随机变量检测题
- 格式:doc
- 大小:317.08 KB
- 文档页数:6
随机变量及其分布(总分102, 做题时间90分钟)一、单项选择题(每题的备选项中,只有1个最符合题意)1.下列关于“右偏分布”的表述错误的是( )。
SSS_SINGLE_SELA 右偏分布是正态分布的形式之一B 符合右偏分布的随机变量大量取值在左边,少量分布在右边C 符合右偏分布的随机变量少量取值在左边,大量分布在右边D 随机变量的分布很散分值: 1答案:B[解析] 对数正态分布的特点之一就是“右偏分布”,符合右偏分布的随机变量的取值大量在左边,少量取值在右边,并且很分散。
2.对于产品的某个质量特性X的不合格品率,在计算之前需要知道的条件有( )。
SSS_SINGLE_SELA产品质量特性X的分布,在过程受控情况下X的分布常为正态分布(μ,σ2),这是稳定过程的概括B 某个公认标准对产品特性的要求C 企业对产品下达的任务书D X低于下规范限的概率和X高于上规范限的概率分值: 1答案:A[解析] 产品某个质量特性X的不合格品率的计算要知道两件事:①质量特性X 的分布,在过程受控情况下,X的分布常为正态分布N(μ,σ2),这是稳定过程的概括;②产品的规格限,包括上规格限TU 和下规格限TL。
3.设某二项分布的均值等于3,方差等于2.7,则二项分布参数P=( )。
SSS_SINGLE_SELA 0.1B 0.3C 0.7D 0.9分值: 1答案:A[解析] 此二项分布记为b(n,p),则E(X)=np,Var(X)=np(1-p),根据题意,代入数据可得np=3,np(1-p)=2.7,所以p=0.1。
4.对下列常见密度函数所对应的方差的形式正确的一项是( )。
SSS_SINGLE_SELA 两点分布b(1,的方差:np(1-B 超几何分布h(n,N,的方差:n(N-/(N-1)•(M/(1-(M/)C均匀分布U(a,的方差:(b+ 2/12D对数正态分布LN(μ,σ2)的方差:分值: 1答案:B[解析] A项两点分布的方差为p(1-p);C项均匀分布的方差为(b-a)2/12;D项对数正态分布的方差为。
高考数学基础题训练:随机变量的期望与方差一、单选题 1.已知()1,4N η,若()()21P a P a ηη>=<-,则=a ( )A .1-B .0C .1D .22.天气预报,在假期甲地的降雨概率是0.2,乙地的降雨概率是0.3,假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为 A .0.2B .0.3C .0.38D .0.563.随机变量X 的分布列如下表,其中2b a c =+,且1c ab =,则(2)P X ==( )A .47B .45C .14D .2214.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14.从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)( ) A .1320B .25C .14D .155.某市为弘扬我国优秀的传统文化,组织全市10万中小学生参加网络古诗词知识答题比赛,总分100分,经过分析比赛成绩,发现成绩X 服从正态分布()82,16N ,请估计比赛成绩不小于90分的学生人数约为( )〖参考数据〗:()0.683P X μσμσ-<≤+=,()220.954P X μσμσ-<≤+=,()330.997P X μσμσ-<≤+=A .2300B .3170C .3415D .4606.小明参加某项测试,该测试一共3道试题,每道试题做对得5分,做错得0分,没有中间分,小明答对第1,2题的概率都是12,答对第3题的概率是13,则小明答完这3道题的得分期望为( ) A .2512B .6512C .203D .2537.A 同学和B 同学参加某市青少年围棋比赛并进入决赛,决赛采取“3局2胜”制,若A 同学每局获胜的概率均为23,且每局比赛相互独立,则在A 先胜一局的条件下,A 最终能获胜的概率是( )A .34B .89C .79D .568.从区间()0,3和()1,5内分别选取一个实数x ,y ,得到一个实数对(),x y ,称为完成一次试验.若独立重复做3次试验,则x y <的次数T 的数学期望为( ) A .12B .13C .53D .52二、多选题9.设离散型随机变量X 的分布列如下表:若离散型随机变量23Y X =-+,且() 3.2E X =,则正确的是( ).A .0.2m =B .0.2n =C .() 3.4E Y =-D .()()33P X P X ≤=>10.“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给作出了杰出贡献.某杂交水稻种植研究所调查某地水稻的株高,得出株高ξ(单位:cm )近似服从正态分布()2100,10N .已知()2~,X N μσ时,有(||)0.6827P X μσ-≤≈,(||2)0.9545P X μσ-≤≈,(||3)0.9973P X μσ-≤≈.下列说法正确的是( ) A .该地水稻的平均株高约为100cmB .该地水稻株高的方差约为100C .该地株高超过110cm 的水稻约占68.27%D .该地株高低于130cm 的水稻约占99.87%11.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,…,6,用X 表示小球落入格子的号码,则( )A .1(1)(0)64P X P X ==== B .5(2)(5)32P X P X ==== C .5(3)(4)16P X P X ==== D .3()2D X =12.一口袋中有大小和质地相同的5个红球和2个白球,则下列结论正确的是( )A .从中任取3球,恰有一个红球的概率是17B .从中有放回的取球3次,每次任取一球,恰好有两个白球的概率为20343C .从中不放回的取球2次,每次任取1球,若第一次已取到了红球,则第二次再次取1到红球的概率为13D .从中有放回的取球3次,每次任取一球,则至少有一次取到白球的概率为218343第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.已知随机变量2~(0,)X N σ,且(),0P X a m a >=>,则()P a X a -<<=___________.14.已知某种疾病的患病率为0.5%,在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为______.15.一项过关游戏规则规定:在第n 关要抛掷一颗质地均匀的骰子n 次,如果这n 次抛掷所出现的点数之和大于2n ,则算过关.甲同学参加了该游戏,他连过前二关的概率是_____.四、双空题16.在是否接种疫苗的调查中调查了7人,7人中有4人未接种疫苗,3人接种了疫苗,从这7人中随机抽取3人进行身体检查,用X 表示抽取的3人中未接种疫苗的人数,则随机变量X 的数学期望为______;设A 为事件“抽取的3人中,既有接种疫苗的人,也有未接种疫苗的人”,则事件A 发生的概率为______. 17.某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是110.设事件A 为“该地区刮风”,事件B 为“该地区下雨”,则()P B A =______,()P A B =______.18.随机变量X 的分布列为()()1,2,3,,15kP X k k k N *===∈,则正整数k的最大值为__________,1522P X ⎛⎫<< ⎪⎝⎭的值为__________.19.立德中学开展学生数学素养测评活动,高一年级测评分值(满分100分)X 近似服从正态分布,正态曲线如图①所示.为了调查参加测评的学生数学学习的方法与习惯差异,决定在分数段[),m n 内抽取学生,并确定m =67,且()0.8186P m X n <<=.在某班随机抽样得到20名学生的分值分布茎叶图如图①所示.若该班抽取学生分数在分数段[),m n 内的人数为k ,则k 等于______;这k 名学生的人均分为______.(附:()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=)五、解答题20.在某校开展的知识竞赛活动中,共有A B C 、、三道题,答对A B C 、、分别得2分、2分、4分,答错不得分.已知甲同学答对问题A B C 、、的概率分别为422,,535,乙同学答对问题A B C 、、的概率均为35,甲、乙两位同学都需回答这三道题,且各题回答正确与否相互独立.(1)求甲同学至少有一道题不能答对的概率;(2)运用你学过的统计学知识判断,谁的得分能力更强.21.第24届冬季奥运会将于2022年2月在北京和张家口举办,为了普及冬奥知识,京西某校组织全体学生进行了冬奥知识答题比赛,从全校众多学生中随机选取了20名学生作为样本,得到他们的分数统计如下:我们规定60分以下为不及格;60分及以上至70分以下为及格;70分及以上至80分以下为良好;80分及以上为优秀.(I)从这20名学生中随机抽取2名学生,恰好2名学生都是优秀的概率是多少?(II)将上述样本统计中的频率视为概率,从全校学生中随机抽取2人,以X表示这2人中优秀人数,求X的分布列与期望.22.某校高一年级组织“知识竞答”活动.每位参赛者第一关需回答三个问题,第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得10-分;第三个问题回答正确得30分,回答错误得20-分.规定,每位参赛者回答这三个问题的总得分不低于30分就算闯关成功.若某位参赛者回答前两个问题正确的概率都是23,回答第三个问题正确的概率是12,且各题回答正确与否相互之间没有影响.(1)求这位参赛者仅回答正确两个问题的概率;(2)求这位参赛者回答这三个问题的总得分ξ的分布列和期望;(3)求这位参赛者闯关成功的概率.参考答案:1.C 【解析】 【分析】首先可通过题意求出正态分布曲线的对称轴,然后根据()()21P a P a ηη>=<-得出2112a a +-=,最后通过计算即可得出结果. 【详解】 因为()1,4N η,所以对称轴方程为1x η==,因为()()21P a P a ηη>=<-, 所以2112a a +-=,解得1a =, 故选:C. 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,主要考查正态分布曲线的对称性,考查计算能力,是简单题. 2.C 【解析】两地中恰有一个地方降雨分为两种情况:甲地降雨乙地不降雨,乙地降雨甲地不降雨,分别求解然后求和可得结果. 【详解】因为甲地的降雨概率是0.2,乙地的降雨概率是0.3,所以这两地中恰有一个地方降雨的概率为0.2(10.3)(10.2)0.30.38⨯-+-⨯=. 故选:C. 【点睛】本题主要考查事件的独立性,把事件分解为独立事件的积、互斥事件的和,是求解的关键,侧重考查数学建模的核心素养. 3.A 【解析】由概率的性质可得1a b c ++=,结合已知条件求出a 的值,即可求解.