谁的包裹多
- 格式:ppt
- 大小:484.00 KB
- 文档页数:18
菜鸟驿站一个月能挣多少钱
随着互联网的快速发展,网购越来越常见,快递包裹越来越多,而许多上班族白天不在家,因此便有了菜鸟驿站这个代收包裹的快递站,作为一个快递放置处,自然会有相应的收益,那么可能会有人好奇,菜鸟驿站月收入多少钱呢,菜鸟驿站一个月代收、发快递的收益大概在7000元左右,加上副业收益可以达到1万以上。
具体收益在哪里让我们一起看看吧。
菜鸟驿站的收益
菜鸟驿站月收入多少钱呢,作为一个快递放置处,其主要收入在于以下三点:
1、包裹代收收益:菜鸟驿站的代收收益是按件计算的,每件的收益价格大概为0.5元一件,假设一个驿站每天的代收件有200件,一个月有6000件,那么一个月的收益大概就在3000左右;
2、包裹代发收益:菜鸟驿站代发收益也是比较客观的,通常也是按件计费,每件的收益价格大概在3-5元,假设每件的收益为4元,如果一个月有1000件,那么一个月的收益大概就在4000左右;
3、门店副业收益:菜鸟驿站每天的人流量比较大,因此可以在站点售卖各种小吃,零食,饮料之类的产品,同时可以接广告,生鲜团购,提供便民服务,打印复印等,只要有人流量,副业将会是一笔很大的收入。
1. 谁的包裹多一. 填空题1. 若x-y=4,则13-x+y=_____________.2. 下列几个方程:3x-2y =1, 3x+y 2=1, x 2+y 3, 7(x-y)=3(x+y), 2x 2+5=-3x, y x 21=3,其中二元一次方程有:___________________.3. 在二元一次方程3x-2y=1中,当x 分别等于-2,0,1时,对应的y 值依次是__________.4. 写出二元一次方程3x-5y=1的一个整数解(即:x,y 均取正整数的解)____________.5. 已知x=2,y=-3是二元一次方程kx-2y=6的一个解,则k=____________.6. 在代数式2m-3n-k 中,m=-3,n=-1,它的值为2,则当m=-1,n=-3时,代数式的值为_______.7.① x= 2 ② x=3 ③ x=4 ④ x=5 y=23 y=2 y=1 y=-2中,其中是方程x+y=5的解有_______;是方程x-2y=-1的解有_________;是方程组x+y=5的解有______________.x-2y=-1二. 选择题8. 下列不是2x+y=2的解的是 ( )A. x=-2B. x=2C. x=1.5D. x=45y=6 y=0 y=-1 y=-219. 二元一次方程2x+3y=8的正整数解有 ( )个A. 1B. 2C. 3D. 无穷多10.方程组 x+2y-5=-0的解是 ( )2x-y+5=0A. x=-5B. x=-1C. x=0D. x=3y=0 y=3 y=0 y=111. 下面四个方程中是二元一次方程的是 ( )A. 5(x+1)=x-2B. xy+1=2C. x=yD. 2x-y 1=212. 某年几学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方程组中符合题意的有 ( ) A. x+y=246 B. x+y=246 2y=x-2 2x=y+2 C. D. x+y=216 x+y=246y=2x+2 2y=x+2三. 解答题13. 根据题意列方程组:(1) 新建广场比旧广场面积增加120%,若新建广场与旧广场面积之和为3万平方米,求新广场面积.(2) 船在顺水中的速度是船在静水中的速度与水流速度之和,而船在逆水中的速度是船在静水中速度与水流之差.已知一条船的顺水速度为36千米/小时,逆水速度为28千米/小时,求船在静水中的速度和水流速度.14. x=21是方程组 ax-3y=5的解,求a 和b 的值.y=-1 2x+by=1。
