率为44.5%。
超临界火电技术发展状况一、综述水的临界状态参数为22.1MPa,374.15℃,在水的参数达到该临界点时,水的完全汽化会在一瞬间完成,即在临界点时,在饱和水和饱和蒸汽之间不再有汽、水共存的二相区存在,二者参数不再有分别。
当机组参数高于这一临界状态参数时,通常称其为超临界参数机组。
对蒸汽动力装置循环的理论分析结果表明,提高初参数和降低循环的终参数都可以提高循环的热效率。
实际上,蒸汽动力装置的发展和进步就是一直沿着提高参数的方向前进的。
超临界火电技术经几十年的发展,目前是世界上唯一的先进、成熟和达到商业化规模应用的洁净煤发电技术,在不少国家推广应用并取得了显著的节能和改善环境的效果。
当前,在实际应用中机组的主蒸汽压力最高已达到了31 MPa,主汽温度最高已达到610℃,容量等级在300MW-1300MW内均有业绩。
与同容量亚临界火电机组的热效率比较,在理论上采用超临界参数可提高效率2%-2.5%,采用更高的超临界参数可提高约4%-5%。
目前世界上先进的超临界机组效率已达到47%-49%,同时先进的大容量超临界机组具有良好的运行灵活性和负荷适应性;超临界机组大大降低了CO2、粉尘和有害气体(主要SO X、NO X等)等污染物排放,具有显著环保、洁净的特点。
实际运行业绩表明,超临界机组的运行可靠性指标已经不低于亚临界机组,有的甚至还要高。
另外还有一个很重要的因素是,相对其它洁净煤发电技术来说,超临界技术具有良好的技术继承性。
正因如此超临界发电技术得到各国电力界的重视,又进入了新一轮的发展时期,进一步发展的方向是保证其可用率,可靠性、运行灵活性和机组寿命等的同时,进一步提高蒸汽的参数,从而获得更高的效率和环保性。
我国电力工业总体与国外先进水平相比有较大差距,能耗高、环境污染严重是目前我国火电厂中存在的两大突出问题,并成为制约我国电力工业乃至整个国民经济的重要因素。
二、超临界机组的技术发展状况世界上超临界发电技术的发展过程大致上可分为两个阶段:第一阶段大致从上个世纪50年代-80年代,主要以美国、德国、日本等国为技术代表。
超临界机组给水泵技术的发展现状如何?超临界火电机组的基本概念及其对给水泵的要求;国外超临界机组给水泵的发展现状、典型结构、零部件、密封及热力系统的配置等介绍如下。
1.超临界火电机组的基本概念及其对给水泵的要求在工程热力学中,规定水在临界状态点的参数是:压力为22.115MPa,温度为374.15℃。
在水的状态参数达到该临界点时,水的完全汽化会在一瞬间完成,即在临界点时,在饱和水和饱和蒸汽之间不再有汽、水共存的二相区存在,两者的参数不再有分别。
当机组的水蒸气参数高于这个临界状态参数时,通常称其为超临界参数机组。
如果继续进一步提高已过临界状态水蒸气参数值,则进入了所谓的超临界的参数范围。
在我国通常把蒸汽压力高于27MPa称为超超临界。
对火力发电厂蒸汽动力装置循环的理论分析认为,提高循环的蒸汽初参数和降低循环的终参数都可以提高循环的热效率。
实际上,蒸汽动力装置的发展和进步都一直是沿着提高参数的途径前进的。
当前实际应用中,机组的水蒸气压力最高已达到了31MPa,水蒸气温度最高已达610℃。
理论计算和实际运行表明,与同等容量的亚临界机组相比较,采用超临界参数可以提高热效率2%一2.5qo,采用超超临界参数机组可以提高热效率4%~5%。
目前,世界上先进的超临界机组效率已达到47%-49%。
实践表明,大容量超临界机组具有良好的运行灵活性和负荷适应性,而且大大降低了C02、粉尘和有害气体的排放,具有显著的环保、洁净的特点。
由于超临界机组参数的提高,主机设备的锅炉结构发生变化,如增加再热器和过热器等。
作为超临界机组的主要辅机一;一;高压锅炉给水泵的参数也要随之变化。
给水泵的出口压力是由系统的参数和阻力决定的。
一般与同容量亚临界机组比,给水泵的扬程要比亚临界机组高600-800m,给水泵出口压力要在29MPa以上。
对于超超临界机组,给水泵出口压力要在34MPa以上。
由于超临界机组参数的提高,机组单机容量也在不断扩大,世界上超临界机组的容量都在450MW以上,最大已发展到1300MW。
超超临界机组市场调查报告1. 引言本报告对超超临界机组市场进行了调查和分析。
超超临界机组是一种高效率和低碳排放的发电机组技术,具有很大的市场潜力。
本报告旨在提供有关超超临界机组市场的详细信息,以帮助利益相关方了解该市场的现状和未来发展趋势。
2. 超超临界机组市场概述超超临界机组是一种新兴的发电技术,采用超高温和超高压的工作参数,实现了更高的热效率和更低的碳排放。
这使得超超临界机组成为目前煤炭发电行业中的一种主流技术。
3. 超超临界机组市场规模分析根据我们的调查,超超临界机组市场在过去几年里取得了显著的增长。
预计未来几年,市场规模将进一步扩大。
其中,亚洲市场是最大的市场,占据了超超临界机组市场份额的相当大比例。
4. 超超临界机组市场竞争分析目前,全球范围内有多家公司提供超超临界机组,市场竞争相当激烈。
这些公司通过技术创新、产品差异化和客户服务等方面展开竞争,以争夺更多的市场份额。