【详解】由概率的性质可得1a b c ++=, 由2,1,21b a c c ab a b c =+⎧⎪⎪=⎨⎪++=⎪⎩得4,71,32,21a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩则4(2)7P X ==,故选:A 4.B 【解析】先写出事件“从中任挑一儿童,这两项至少有一项合格”的对立事件,然后再根据相互独立事件同时发生的概率公式求出其概率,最后根据对立事件的概率公式即可算出. 【详解】设事件A :“从中任挑一儿童,这两项至少有一项合格”,则其对立事件B :“从中任挑一儿童,这两项都不合格”,由题可知,儿童体型不合格的概率为45,身体关节构造不合格的概率为34,所以()433545P B =⨯=,故()()321155P A P B =-=-=.故选:B . 【点睛】本题主要考查对立事件的概率公式和相互独立事件同时发生的概率公式的应用,属于基础题. 5.A 【解析】根据正态分布定义,求得比赛成绩不小于90分的学生人数所占比例,即可得结果. 【详解】依题意知,82,4μδ==所以()74900.954P x <≤= 则()()19010.9540.0232P x ≥=-⨯=,所以比赛成绩不小于90分的学生人数约为 1000000.0232300⨯=故选:A6.C 【解析】 【分析】设小明的得分为ξ,则ξ的可能取值为0、5、10、15,求出所对应的概率,即可得到得分ξ的分布列,从而求出数学期望;【详解】解:设小明的得分为ξ,则ξ的可能取值为0、5、10、15, 所以()111101112236P ξ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()21211111551112232312P C ξ⎛⎫⎛⎫⎛⎫==⨯⨯-⨯-+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2121111111011232233P C ξ⎛⎫⎛⎫⎛⎫==⨯-+⨯⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2111152312P ξ⎛⎫==⨯= ⎪⎝⎭;所以小明得分ξ的分布列为:所以小明答完这3道题的得分期望为1511200510156123123⨯+⨯+⨯+⨯=,故选:C. 7.B 【解析】 【分析】先分析A 最终能获胜有两种情况,分别计算概率,再相加即得结果. 【详解】在A 先胜一局的条件下,A 最终能获胜有两种情况: (1)第二局甲再次取胜,概率为23;(2)第二局甲败,第三局甲胜,概率为122339⨯=,故A 最终能获胜的概率为228399+=.故选:B. 【点睛】 方法点睛:计算条件概率通常有两种方法; (1)利用条件概率公式()()()P AB P A B P B =;(2)在事件B 已经发生的前提下,相当于缩小了总事件的空间容量,再计算()()()n AB P A B n B =,或利用独立关系直接计算事件B 发生后的概率情况. 8.D 【解析】 【分析】先根据几何概型求出一次试验中x y <发生的概率,再由二项分布的期望公式即可求数学期望. 【详解】从区间()0,3和()1,5内分别选取一个实数x ,y ,则03,15x y <<⎧⎨<<⎩表示的可行域为矩形ABCD 区域(不含边界),如图所示,0315x y x y <<⎧⎪<<⎨⎪<⎩表示的可行域为图中的阴影部分(不含边界).因为BEF 的面积为12222⨯⨯=,矩形ABCD 的面积为12,所以由几何概型可知,每次试验x y <发生的概率251126P =-=, 由题意知,53,6TB ⎛⎫ ⎪⎝⎭, 所以x y <的次数T 的数学期望为55362⨯=. 故选:D . 9.AC 【解析】 【分析】先由() 3.2E X =可得40.6m n +=,再由概率和为1得0.3m n +=,从而可求出,m n 的值,再利用期望公式求()E Y 即可,从而可得答案. 【详解】()120.130.3450.3 3.2E X m n =⨯+⨯+⨯+⨯+⨯=,所以40.6m n +=,又因为0.10.30.31m n ++++=,所以0.3m n +=,从而得0.2m =,0.1n =,故A 选项正确,B 选项错误;()()23 3.4E Y E X =-+=-,故C 选项正确;()()()()3=3=2=++=0.3+0.1+0.2=01.6P X P X P X P X ≤=, ()()()=+3=4=0.4=5P X P X P X >,故D 选项不正确. 故选:AC. 10.ABD 【解析】 【分析】根据已知条件,结合正态分布的对称性,即可求解. 【详解】由题意可知,100μ=,2100σ=,故A ,B 正确; 由题意得110μσ+=,3130μσ+=所以()()()()1110.317315.87%22P X P X μσμσμσ>+=--<<+≈⨯=⎡⎤⎣⎦,故C 错误; 所以()()()()13113310.0013599.87%2P X P X μσμσμσ<+=---<<+≈-=⎡⎤⎣⎦,故D 正确; 故选:ABD. 11.BC 【解析】 【分析】结合独立重复试验概率计算公式,计算出概率并求得方差,从而确定正确选项. 【详解】已知X 表示小球落入格子的号码,则X 的所有取值范围为1,2,3,4,5,6, 则()5111()232P X ===,由对称性可知()()16132P X P X ====,而()()14511525()2232P X P X C ====⋅⋅=,()()232511534()()2216P X P X C ====⋅⋅=,所以()()()()15571625343232162E X =+⨯++⨯++⨯=, ()22222271717575757551625342322322322322162164D X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯+-⨯+-⨯=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,综上得选项BC 正确. 故选:BC 12.AD 【解析】 【分析】利用超几何分布的概率公式可判断A 选项;利用独立重复试验的概率公式可判断B 选项;利用条件概率公式可判断C 选项;利用对立事件的概率公式可判断D 选项. 【详解】对于A 选项,从中任取3球,恰有一个红球的概率是125237C C 1C 7=,A 对;对于B 选项,从中有放回的取球3次,每次任取一球,每次抽到白球的概率为27,则3次取球中恰好有两个白球的概率为2232560C 77343⎛⎫⋅⋅= ⎪⎝⎭,B错;对于C 选项,从中不放回的取球2次,每次任取1球, 记事件:A 第一次取到红球,记事件:B 第二次取到红球,则()()()2527C C 2537P AB P B A P A ===,C 错;对于D 选项,从中有放回的取球3次,每次任取一球,则至少有一次取到白球的概率3521817343⎛⎫-=⎪⎝⎭,D 对. 故选:AD. 13.12m - 【解析】 【分析】根据正态分布区间的对称性直接计算即可. 【详解】由2~(0,)X N σ,且(),0P X a m a >=> 则()P X a m <-=,所以()12P a X a m -<<=- 故答案为:12m - 14.0.495% 【解析】 【分析】根据条件概率公式计算. 【详解】设事件A 表示“血检呈阳性”,事件B 表示“患该种疾病”.依题意知()0.005P B =,()0.99P A B =,由条件概率公式()()()P AB P A B P B =,得()()()0.0050.990.004950.495%P AB P B P A B ==⨯==.故答案为:0.495%. 15.59【解析】 【分析】由题可求过第一、二关的概率,再利用独立事件的概率公式即求. 【详解】由于骰子是均匀正方体,所以,抛掷后各点数出现的可能性是相等的.设事件An ,为“第n 次过关失败”,则对立事件n B 为“第n 次过关成功”,第n 次游戏中,基本事件总数为6n .第1关:事件1A 所含基本事件数为2(即出现点数1和2两种情况). 所以,过此关的概率为 11221163B A P P =-=-=. 第2关:事件2A 所含基本事件数为方程x y a +=当a 分别取2、3、4时的正整数解组数之和,即6个.所以,过此关的概率为 222651166B A P P =-=-=. 故连过两关的概率为1259B B P P ⨯=.故答案为:59.16.12767【解析】 【分析】分别求出,0,1,2,3X =的概率,进一步求出所以()E X 和()P A . 【详解】由题意可知,随机变量X 的取值范围为{0,1,2,3},()33371035C P X C ===,()12433712135C C P X C ===, ()21433718235C C P X C ===,()34374335C P X C ===,所以()112184120123353535357E X =⨯+⨯+⨯+⨯=. 由已知条件可得()()()121861235357P A P X P X ==+==+=. 故答案为:127;67. 17.3438【解析】 【分析】根据条件概率公式即求. 【详解】()215P A =,()415P B =,()110P AB =,()()()34P BA P B A P A ∴==,()()()38P AB P A B P B ==. 故答案为:34;38.18. 5 15【解析】 【分析】由概率和为1,可求出k 的值,由()()1,2,3,,15kP X k k k N *===∈可得15(1)(2)22P X P X P X ⎛⎫<<==+= ⎪⎝⎭【详解】 解:由题意得121151515k++⋅⋅⋅+=,得12315k +++⋅⋅⋅+=,解得5k =, 因为()()1,2,3,,15kP X k k k N *===∈,所以15121(1)(2)2215155P X P X P X ⎛⎫<<==+==+= ⎪⎝⎭,故答案为:5,1519. 10 74分 【解析】 【分析】由已知,测评分值X 服从正态分布2(,)N μσ,根据图像,分别求解出μ,σ,根据给的参考数据,结合给定的范围,即可确定n 的值,然后根据区间[),m n 的范围,在图①输出满足条件的数据,即可确定k 的值,并根据k 的取值再去计算平均数即可. 【详解】有图像可知,X 服从正态分布2(,)N μσ,其中72μ=,5σ=,所以随机变量X ~(7225)N ,,()67770.6827P X <<=,()62820.9545P X <<=,由0.95450.6827(67)0.81860.95452P X n -<<==-,可得82n =.由图①可知,该班在[)67,82内抽取了10人; 所以,人均分为687073757271767876817410+++++++++=分.故答案为:10,74分. 20.(1)5975(2)乙 【解析】 【分析】(1)先求其对立事件的概率即可.