第七章二元一次方程组1.谁的包裹多一、学生起点分析在学习本节之前,学生已经掌握了有理数、整式的运算、一元一次方程等知识,具备了进一步学习二元一次方程及二元一次方程组的基本能力.二、教学任务分析《谁的包裹多》是义务教育课程标准北师大版实验教科书八年级(上)第七章《二元一次方程组》的第一节,本节内容安排1个课时完成.具体内容是:让学生通过对实际问题的分析,体会方程是刻画现实世界的一个有效数学模型;同时了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.二元一次方程是继一元一次方程后,又一个体现符号表示思想的内容,它是刻画现实世界的一个有效数学模型,在数学上有着广泛的应用,同时也是学习物理、化学等其他学科知识的一个重要基础.它既是一元一次方程知识的延伸和拓广,又是今后学习一般线性方程组及平面解析几何等知识的基础,具有承上启下的作用.基于学生对一元一次方程理解的基础上,教科书从实际问题出发,通过引导学生经历自主探索和合作交流的活动,学习二元一次方程、二元一次方程组及其解等基本概念.在学习过程中,要突出强调建模思想,展现方程是刻画现实世界的有效数学模型.三、教学目标分析1.教学目标了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.2.教学重点二元一次方程组的含义。
3.教学难点判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识.四、教学过程设计本节课设计了四个教学环节:第一环节:情境引入;第二环节:新课讲解,练习提高;第三环节:课堂小结;第四环节:布置作业.第一环节:情境引入内容:(一)情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言)。
谁的包裹多教案范文一、教学目标1. 知识目标:(1)让学生掌握数数和比较的基本方法。
(2)培养学生观察、思考和动手操作的能力。
2. 能力目标:(1)培养学生独立完成数数和比较任务的能力。
(2)培养学生与人合作、交流的能力。
3. 情感目标:(1)培养学生对数学的兴趣和好奇心。
(2)培养学生积极参与课堂活动的积极性。
二、教学内容1. 数数和比较包裹的数量。
2. 理解包裹数量与图片之间的关系。
3. 培养学生的观察和思考能力。
三、教学重点与难点1. 教学重点:(1)让学生掌握数数和比较的基本方法。
(2)培养学生观察、思考和动手操作的能力。
2. 教学难点:(1)培养学生观察和思考能力,找出包裹数量与图片之间的关系。
(2)培养学生运用数学知识解决实际问题的能力。
1. 采用直观演示法,让学生观察图片,找出包裹的数量。
2. 采用分组讨论法,让学生合作比较不同图片中包裹的数量。
3. 采用问答法,引导学生思考包裹数量与图片之间的关系。
五、教学准备1. 教具准备:准备不同数量的包裹图片,如3个、4个、5个等。
2. 学具准备:每个学生准备一张白纸、一支笔,用于记录和比较。
六、教学过程1. 导入新课:以一个有趣的包裹故事引起学生的兴趣,引出今天的主题——数的比较。
2. 教学活动一:数数练习(1)教师展示不同数量的包裹图片,让学生数出包裹的数量。
(2)学生数数后,教师进行核对,并给予表扬和鼓励。
3. 教学活动二:比较练习(1)教师展示两张包裹图片,让学生比较哪张图片的包裹数量多。
(2)学生比较后,教师进行核对,并给予表扬和鼓励。
4. 教学活动三:小组讨论(1)学生分组,每组选择一张包裹图片,数出包裹的数量。
(2)每组派代表分享结果,其他组进行比较,找出包裹数量最多的组。
七、作业布置1. 请学生回家后,数一数家里的物品,如玩具、书籍等,并比较数量的多少。
2. 请学生家长协助,拍照记录孩子的数数和比较过程,下次上课分享。
教师在课后对自己的教学进行反思,分析教学效果,找出需要改进的地方,为下一节课做好准备。
精选名人先进事迹素材二十多年前,他还是个一文不名的穷小子,今天,他却管理着一家拥有二十余万名员工的庞大快递王国,这个创业大军中的杰出代表,就是顺丰快递总裁王卫。
在1993年的时候,王卫还是一个年轻的小伙子,他时常骑着一辆摩托车穿行在广东深圳的大街小巷,后座上绑着鼓鼓囊囊的包裹,那是王卫受朋友所托,从香港将包裹运到深圳指定的人手中的,同时也将一些信件捎到香港去。
久而久之,托王卫送包裹的朋友越来越多,他们又不好意思每次免费,于是常常塞些红包给王卫。
原本只是出于对朋友的信义之举,王卫却从中看到了商机。
他想:既然许多人都有这样的需求,能不能成立一家小公司,专门做运送业务呢当王卫将这个想法跟父亲交流时,得到了父亲的肯定和支持。
于是,王卫租了一间仅有三十多平方米的小店面,与几个朋友合作,成立了一家专送快件的小公司。
公司成立之初,王卫和伙伴们一样,肩背大旅行包,手里拖着行李箱,一趟趟来往于深港两地。
由于他们起步早,又采取了低价策略,在与同行的竞争中抢占了先机,公司迅速壮大,王卫也因此赚到了人生中的第一桶金。
然而,商场如战场。
就在公司的发展蒸蒸日上之际,危机也接踵而来。