5. 超超临界机组市场驱动因素超超临界机组受到多个因素的推动,其中包括能源需求增长、环保要求提高、能源转型等。
这些因素将促使超超临界机组市场的进一步发展。
6. 超超临界机组市场面临的挑战虽然超超临界机组市场前景广阔,但也面临一些挑战。
其中,关键技术的突破、市场竞争激烈、政策法规不确定性等是当前市场所面临的主要挑战。
7. 超超临界机组市场发展趋势超超临界机组市场正朝着更高效、更环保的方向发展。
未来,随着技术的不断创新和市场需求的不断提升,超超临界机组市场有望实现更快的增长。
8. 总结综上所述,超超临界机组市场在过去几年里取得了快速增长,具有很大的市场潜力。
在未来,随着环保意识的提高和能源转型的加速,超超临界机组市场有望进一步扩大。
然而,市场竞争和技术突破等挑战也需要关注和解决。
2024年超超临界机组市场分析报告1. 引言超超临界机组是一种具有高效、高性能和低碳排放的发电设备,在能源产业中具有广阔的市场前景。
本报告旨在通过对超超临界机组市场的分析,为相关企业的决策提供参考。
2. 市场概述超超临界机组是目前发电行业中的一项重要技术革新,其在燃煤发电、燃气发电等领域具有广阔的应用前景。
超超临界机组不仅具备高效的发电性能,还可以降低燃料消耗、减少环境污染等优点,因此备受行业关注。
3. 市场需求分析超超临界机组市场需求主要受到以下几个方面的推动:3.1 环保压力随着环境保护意识的提升,各国对于环境保护的要求日益严格。
超超临界机组具备低排放、低污染的特点,可以满足不同地区对于环境保护的要求,因此受到政府的大力支持。
3.2 能源可持续发展能源可持续发展是未来能源行业的重要方向。
超超临界机组在提高能源效率的同时,可以降低碳排放,符合能源可持续发展的目标,因此受到能源公司和投资机构的青睐。
3.3 能源需求增长随着全球经济的发展,对能源的需求也不断增长。
超超临界机组具备高效的发电性能,可以满足能源需求的增长,因此受到发电公司和电力市场的关注。
4. 市场竞争分析超超临界机组市场竞争主要来自国内外的一些知名企业,这些企业在超超临界技术的研发和应用方面具有一定的优势。
市场竞争主要表现在以下几个方面:4.1 技术优势超超临界机组技术的研发和应用需要具备强大的技术实力和研发能力。
一些具备技术优势的企业通过不断创新和改进,不断提高超超临界机组的性能,从而在市场上占据一定的份额。
4.2 经济实力超超临界机组的研发和应用需要投入大量的资金和资源。
一些具备较强经济实力的企业可以通过投入更多的资金和资源来提高超超临界机组的研发速度和市场占有率,并在市场上获取更多的竞争优势。
4.3 市场渗透能力超超临界机组市场渗透能力决定了企业的市场份额和影响力。
一些具备市场渗透能力的企业可以通过良好的市场推广和销售渠道,迅速占据市场份额,从而在市场上形成较强的竞争优势。
超临界参数机组发展现状及效率一、超临界参数机组发展现状1.超临界是物理概念:22.1MPa(374.15℃)2.超超临界是(90年代提出)工程产品商业性的概念(1)1993年-日本最早提出压力≥24.2MPa,温度≥ 593℃。
(2)丹麦认为压力≥ 27.5MPa. 1998年-两台29MPa两次再热,1997年西门子认为采用“600℃材料”的机组来区分。
(3)我国电力百科全书认为压力≥ 27MPa。
(4)2003年“863”“超超临界燃煤发电技术”课题设定为压≥25MPa,温度≥ 580℃。
二、第一次大规模发展—美国1.美国发展以超超临界参数起步(1)1959年投运的320MW,34.5MPa/649/566/566℃,至今仍在运行(2)1959年GE公司125MW,31MPa/621/566/538℃,1975年停运2.80-90年美国大规模的改造和优化,解决可靠性问题参数回到超临界(温度小于566℃,压力25MPa)以下三、第二次大规模发展-1993年后欧洲及日本新一轮超临界技术发展的动力1.燃料资源结构:煤远超过气、油2.欧美环保政策、德国洁净燃煤及关闭核电能源政策3.京都议定书;减少CO2排放的经济杠杆4.目前唯一达到产业化要求的高效洁净燃煤技术(1)美国向日本及欧洲的超临界技术转让(2)90年代开始日本和欧洲市场为主(3)参数以超超临界为主:温度大于580℃,普遍达到600℃四、第三次大规模发展-2001年后中国技术引进项目合作发展超临界/超超临界1.从2001年开始,我国各电站制造公司通过技术引进、项目合作方式来发展超临界和超超临界技术。
2.不完全统计至2005年3月,超临界项目机组总共约~150多台,其中百万等级超超临界机组10台,600MW超超临界机组4台,600MW等级超临界机组约140台。
五、高效洁净燃煤电厂的设计理念1.所有环节,所有可采用的先进技术提高效率。
电厂总的热效率提高到43%-47%(热电联供超过55%);2.考虑环保的效益,更大的冷端投入;3.与当地经济综合利用,普遍热电联供;4.必须具有调峰能力;5.进一步提高参数,“700℃计划”开始实施六、超临界参数效率比较七、CO2排放比较。