(2)分别求甲乙两同学得分的概率分布及均值,比较甲乙两同学得分的均值的大小即可. (1)设甲同学三道题都答对的事件为A ,则()4221653575P A =⨯⨯=, 所以甲同学至少有一道题不能答对的概率为()1659117575P P A =-=-=. (2)设甲同学本次竞赛中得分为X ,则X 的可能取值为0,2,4,6,8分,则()1133053575P X ==⨯⨯=, ()41312318253553575P X ==⨯⨯+⨯⨯=,()42311226453553575P X ==⨯⨯+⨯⨯=,()41212212653553575P X ==⨯⨯+⨯⨯=,()42216853575P X ==⨯⨯=,所以X 的概率分布列为:所以()318261216340680246875757575757515E X =⨯+⨯+⨯+⨯+⨯== 设乙同学本次竞赛中得分为Y ,由Y 的可能取值为0,2,4,6,8分 ()32805125P Y ⎛⎫===⎪⎝⎭, ()2123224255125P Y C ⎛⎫==⨯=⎪⎝⎭, ()2232323045555125P Y ⎛⎫⎛⎫⎛⎫==⨯+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2122336655125P Y C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭, ()332785125P Y ⎛⎫===⎪⎝⎭, 所以Y 的概率分布列为:所以()82430362724024681251251251251255E Y =⨯+⨯+⨯+⨯+⨯=, 所以6824155<,所以乙的得分能力更强. 21.(1)395;(2)分布列见详解;()25E X =.【解析】 【分析】(1)利用组合数以及古典概型的概率计算公式即可求解.(2)由题意可得0,1,2x =,再利用二项分布的概率计算公式列出分布列,从而求出数学期望. 【详解】(1)记恰好2名学生都是优秀的事件为A ,则()242206319095C P A C ===. (2)抽到一名优秀学生的概率为41205p ==, X 的取值为0,1,2,()20024********P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()111241815525P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()022241125525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, 故X 的分布列为:()168120122525255E X =⨯+⨯+⨯=22.(1)49;(2)分布列见解析,195()9E ξ=;(3)49.【解析】(1)设事件i A 这位参赛者回答对第i 个问题()1,2,3i =,则这位参赛者仅回答正确两个问题的情况有123A A A ,123A A A ,123A A A ,然后利用互斥事件的概率和公式求解即可; (2)由题意可得30,20,0,10,20,30,50,60ξ=--,然后依次求出各个的概率,列出分布列即可,从而可求出数学期望;(3)由(2)可得这位参赛者闯关成功的概率为(30)(50)(60)P P P P ξξξ==+=+= 【详解】(1)设事件i A 这位参赛者回答对第i 个问题()1,2,3i =, ①()()()123123123P P A A A P A A A P A A A =++ 22121112143323323329=⋅⋅+⋅⋅+⋅⋅= (2)30,20,0,10,20,30,50,60ξ=-- ()1231(30)18P P A A A ξ=-==,()1231(20)9P P A A A ξ=-==,()1231(0)9P P A A A ξ===,()1232(10)9P P A A A ξ===,()1231(20)18P P A A A ξ===,()1231(30)9P P A A A ξ===, ()1231(50)9P P A A A ξ===,()1232(60)9P P A A A ξ===, ①ξ的分布列为:11121112195()30200102030506018999189999E ξ=-⨯-⨯+⨯+⨯+⨯+⨯+⨯+⨯=. (3)由(2)得这位参赛者闯关成功的概率为4(30)(50)(60)9P P P P ξξξ==+=+==. 【点睛】关键点点睛:此题考查互斥事件和独立事件的概率的求法,考查离散型随机变量的分布列,考查运算求解能力,解题的关键是正确理解题意,正确利用互斥事件和独立事件的概率公式,属于中档题。
1 第8章 随机变量与数字特征一、填空题⒈ 设随机变量X 的概率分布为则a = . ⒉ 设X 服从区间[1,5]上的均匀分布,当5121<<<x x 时,}{21x X x P ≤≤= .⒊ 设),(~p n B X ,且6)(=X E ,6.3)(=X D ,则n = .4.设)10,5(~2N X ,若5.0)5(=<-a X P ,则a = .5. 设随机变量X 的期望方差分别为E X ()和D X (),令Y aX b =+,则有E Y ()= ,D Y ()= .二、单项选择题⒈ 设X 是连续型随机变量,其密度函数为 ⎩⎨⎧∉∈=],1(0],1(ln )(b x b x x x f 则常数b =( ).A . eB . e + 1C . e - 1D . e 2⒉ 设)10,50(~2N X ,则随机变量( )~)1,0(N . A .10050-X B . 1050-X C . 50100-X D . 5010-X ⒊ 设),2(~2σN X ,已知4.0)42(=≤≤x P ,则=≤)0(x P ( ). A . 0.4 B . 0.3 C . 0.2 D . 0.14. 已知X N ~(,)222,若aX b N +~(,)01,则有( )A . a b ==-22,B . a b =-=-21,C . a b ==-121, D . a b ==122, 5. 已知1)(-=X E ,3)(=X D ,则=-)]2(3[2X E ( ). A . 30 B . 9 C . 6 D . 366. 设随机变量X 的密度函数为f x (),则E X ()2=( )A .xf x x ()-∞+∞⎰d B . x f x x 2()-∞+∞⎰d C . xf x x 2()-∞+∞⎰d D . (())()x E X f x x --∞+∞⎰2d 三、解答题1.设随机变量X 的密度函数为f x x x ()()=-≤≤⎧⎨⎩311202其它, 求:⑴ P X (..)1525<<; ⑵ E X ().2.盒中装有分别标12345,,,,数字的球,从中任取2个,用X 表示所取2球中最大的数字. 求X 的概率分布.3.设)5.0,3(~2N X ,求)6.32(≤≤X P .已知9772.0)2(,8849.0)2.1(=Φ=Φ.4.在一次数学考试中,其分数服从均值为65,标准为10的正态分布,求分数在60~75的概率. (6915.0)5.0(=Φ,8413.0)1(=Φ)。
第四章随机变量的数字特征试题答案第四章随机变量的数字特征试题答案武汉长江商学院概率论与数理统计12级电子商务测试答案第四章随机变量的数字特征试题答案一、多项选择题(每个子问题2分)1、设随机变量x服从参数为2的泊松分布,则下列结论中正确的是(d)a.e(x)=0.5,d(x)=0.5b.e(x)=0.5,d(x)=0.25c.e(x)=2,d(x)=4d.e(x)=2,d(x)=22、设随机变量x与y相互独立,且x~n(1,4),y~n(0,1),令z?x?y,则d(z)=(c)a、 1b。
3c。
5d。
63.如果D(x)=4,D(y)=25,cov(x,y)=4,那么?xy=(c)a.0.004b。
0.04摄氏度。
0.4d。
四4、设x,y是任意随机变量,c为常数,则下列各式中正确的是(d)a.d(x+y)=d (x)+d(y)b.d(x+c)=d(x)+cc.d(x-y)=d(x)-d(y)d.d(x-c)=d(x)十、2.0 x?5.设随机变量X的分布函数为f(X)???1,2? 十、4.2倍?4.1.a。
,则e(x)=(d)113B。
公元3322116年。
设随机变量X和y相互独立,X~B(36)和y~B(12),则d (X?y?1)=(c)63472326a.b.c.d.假设随机变量x服从泊松分布,参数为3,y~B(8),x和y相互独立,则3d(x?3y?4)=(c)a、 B-13b.15c.19d.238、已知d(x)?1,d(y)?25,?xy=0.4,则d(x?y)=(b)a.6b.22c.30d.469、设x~b(10,),则e(x)=(c)a.13110b。
1c。
d、 1033210。
如果设置了x~n(1,3),则以下选项不适用(b)a.e(x)=1b.d(x)=3c.p(x=1)=0d.p(x<1)=0.511、设e(x),e(y),d(x),d(y)及cov(x,y)均存在,则d(x?y)=(c)a.d(x)+d(y)b.d(x)-d(y)一武汉长江工商学院概率论与数理统计12级电商试题答案c、 d(x)+d(y)-2cov(x,y)d.d(x)+d(y)+2cov(x,y)y~n(2,10),12、设随机变量x~b(10,),又e(xy)?14,则x与y的相关系数?xy=(d) a-0.8b-0.16c.0.16d.0.812x13、已知随机变量x的分布律为圆周率?21x,E(x)=1,然后常数x=(b)0.25p0.25a.2b.4c.6d.814.假设随机变量x服从参数为2的指数分布,则随机变量x的数学期望为(c)A.-0.5B 0c。