由于当时国内快递市场门槛较低,导致快递业异军突起,一时之间大量快递公司纷纷出现。
此时,想要在激烈的竞争中生存下来,就要迅速在国内布点,占领市场,因此需要大量资金。
王卫抱着“破釜沉舟”的决心,一次次将公司的商铺或物业抵押给银行,向银行贷款。
2005年,王卫再次以公司作抵押,向银行贷款数百万元,用于开拓国内业务。
一次次“豪赌”终于换来了累累硕果,这一年,国内所有的城市基本上都有了顺丰的快递网点。
站稳了脚跟的王卫,此时终于舒了一口气。
然而,他并没有停下前进的步伐,随着公司业务的成倍增长,一个大胆的念头在王卫脑海中诞生了。
在一次公司会议上,王卫提出用飞机送快递的设想。
此语一出,众人哗然,因为在当时的国内快递市场,还没有一家快递公司敢用飞机作运输工具。
于是王卫用一番前瞻性的研究和缜密的分析,探讨了这个设想的可行性,最终消除了所有人的顾虑。
5.1认识二元一次方程组(教案〕教学目的知识与技能:通过实例理解二元一次方程、二元一次方程组及其解等概念,并会判断一组数是不是某个二元一次方程组的解.过程与方法:开展学生的归纳、观察和概括的才能,同时培养学生运用数学知识解决实际问题的才能.情感态度与价值观:激发学生的求知欲望,培养他们勇于探究的精神.教学重难点【重点】对二元一次方程、二元一次方程组及其解等有关概念的理解,并会判断二元一次方程组的解.【难点】对二元一次方程及二元一次方程组的解的个数的判断.教学准备【老师准备】预设学生学习过程中可能出现的问题.【学生准备】复习一元一次方程的有关概念.教学过程一、导入新课导入一:每块饼干的质量是x克,每颗糖果的质量是y克,小明拿了一个等臂天平,在左边秤盘放两块饼干,右边秤盘放三颗糖果,结果天平两臂平衡,当在左边秤盘里又放了三块饼干,右边秤盘里又放了四颗糖果时,天平并没有平衡,只好在右边秤盘里又加了1克的砝码才使得天平平衡.上面的例子中,可以得到两个方程是2x=3y和5x=7y+1,怎样对待这两个方程呢?它们的解有什么实际意义?导入二:我们已经学习了一元一次方程,你能举一个一元一次方程的例子吗?生:(轻松答复)3x+4=5x,0.5x=3.师:很好!那么什么是一元一次方程?生:含有一个未知数,并且所含未知数的次数为1的整式方程叫一元一次方程.师:非常准确!从这节课开场我们将进一步来学习有关方程的问题.我们都知道牛和马是人类最忠诚的帮手,在那个非机械化的年代,是它们为我们驮运货物,帮助农民耕地……活干多了,牢骚也来了.请同学们看下面的故事,同时请两个同学来为它们配音.(多媒体出示) (显示对话,老牛与小马,学生配音)老牛喘着气吃力地说:“累死我了.〞小马说:“你还累,这么大的个,才比我多驮了2个.〞老牛气喘吁吁地说:“哼,我从你背上拿来1个,我的包裹数就是你的2倍!〞小马不相信地说:“真的?!〞生:(笑)……师:两位同学表演得很不错,请同学们想一想它们在争论什么呢?生:它们在争论谁的包裹多.师:对,那么你能用数学知识帮助它们解决这个问题吗?让每个学习小组讨论(讨论2分钟,然后发言).老师注意引导学生设两个未知数,从而得出两个二元一次方程.师:题目中等量关系有几个?你是如何得到的?生:2个等量关系.根据老牛的包裹数比小马多2个得到:老牛驮的包裹数-小马驮的包裹数=2个.根据老牛从小马背上拿来1个包裹,这时老牛驮的包裹数是小马驮的2倍得到:老牛驮的包裹数+1=(小马驮的包裹数-1)×2.师:你能设出适当的未知数列出相应的方程吗?请大家写下来.生:(板演)设老牛驮了x个包裹,小马驮了y个包裹.根据题意得x-y=2,x+1=2(y-1).[设计意图]以动漫的形式引出方程问题,调动学生的积极性,让学生再次经历建模的同时,以相对轻松的状态进入后面的学习.通过自主探究来认识体会二元一次方程建模思想的过程,也是学生完成从一元到多元的认识转化过程.二、新知构建[过渡语]我们以前学过的方程都是含有一个未知数的,假如方程中含有两个未知数,这样的方程是怎样的呢?(1)、认识二元一次方程思路一:出示教材情境图,师生交流.①怎样列一元一次方程解决这个问题呢?生1:设老牛驮了x个包裹,那么有2(x-3)=x+1.生2:设小马驮了x个包裹,那么有2(x-1)=x+3.②假如设两个未知数,怎样解决这个问题呢?设老牛驮了x个包裹,小马驮了y个包裹.老牛驮的包裹数比小马驮的多了2个,由此你能得到怎样的方程?生:x-2=y.假设老牛从小马背上拿来1个包裹,这时老牛的包裹数是小马的2倍,由此你又能得到怎样的方程?生:x+1=2(y-1).③怎样列出教材第104页引例中的方程?