第二章 《随机变量及其分布》练习题一、选择题1.任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( )A .34 B .38 C .13 D .142.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( )A .13 B .25 C .56 D .343.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28 C .0.88×0.22D .0.82×0.284.若X 是一个随机变量,则E (X -E (X ))的值为( )A .无法求B .0C .E (X )D .2E (X )5.某人从家乘车到单位,途中有3个交通岗.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为( ) A .0.4 B .1.2 C .0.43D .0.66.已知随机变量ξ的概率分布如下表所示:且η=2ξ+3,则E (η)等于( )A.35 B.65 C.215 D.1257.随机变量ξ的分布列为则ξ的数学期望是( )A .2B .2.1C .2.3D .随m 的变化而变化8.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5,14,则E (-ξ)的值为( ) A.14 B .-14 C.54 D .-549.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6 10.设随机变量ξ的分布列如下表:且E (ξ)=1.6,则a -b 等于( D .-0.411.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m )12.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:D .无法确定 13.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.614.随机变量X 的分布列如下:若E (X )=158,则D (X )等于( ) A.732 B.932 C.3364 D.556415.若随机变量ξ的分布列为P (ξ=m )=13,P (ξ=n )=a ,若E (ξ)=2,则D (ξ)的最小值等于( )A .0B .2C .4D .无法计算16.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为( )A .0.9 B .0.8 C .1.2 D .1.117.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6二、填空题1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的期望为________.2.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________.3.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.4.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.三、解答题1.某师范大学志愿者支教团体有6名男同学,4名女同学.在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学来自互不相同的系的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34;向乙靶射击一次命中的概率为23,该射手每次射击的结果相互独立.假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试.(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X 的分布列及数学期望.3.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望.4.某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A、B、C、D顺序作答,直至答题结束.假设甲同学对问题A、B、C、D回答正确的概率依次为34、12、13、14,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望E(ξ).第二章 《随机变量及其分布》练习题一、选择题1.任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( )A .34 B .38 C .13 D .14[解析] 抛一枚硬币,正面朝上的概率为12,则抛三枚硬币,恰有2枚朝上的概率为P =C 23⎝⎛⎭⎫122×12=38. 2.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( )A .13 B .25 C .56 D .34[解析] 事件A 在一次试验中发生的概率为p ,由题意得1-C 04p 0(1-p )4=6581,所以1-p =23,p =13, 3.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28 C .0.88×0.22D .0.82×0.28[解析] ∵X ~B (10,0.8),∴P (X =k )=C k 100.8k (1-0.8)10-k ,∴P (X =8)=C 8100.88·0.22,故选A . 4.若X 是一个随机变量,则E (X -E (X ))的值为( )A .无法求B .0C .E (X )D .2E (X )[解析] 只要认识到E (X )是一个常数,则可直接运用均值的性质求解.∵E (aX +b )=aE (X )+b ,而E (X )为常数,∴E (X -E (X ))=E (X )-E (X )=0. [答案] B5.某人从家乘车到单位,途中有3个交通岗.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为( )A .0.4B .1.2C .0.43D .0.6[解析] ∵途中遇红灯的次数X 服从二项分布,即X ~B (3,0.4),∴E (X )=3×0.4=1.2. [答案] B 6.已知随机变量ξ的概率分布如下表所示:且η=2ξ+3,则E (η)等于( )A.35 B.65 C.215 D.125解析:E (ξ)=0×715+1×715+2×115=35,E (η)=E (2ξ+3)=2E (ξ)+3=2×35+3=215.答案:C7.随机变量ξ的分布列为则ξ的数学期望是( )A .2B .2.1C .2.3D .随m 的变化而变化解析:∵0.2+0.5+m =1,∴m =0.3,∴E (ξ)=1×0.2+2×0.5+3×0.3=2.1.答案:B8.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5,14,则E (-ξ)的值为( )A.14 B .-14 C.54 D .-54 解析:∵E (ξ)=5×14=54,∴E (-ξ)=-E (ξ)=-54,故选D.9.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6解析:X 的取值为6,9,12,P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115.E (X )=6×715+9×715+12×115=7.8.答案:A10.设随机变量ξ的分布列如下表:且E (ξ)=1.6,则a -b 等于( D .-0.4解析:根据题意,⎩⎪⎨⎪⎧ 0.1+a +b +0.1=1,0×0.1+a +2×b +3×0.1=1.6,解得⎩⎪⎨⎪⎧a =0.3b =0.5.所以a -b =-0.2.答案C11.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m ) 解析:依题意ξ服从两点分布,∴D (ξ)=m (1-m ),故选D.12.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:A .甲B .乙C .甲、乙均可D .无法确定解析:E (ξ1)=E (ξ2)=1.1,D (ξ1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49,D (ξ2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,∴D (ξ1)<D (ξ2),即甲比乙得分稳定,选甲参加较好,故选A.13.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4 B .2和2.4 C .2和5.6D .6和5.6解析:由已知E (ξ)=10×0.6=6,D (ξ)=10×0.6×0.4=2.4.∵ξ+η=8,∴η=8-ξ.∴E (η)=-E (ξ)+8=2,D (ξ)=(-1)2D (ξ)=2.4.答案:B 14.随机变量X 的分布列如下:若E (X )=158,则D (X )等于( ) A.732 B.932 C.3364 D.5564解析:由⎩⎪⎨⎪⎧1×0.5+2x +3y =158,0.5+x +y =1,得⎩⎨⎧x =18,y =38.所以D (X )=⎝⎛⎭⎫1-1582×12+⎝⎛⎭⎫2-1582×18+⎝⎛⎭⎫3-1582×38=5564. 答案:D15.若随机变量ξ的分布列为P (ξ=m )=13,P (ξ=n )=a ,若E (ξ)=2,则D (ξ)的最小值等于( )A .0B .2C .4D .无法计算解析:由于分布列中,概率和为1,则a +13=1,a =23. ∵E (ξ)=2,∴m 3+2n3=2.∴m =6-2n .∴D (ξ)=13×(m -2)2+23×(n -2)2=23×(n -2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n =2时,D (ξ)取最小值0.答案:A16.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为( )A .0.9 B .0.8 C .1.2D .1.1[解析] X 的取值为0、1、2,P (X =0)=(1-0.4)(1-0.5)=0.3, P (X =1)=0.4×(1-0.5)+(1-0.4)×0.5=0.5, P (X =2)=0.4×0.5=0.2,∴E (X )=0×0.3+1×0.5+2×0.2=0.9. [答案] A17.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6[解析] X 的取值为6、9、12,P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115. E (X )=6×715+9×715+12×115=7.8. [答案] A二、填空题1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的期望为________.解析:X 的可能取值为3,2,1,0,P (X =3)=0.6;P (X =2)=0.4×0.6=0.24;P (X =1)=0.42×0.6=0.096;P (X =0)=0.43=0.064.所以E (X )=3×0.6+2×0.24+1×0.096+0×0.064=2.376.2.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________.解析:每一次摸得红球的概率为610=35,由X ~B ⎝⎛⎭⎫4,35,则E (X )=4×35=125. 3.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析:由题意设P (ξ=1)=p ,则ξ的分布列如下由E (ξ)=1,可得p =35,所以D (ξ)=12×15+02×35+12×15=25. 答案:254.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.