生:x+y=8,5x+3y=34.小结:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.思路二:大家观察下面的5个方程,是我们学过的一元一次方程吗?360x+720y=17280;x-y=2;x+1=2(y-1);x+y=8;5x+8y=34.生:不是.师:与一元一次方程的特征相比拟我们可以给它们取一个什么名称呢?生:二元一次方程!师:很好,请同学们找出二元一次方程有什么特征?生1:含有两个未知数.生2:未知数的次数是1.生3:方程两边都是整式.(多媒体同一页显示,便于学生逐条比拟)师:对于方程xy+8=5x,大家认为是二元一次方程吗?(学生认识不统一,有说是,有说不是)xy(多媒体用红色圈出)这个项的次数是几?(学生有的说是2,有的说是1.此时老师加以纠正,单项式的次数是单项式中所有字母的指数和,因此项xy次数为2,原方程不是二元一次方程)师:我们应将“未知数的次数是1〞更正为什么?生:含未知数的项的次数是1.师:很好,如今大家知道什么叫二元一次方程了吗?生:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.(多媒体显示二元一次方程的概念,并让学生加以稳固)[设计意图]为了让学生尽快理解新知识,教学通过类比的方法,引导学生与一元一次方程相比拟,逐步理解二元一次方程的概念,同时培养学生归纳概括才能.师:两人一组,分别写出几个方程,让另一位同学判断是不是二元一次方程.(学生迅速出题,然后互相判断,很多小组出现争执,场面非常活泼,老师巡视,对出现的争执及时给予评判)[知识拓展]1.二元一次方程还可以定义为:在方程中有两个未知数,未知数与未知数之间没有乘法、除法运算,并且未知数的次数都是1,像这样的方程叫做二元一次方程.2.本节课常出现的错误是对二元一次方程的概念理解不准确,其表现形式有两种:一种是把“含未知数的项的次数都是1〞理解为“每个未知数的次数都是1〞,误认为xy+2=0也是二元一次方程,另一种是遇到含有字母系数的方程时,容易忽略“未知数的系数不等于零〞这个隐含条件,如二元一次方程ax+y=6中a≠0这个条件.3.二元一次方程满足的条件{含有两个未知数,含未知数的项的次数为1,整式方程.(2)、认识二元一次方程组问题1:在前面的实际问题中,这两个方程中x的含义一样吗?分别是什么含义?y呢?问题2:假设x,y同时满足这两个方程,用什么方式把这两个方程联立起来,即写成什么形式呢?问题3:假如两个方程中一样字母所代表的含义一样,把它们联立起来,就组成了二元一次方程组,你能归纳出二元一次方程组的概念吗?问题4:根据二元一次方程组的概念答复以下问题:①二元一次方程组中每个方程都必须是二元一次方程吗?②一次方程指的是“含未知数的项的次数是1〞还是“各个未知数的次数是1〞?③二元一次方程组中一定只能含有两个一次方程吗?[处理方式] 学生独立考虑后小组讨论交流,小组代表发言.老师适时点拨,逐步总结出二元一次方程组的定义(含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组).强调定义中的两个未知数是指两个方程共含两个未知数,一次方程可以是一元一次方程,也可以是二元一次方程.点拨性语言例如:成为二元一次方程组应满足几个条件?根据上面的定义分别判断这样的两个方程组:(1){a -b =−1,5a +4b =3;(2){m +1=5,-2+n =7是不是二元一次方程组?让学生对二元一次方程组的定义进展再认识.[设计意图] 将方程返回实际问题中理解研究,表达数学与生活实际的联络.通过一个个问题的设计,将二元一次方程组的概念进展解剖,帮助学生理解概念.[知识拓展] 1.二元一次方程组的概念也不是严格的定义.例如:①{y =2x +2,3x -y =7;②{x =8,9x +10y =6;③{2x =4,9y =6.这三个方程组都是二元一次方程组,其中方程组②中的第一个方程只有一个未知数;方程组③中的两个方程也都分别只有一个未知数,但它们仍然都是二元一次方程组.为了更好地识别一个方程组是不是二元一次方程组,我们可以这样表达:在一个方程组中,共有2个未知数,并且每个方程都是一次方程,这样的方程组就是二元一次方程组.2.事实上,共含有两个未知数的几个二元一次方程组成的方程组都是二元一次方程组,而我们最常见的是两个二元一次方程组成的方程组.