解析:节日期间这种鲜花需求量的均值为E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5=3.4ξ-450, 所以E (η)=3.4E (ξ)-450=3.4×340-450=706(元). 三、解答题1.某师范大学志愿者支教团体有6名男同学,4名女同学.在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学来自互不相同的系的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 解:(Ⅰ)3A 设“选出的名同学来自互不相同的系”为事件,1203373731049()60C C C C P A C346310()(0,1,2,3)k k c c p xk k c (Ⅱ)随机变量X 的所有可能值为0,1,2,3.随机变量X 的分布列为数学期望113161236210305E X .2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34;向乙靶射击一次命中的概率为23,该射手每次射击的结果相互独立.假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试.(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X 的分布列及数学期望.[解析] (1)设“该射手通过测试”为事件A ,“向甲靶射击两次都命中”为事件B ,“向甲靶射击两次中只命中一次,则再向乙靶射击一次,命中”为事件C .事件B ,C 互斥,且A =B +C .所以该射手通过测试的概率P (A )=P (B )+P (C )=⎝⎛⎭⎫342+C 12·34·⎝⎛⎭⎫1-34·23=1316. (2)由题意知,X =0,1,2. P (X =0)=⎝⎛⎭⎫1-342=116;P (X =1)=C 12·34·⎝⎛⎭⎫1-34·⎝⎛⎭⎫1-23=18;P (X =2)=P (A )=1316. 所以该射手在这次测试中命中的次数X 的分布列为该射手在这次测试中命中的次数X 的数学期望为E (X )=0×116+1×18+2×1316=74.3.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X 表示3号歌手得到媒体甲、乙、丙的票数之和,求X 的分布列及数学期望.[分析] (1)设A 表示事件:“媒体甲选中3号歌手”,B 表示事件“媒体乙选中3号歌手”,C 表示事件“媒体丙选中3号歌手”,由等可能事件概率公式求出P (A ),P (B ),由此利用相互独立事件的概率乘法公式和对立事件的概率公式能求出媒体甲选中3号歌手且媒体乙未选中3号歌手的概率.(2)先由等可能事件概率计算公式求出P (C ),由已知得X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列及数学期望.[解析] (1)设A 表示事件“媒体甲选中3号歌手”,B 表示事件“媒体乙选中3号歌手”,C 表示事件“媒体丙选中3号歌手”, P (A )=C 14C 25=25,P (B )=C 24C 35=35,媒体甲选中3号且媒体乙未选中3号歌手的概率为P (A B )=P (A )(1-P (B ))=25×(1-35)=425.(2)P (C )=C 25C 36=12,由已知得X 的可能取值为0,1,2,3,P (X =0)=P (A B C )=(1-25)(1-35)(1-12)=325,P (X =1)=P (A B C )+P (A B C )+P (A B C )=25(1-35)(1-12)+(1-25)×35×(1-12)+(1-25)(1-35)×12=1950, P (X =2)=P (AB C )+P (A B C )+P (A BC )=25×35×(1-12)+25(1-35)×12+(1-25)×35×12=1950,P (X =3)=P (ABC )=25×35×12=325,∴X 的分布列为E (X )=0×325+1×1950+2×1950+3×325=32.114.某学校举行知识竞赛,第一轮选拔共设有A 、B 、C 、D 四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A 、B 、C 、D 分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A 、B 、C 、D 顺序作答,直至答题结束.假设甲同学对问题A 、B 、C 、D 回答正确的概率依次为34、12、13、14,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望E (ξ).[解析] 设A 、B 、C 、D 分别表示甲同学能正确回答第一、二、三、四个问题的事件,A -、B -、C -、D-分别为A 、B 、C 、D 的对立事件(例如A -表示甲同学第一题回答错误).由题设条件知,P (A )=34,P (B )=12,P (C )=13,P (D )=14,P (A -)=14,P (B -)=12,P (C -)=23,P (D -)=34. (1)记“甲同学能进入下一轮”为事件W ,则由题设条件知W =ABC +AB C -D +A B -CD +A -BCD +A-B C -D ,∵A 、B 、C 、D 各事件相互独立,∴P (W )=P (A )·P (B )·P (C )+P (A )·P (B )·P (C -)·P (D )+P (A )·P (B -)·P (C )·P (D )+P (A -)·P (B )·P (C )·P (D )+P (A -)·P (B )·P (C -)·P (D )=34×12×13+34×12×23×14+34×12×13×14+14×12×13×14+14×12×23×14=14. (2)由题意知,ξ的可能取值为2、3、4,则P (ξ=2)=P (A -B -)=P (A -)·P (B -)=14×12=18, P (ξ=3)=P (ABC +A B -C -)=P (A )P (B )P (C )+P (A )P (B -)P (C -)=34×12×13+34×12×23=38. P (ξ=4)=1-P (ξ=2)-P (ξ=3)=1-18-38=12, ∴ξ的分布列为∴E (ξ)=2×18+3×38+4×12=278.。
随机变量及其概率分布练习题(共90分)一.选择题(每题2分共20分)2.F(X)是随机变量X 的分布函数,则下列结论不正确的是( )A.≤0F(x )1≤B.F(x )=P{X=x }C.F(x )=P{X x ≤}D.F(∞+)=1, F(∞-)=03.设随机变量X 的分布律为如下表格:F(x)为其分布函数,则F(5)=( ) X0 2 4 6 P 0.1 0.2 0.3 0.4A.0.3B.0.5C.0.6D.0.44.下列函数可以作为随机变量分布函数的是( ) 4x 01≤≤x 2x 10<≤xA.F(x)=B.F(x)=1 其它2 其它-1 x<0 0 x<0C.F(x)= 2x 10<≤xD.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.54x 31<<-x 5.设X 的密度函数为f(x)= 则P{-2<x<2}=( ) 0, 其它A. 0B.83C. 43D. 856. 以下函数可作为随机变量X 的概率密度的是( )A.f(x)=.;11,0,其它<<-⎩⎨⎧x xB.f(x)=.;11,,02其它<<-⎩⎨⎧x xC.f(x)=.;11,0,21其它<<-⎪⎩⎪⎨⎧x D.f(x)=.;11,0,2其它<<-⎩⎨⎧x7.设随机变量X~N(1,4),5.0)0(,8413.0)1(=Φ=Φ,则事件{13X ≤≤}的概率为() A.0.1385 B.0.2413 C.0.2934 D.0.34138.已知随机变量X 的分布函数为( )F(x)= ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<313132102100x x x x ,则P }{1X ==A . 61B .21C .32D .19.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率=⎭⎬⎫⎩⎨⎧+<32b a X P ( )A .0B .31C .32D .110、设随机变量X 在区间[2,6]上服从均匀分布,则P{2<x<4}=( )A.P{5<x<7}B.p{1<x<3}C.P{3<x<5}D.P{4.5<x<6.5}二.填空题(每题2分共20分)2.设连续型随机变量X 的分布函数为如下F(x), 则X 的概率密度)(x f 为( ) 0 x<0F(x)= 2x, 5.00<≤x1 x ≥0.53.设随机变量X 的分布为P{X=k}=10k,k=0,1,2,3,4,则P{0.5<X ≤2}=( )4.设随机变量X ~N(2,9),已知标准正态分布函数值=Φ)1(0.8413,为使P{X<a}<0.8413,则常数a<( )5.某人掷五次骰子,则在五次中得到点为6的次数X 的分布率为P{X=i}=( ) i=0,1,2,3,4,56.设随机变量X 服从区间[]10,0上的均匀分布,则P (X>4)=_ _.7.在[]T ,0内通过某交通路口的汽车数X 服从泊松分布,且已知P{X=4}=3P{X=3},则在[]T ,0内至少有一辆汽车通过的概率为_ _.8.已知随机变量X 的分布函数为F(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<3x 13x 1321x 0210x 0 则P{2<X ≤4}=_ _.9.已知随机变量X 的概率密度为f(x)=ce -|x|,-∞<x<+∞,则c=_ _.10.设随机变量X 的概率分布为F (x )为其分布函数,则F (3)=_ _.三.计算题。
第二章随机变量一、填空1、已知离散型随机变量X的分布律为X21013111111P5651530Y X的分布律.22、设随机变量X服从泊松分布,且P(X1)4P(X2),则P(X3)______.二、选择1、设1(),2()X1,X2是随机变量,其分布函数分别为F x F x,为使F(x)aF(x)bF(x)是某一随机变量的分布函数,在下列给定的各组数值中应取()12322 2(A)a,b.(B)a,b.5533131 3(C)a,b.(D)a,b.22222、设随机变量X的分布函数为F(x),则Y35X的分布函数为F(y)()X Y (A)F(5y3).(B)5F(y)3.X Xy33y(C)()1F().F.(D)X X553、设随机变量X的概率密度为(x2)21f(x)e4,x2且Y aX b~N(0,1),则在下列各组数中应取()(A)a1/2,b 1.(B)a2/2,b 2.(C)a1/2,b1.(D)a2/2,b 2.4、设随机变量X~N(0,1),X的分布函数为(x),则P(|X|2)的值为()(A)2[1(2)].(B)2(2)1.(C)2(2).(D)12(2).5、设随机变量X ~N(1,4),X的分布函数为(x),则P{3X 5}的值为()。
(A )(5)(3)1.(B )2(2)1.(C )1(3)(5).(D)12(2).6、设随机变量X ~N(2,9),X的分布函数为(x),则P(|X 2|3)的值为()。
(A)12(1).(B )2(1)1.(C )1(1)(5).(D)2(3)1.三、计算题1、从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求X的分布律、分布函数。
2、设随机变量X的概率密度为1,02,ax xf(x)其它0,.求(1)常数a ;(2)X的分布函数F(x);(3)P(1X 3).3、已知随机变量X概率密度函数f(x)a,0x0,其他3(1)试求a的值,指出X服从什么分布;(2)若Y X2,试求Y的概率密度函数()f x 。
第二章随机变量及其分布练习题1.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则两人都击中目标的概率是〔 〕A.1.4 B.0.9C.0.6 D.0.48 2.设随机变量1~62X B ⎛⎫ ⎪⎝⎭,,则(3)P X =等于〔 〕 A.516 B.316 C.58 D.7163.设随机变量X 的概率分布列为X1 2 3 P 16 13 12则E (X +2)的值为 ( ).A.113 B .9 C.133 D.734.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为〔 〕A.abB.a b + C.1ab - D.1a b --5.某一般高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能到达合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为( )A .0.015B .0.005 6.设随机变量~()X B n p ,,则22()()DX EX 等于〔 〕 A.2p B.2(1)p - C.np D.2(1)p p -7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是().A.35 B.25 C.110 D.598.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数〞,事件B=“取到的2个数均为偶数〞,则P(B|A)=().A.18 B.14 C.25 D.129.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于().A.12p B.1-p C.1-2p D.12-p10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.假设μ=4,σ=1,则P(5<X<6)=( ) A.0.135 9 B.0.135 8C.0.271 8 D.0.271 611.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜〞,即以先赢2局者为胜.依据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是().A.0.216 B.0.36 C.0.432 D.0.648 12.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:处字迹模糊,但能断定这两个“?〞处的数值相同.据此,小牛给出了正确答案E(ξ)=________.13.如图,EFGH是以O为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内〞,B表示事件“豆子落在扇形OHE(阴影局部)内〞,则(1)P(A)=________;(2)P(B|A)=________.14.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X的均值为个,方差为.15.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠,假设该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为1 3,用X表示这5位乘客在第20层下电梯的人数,则P(X=4)=________.16.在口袋中有不同编号的3个白球和2个黑球.如果不放回地依次取两个球,求在第1次取到白球的条件下,第2次也取到白球的概率.17.某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到奖券一张,每张奖券的中奖概率为12,假设中奖,商场返回忆客现金100元.某顾客现购置价格为2 300元的台式电脑一台,得到奖券4张.(1)设该顾客中奖的奖券张数为X,求X的分布列;(2)设该顾客购置台式电脑的实际支出为Y元,用X表示Y,并求Y的数学期望.18.某公司“咨询热线〞共有8路外线,经长期统计发觉,在8点到10点这段时间内,外线同时打入情况如下表所示:同时0 1 2 3 4 5 6 7 8打入个数x概率p 0.13 0.35 0.27 0.14 0.08 0.02 0.01 0 0〔1〕假设这段时间内,公司只安排了2位接线员〔一个接线员一次只能接一个〕①求至少一路不能一次接通的概率;②在一周五个工作日中,如果有三个工作日的这段时间〔8点至10点〕内至少一路不能一次接通,那么公司的形象将受到损害,现用至少一路不能一次接通的概率表示公司形象的“损害度〞,求上述情况下公司形象的“损害度〞.〔2〕求一周五个工作日的这段时间〔8点至10点〕内,同时打入数X的均值.19.某仪表厂从供给商处购置元器件20件,双方协商的验货规则是:从中任取3件进行质量检测,假设3件中无不合格品,则这批元器件被接受,否则就要重新对这批元器件逐个检查.(1)假设该批元器件的不合格率为10%,求需对这批元器件逐个检查的概率;(2)假设该批元器件的不合格率为20%,求3件中不合格元器件个数的分布列与期望.20.某商店试销某种商品20天,获得如下数据:日销售量(件)012 3频数159 5该商品3件,当天营业结束后检查存货.假设发觉存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数.求X的分布列和数学期望.21.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.。
第二章 学业质量标准检测时间120分钟,满分150分.一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是( C )A .某辆汽车一年中发生事故的次数是一个离散型随机变量B .正态分布随机变量等于一个特定实数的概率为0C .公式E (X )=np 可以用来计算离散型随机变量的均值D .从一副扑克牌中随机抽取5X ,其中梅花的X 数服从超几何分布[解析] 公式E (X )=np 并不适用于所有的离散型随机变量的均值的计算,适用于二项分布的均值的计算.故选C .2.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X ,则下列概率中等于C 18C 15+C 14C 16C 112C 111的是( C )A .P (X =0)B .P (X ≤2)C .P (X =1)D .P (X =2)[解析] 由已知易知P (X =1)=C 18C 15+C 14C 16C 112C 111.3.已知10件产品中有3件是次品,任取2件,若X 表示取到次品的件数,则E (X )等于( A )A .35 B .815 C .1415D .1[解析] 由题意知,随机变量X 的分布列为∴E (X )=0×715+1×715+2×15=15=5.4.(2018·全国卷Ⅱ理,8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( C )A .112B .114C .115 D .118[解析] 不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为345=115.故选C .5.甲、乙、丙三人参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是( C )A .0.16B .0.24C .0.96D .0.04[解析] 三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.6.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( C )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的[解析]X =k 表示取出的螺丝钉恰有k 只为好的,则P (X =k )=C k 7C 4-k3C 410(k =1、2、3、4).∴P (X =1)=130,P (X =2)=310, P (X =3)=12, P (X =4)=16,∴选C .7.(2020·全国卷Ⅲ)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( C )A .0.01B .0.1C .1D .10[解析] 因为数据ax i +b i (i =1,2,…,n )的方差是数据x i (i =1,2,…,n )的方差的a 2倍,所以所求数据方差为102×0.01=1.故选C .8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( B )A .0.7B .0.6C .0.4D .0.3[解析] 由题意可知,10位成员中使用移动支付的人数X 服从二项分布,即X ~B (10,p ),所以DX =10p (1-p )=2.4,所以p =0.4或0.6.又因为P (X =4)<P (X =6),所以C 410p 4·(1-p )6<C 610p 6(1-p )4,所以p >0.5,所以p =0.6.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.指出下列随机变量是离散型随机变量的是( AB ) A .小明回答20道选择题,答对的题数 B .某超市5月份每天的销售额C .某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差XD .某某某某市长江水位监测站所测水位在(0,29]这一X 围内变化,该水位站所测水位X [解析] A 项,小明回答的题数X 的取值可以一一列出,故X 为离散型随机变量;B 项,某超市5月份每天销售额可以一一列出,故为离散型随机变量;C 项,实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量,D 项,不是离散型随机变量,水位在(0,29]这一X 围内变化,不能按次序一一列举.故选AB .10.把一条正态曲线C 1沿着横轴方向向右移动2个单位,得到一条新的曲线C 2,下列说法中正确的是( ABC )A .曲线C 2仍然是正态曲线B .曲线C 1和曲线C 2的最高点的纵坐标相等C .以曲线C 2为概率密度曲线的总体的期望比以曲线C 1为概率密度曲线的总体的期望大2D .以曲线C 2为概率密度曲线的总体的方差比以曲线C 1为概率密度曲线的总体的方差大2 [解析] 正态曲线沿着横轴方向水平移动只改变对称轴位置,曲线的形状没有改变,所得的曲线依然是正态曲线.在正态曲线沿着横轴方向水平移动的过程中,σ始终保持不变,所以曲线的最高点的纵坐标(即正态密⎭⎪⎫度函数的最大值12πσ不变,方差σ2也没有变化.设曲线C 1的对称轴为x =μ,那么曲线C 2的对称轴为x =μ+2,说明期望从μ变到了μ+2,增大了2.11.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( ACD )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12[解析] 设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2, 则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,2个球都是红球为A 1A 2,其概率为16,A 正确;在B 中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,2个球中至少有1个红球的概率为1-P (A )P (B )=1-23×12=23,C 正确;在D中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .12.甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以A 1,A 2表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B 表示从乙罐中取出的球是红球的事件,下列命题正确的是( AD )A .P (B )=2330B .事件B 与事件A 1相互独立C .事件B 与A 2事件相互独立D .A 1,A 2互斥[解析] 由题意知P (A 1)=35,P (A 2)=25,P (B )=P (B |A 1)+P (B |A 2)=35×56+25×46==2330,A 正确;又P (A 1B )=12,因此P (A 1B )≠P (A 1)P (B ),B 错误;同理,C 错误;A 1,A 2不可能同时发生,故彼此互斥,故D 正确,故选AD .三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知随机变量ξ的分布列如下表,则a =__0.2__,E (ξ)=__1.8__.[解析] ;E (ξ)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.14.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则P (B |A )=__23__.[解析] 由条件知,P (A )=34,P (AB )=C 23C 24=12,∴P (B |A )=P AB P A =23.15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1、A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是__②④__(写出所有正确结论的序号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.[解析] 从甲罐中取出一球放入乙罐,则A 1、A 2、A 3中任意两个事件不可能同时发生,即A 1、A 2、A 3两两互斥,故④正确,易知P (A 1)=12,P (A 2)=15,P (A 3)=310,又P (B |A 1)=511,P (B |A 2)=411,P (B |A 3)=411,故②对③错;∴P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)·P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3)=12×511+15×411+310×411=922,故①⑤错误.综上知,正确结论的序号为②④.16.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续取数3次,假设每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为__625__.(用数字作答)[解析] 由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,3,…).{a n }的前10项分别为8,6,4,2,0,-2,-4,-6,-8,-10.由题意知三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23(25)2(12)1=625.四、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球; 事件B :从1号箱中取出的是红球.P (B )=42+4=23. P (B )=1-P (B )=13.(1)P (A |B )=3+18+1=49.(2)∵P (A |B )=38+1=13,∴P (A )=P (A ∩B )+P (A ∩B ) =P (A |B )P (B )+P (A |B )P (B ) =49×23+13×13=1127. 18.(本题满分12分)(2019·全国Ⅱ卷理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.[解析] (1)X =2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.19.(本题满分12分)甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X ,Y ,X 和Y 的分布列如下表.试对这两名工人的技术水平进行比较.[解析]E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.工人乙生产出次品数Y 的数学期望和方差分别为E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人生产出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.20.(本题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ). [解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4, 则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 的数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2. 21.(本题满分12分)某单位为了参加上级组织的普及消防知识竞赛,需要从两名选手中选出一人参加.为此,设计了一个挑选方案:选手从6道备选题中一次性随机抽取3题.通过考查得知:6道备选题中选手甲有4道题能够答对,2道题答错;选手乙答对每题的概率都是23,且各题答对与否互不影响.设选手甲、选手乙答对的题数分别为X ,Y . (1)写出X 的概率分布列(不要求计算过程),并求出E (X ),E (Y );(2)求D (X ),D (Y ).请你根据得到的数据,建议该单位派哪个选手参加竞赛. [解析] (1)X 的分布列为所以E (X )=1×15+2×35+3×5=2.由题意得,Y ~B (3,23),E (Y )=3×23=2.(2)由(1)得E (X )=E (Y ).D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25.∵Y ~B (3,23),∴D (Y )=3×23×13=23.∴D (X )<D (Y ).因此,建议该单位派甲参加竞赛.22.(本题满分12分)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.[解析] (1)令A 表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有 P (A )=C 12C 13C 15C 310=14.(2)X 的可能取值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115综上知,X 的分布列为:故E (X )=0×715+1×15+2×15=5.。
选修II 第12章 第1讲 一、选择题(8×5=40分) 1.(2010·南宁调研)将一颗骰子均匀掷两次,随机变量为( ) A.第一次出现的点数 B.第二次出现的点数 C.两次出现的点数之和 D.两次出现相同点的种数 2.(2009·福州毕业班综合测试)下面随机变量ξ的分布列不属于二项分布的是( ) A.某事业单位有500名在职人员,人事部门每年要对在职人员进行年度考核,2004年年度考核中每人考核优秀的概率是0.15. 设该单位在这一年里,各人年度考核优秀是相互独立的,考核优秀的人数为ξ B.位于某汽车站附近的一个加油站,在每次汽车出站后,该汽车到这个加油站加油的概率是0.7,节日期间每天有50辆汽车开出该站,假设一天里汽车去该加油站加油是相互独立的,其加油的汽车数为ξ C.某射手射击击中目标的概率为p,设每次射击是相互独立的,从开始射击到击中目标所需要的射击次数为ξ D.据中央电视台新闻联播报道,下周内在某网站下载一次数据,电脑被感染某种病毒,网站下载数据n次中被感染这种病毒的次数为ξ 3.(2010·兰州一模)一个学生通过一种英语能力测试的概率是12,他连续测试两次,那么其中恰有一次通过的概率是( ) A.14 B.13 C.12 D.34 4.下列各表中可以作为随机变量X的分布列的是( ) A. X -1 0 1 P 0.5 0.3 0.4 B. X 1 2 3 P 0.5 0.8 -0.3 C. X 1 2 3 P 0.2 0.3 0.4 D. X -1 0 1 P 0 0.4 0.6 5.设随机变量ξ的分布列为P(ξ=K)=K15,K=1,2,3,4,5,则P(129.(2010·昆明五校联考)如图所示,A、B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P(ξ≥8)=____________.
10.设随机变量ξ的分布列为P(ξ=i)=i10,(i=1,2,3,4),则P(12=____________. 11.(2010·河北保定模拟)连续向一目标射击,直至击中为止,已
知一次射击命中目标的概率为34,则射击次数为3的概率为____________. 12.(2009·东北三校)口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{an},an=
-1, 第n次摸取红球,1, 第n次摸取白球.如果Sn为数列{an}的前n项和,
那么S7=3的概率为__________. 三、解答题(4×10=40分) 13.将含有红色、黑色等不同颜色的四个小球随机放入A、B、C三个不同的盒子中,且每个盒子中至少有一个小球. (1)求红色、黑色两个小球同时放入A盒中的概率; (2)求红色、黑色两个小球放入同一个盒子中的概率; (3)设ξ为放入A盒中的小球个数,求ξ的分布列. 14.有A、B、C、D四个城市,它们都有一个著名的旅游点依次记为a、b、c、d,把A、B、C、D和a、b、c、d分别写成左、右两列,现有一名旅游爱好者随机用4条线段把左右全部连接起来,构成“一一对应”,已知连对一根线得2分,连错得0分.求该爱好者得分的分布列. 15.(2010·福建龙岩一模)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有 60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (1)任选1名下岗人员,求该人参加过培训的概率; (2)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列. 16.甲、乙两人投篮,投中的概率分别为0.1、0.5.今两人各投2次.(1)求甲比乙投中次数多的概率; (2)设ξ为甲投中次数与乙投中次数的差,求ξ的分布列.
选修II 第12章 第2讲 一、选择题(8×5=40分) 1.(2010·厦门模拟)设一随机试验的结果只有A和A,且P(A)
=p,令随机变量X= 1(A出现)0(A不出现),则X的方差DX等于( ) A.p B.2p(1-p) C.-p(1-p) D.p(1-p) 2.(2010·绵阳适应性考试)若X~B(n,p),且EX=6,DX=3,则P(X=1)的值为( ) A.3·2-2 B.2-4 C.3·2-10 D.2-8 3.(2010·秦皇岛模拟)设随机变量的分布列如gh 表所示且Eξ=1.6,则a-b等于( ) ξ 0 1 2 3 P 0.1 a b 0.1 A.0.2 B.0.1 C.-0.2 D.-0.4 4.(2010·浙江临海模拟)已知随机变量ξ+η=8,若ξ~B(10,0.6),则Eη,Dη分别为( ) A.6和2.4 B.2和2.4 C.2和5.6 D.6和5.6
5.若ξ是离散型随机变量,P(ξ=x1)=23,P(ξ=x2)=13,且x1
已知Eξ=43,Dξ=29,则x1+x2的值为( ) A.53 B.73 C.3 D.113 6.进行某种试验,设试验成功的概率为34,用ξ表示试验首次成功所需试验的次数,则Dξ等于( ) A.4 B.43 C.49 D.13 7.在2008年的某市中学生运动会上,小明同学参加了乒乓球和网球两个项目的比赛,获得乒乓球冠军的概率是34,获得网球冠
军的概率是12,则小明获得冠军的个数ξ的期望是 ( ) A.54 B.1 C.2 D.58 8.(2009·成都市高三测试)已知抛物线y=ax2+bx+c(a≠0)的对称轴在y轴的左侧,其中a、b、c∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ=“|a-b|的取值”,则ξ的数学期望Eξ为( )
A.89 B.35 C.25 D.13 二、填空题(4×5=20分) 9.(2010·上海,6)随机变量ξ的概率分布列由下表给出: x 7 8 9 10 P(ξ=x) 0.3 0.35 0.2 0.15 设随机变量ξ的均值是____________. 10.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,
-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离,则随机变量ξ的数学期望Eξ=________. 11.(2010·江苏南通高三上学期期中,6)某射击运动员在四次射击中分别打出了10,x,10,8环的成绩,已知这组数据的平均数为9,则这组数据的方差是____________. 12.(2009·苏州十校3月)设等差数列{an}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d=________. 三、解答题(4×10=40分) 13.(2010·江南,18)某迷宫有三个通道,进入迷官的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门前,系统会随机打开一个你未到过...的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间. (1)求ξ的分布列; (2)求ξ的数学期望. 14.(2010·全国Ⅱ,20)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9,电流能否通过各元件相互独立,已知T1,T2,T3中至少有一个能通过电流的概率为0.999. (1)求p; (2)求电流能在M与N之间通过的概率. (3)ξ表示T1,T2,T3,T4中能通过电流的元件个数,求ξ的期望. 15.(2010·山东理,20)某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下: ①每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分; ②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局; ③每位参加者按问题A、B、C、D顺序作答,直至答题结束. 假设甲同学对问题A、B、C、D回答正确的概率依次为34,12,13,14,且各题回答正确与否相互之间没有影响. (1)求甲同学能进入下一轮的概率; (2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望Eξ. 16.(2010·浙江理,19)如图,一个小球从M处投入,通过管道自上而下落到A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖. (1)已知获得1,2,3等奖的折扣率分别为50%,70%,90%.记随机变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Eξ; (2)若有3人次(投入1球为1人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).
选修II 第12章 第3讲 一、选择题(8×5=40分) 1.要完成下列两项调查:(1)从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;(2)从某中学高三年级的12名体育特长生中选出3人调查学习负担情况,应该采用的抽样方法是( ) A.(1)用随机抽样法,(2)用系统抽样法 B.(1)用系统抽样法,(2)用分层抽样法 C.(1)用分层抽样法,(2)用随机抽样法 D.(1)、(2)都用分层抽样法 2.(2010·江西八校四月联考)为了了解某次考试中1000名学生的成绩,运用简单随机抽样的方法从中抽出一个容量为100的样本,则该次考试中的学生甲被第100次抽到的概率及在整个过程中被抽到的概率分别是( )
A.11000,1100 B.110,110 C.11000,110 D.11000,11000
3.(2010·广东深圳)已知三个正态分布密度函数φi(x)=12πσie-