(3)、二元一次方程和二元一次方程组的解思路一合适一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.如x =6,y =2是方程x +y =8的一个解,记作{x =6,y =2,同样{x =5,y =3也是方程x +y =8的一个解. 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.例如:{x =5,y =3就是二元一次方程组{x +y =8,5x +3y =34的解. 思路二(1)x =6,y =2合适方程x +y =8吗?x =5,y =3呢?x =4,y =4呢?你还能找出合适方程x +y =8的x ,y 的值吗?(2)x =5,y =3合适5x +3y =34吗?x =2,y =8呢?(3)你能找到一组x ,y 的值,同时合适方程x +y =8和5x +3y =34吗? 生1:x =6,y =2合适二元一次方程x +y =8;x =5,y =3;x =4,y =4都合适,还有x =0,y =8;x =-1,y =9……生2:x =5,y =3合适二元一次方程5x +3y =34;x =2,y =8也合适. (多媒体出示)合适一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.师:x =6,y =2是二元一次方程x +y =8的一个解,记作{x =6,y =2,同时{x =5,y =3也是二元一次方程x +y =8的一个解.大家说二元一次方程有多少个解呢?生1:很多个.生2:无数个!(师强调:二元一次方程的一个解不是一个值,而是一对值;一般地,二元一次方程有无数个解)师:刚刚我们找出二元一次方程的解,那么有没有一组x ,y 的值同时合适这两个方程呢?生:{x =5,y =3同时合适这两个方程. (多媒体出示概念)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.(给两分钟时间稳固理解概念)[知识拓展] 1.二元一次方程组的解是一对数,要将这对数代入方程组中的每一个方程进展检验,这对数只有满足方程组中的每一个方程,这对数才能是这个方程组的解.2.一般情况下,二元一次方程的解有无数个,而二元一次方程组的解是唯一的.但当对二元一次方程的解加以限制时也可能变为有限个了,如x +y =2的正整数解只有{x =1,y =1.三、课堂总结 四、课堂练习1.以下选项中,是二元一次方程的是 ( )x +3y =2 B.xy =9 C.x +2y 2=11 D.42x -y=2解析:此题考察二元一次方程的定义,B 选项的次数为2,C 选项的最高次数为2,D 选项不是整式方程,应选项B,C,D 都不是二元一次方程.应选A.2.以下方程组中,属于二元一次方程组的是 ( )A.{x +3y =5,2x -3z =3B.{m +n =5,mn +n =6C.{m +3n =1,m 6+2n 3=1 D.{2x -3y =10,1x -5y =6解析:此题主要考察二元一次方程组的定义,A 选项共含有三个未知数;B 选项是二元二次方程组;D 选项中1x -5y =6不是整式方程,不是二元一次方程组.应选C.3.下面各组数中,是二元一次方程组{7x -3y =−11,2x +y =8的解的是( )A.{x =−1,y =−1B.{x =2,y =4C.{x =4,y =2D.{x =1,y =6答案:D4.{x =−1,y =2是二元一次方程组{3x +2y =m,nx -y =1的解,那么m-n 的值是 .解析:把{x =−1,y =2代入方程组{3x +2y =m,nx -y =1,解得{m =1,n =−3,那么m-n =1-(-3)=1+3=4.故填4.五、板书设计1 认识二元一次方程组1.认识二元一次方程2.认识二元一次方程组3.二元一次方程和二元一次方程组的解 六、布置作业 (1)、教材作业【必做题】教材习题5.1第1,2题. 【选做题】教材习题5.1第5题. (2)、课后作业【根底稳固】1.以下方程组是二元一次方程组的是 ( )A.{x +y =5,y =3+x +zB.{x +1y =1,1x-y =3 C.{x +y -xy =4,4x -2y =3 D.{12x -12y =3,14y -13x =5x -7 2.对于二元一次方程4x-3y =7,以下说法正确的选项是 ( )3.二元一次方程组{x +y =2,2x -y =1的解是 ( )A.{x =0,y =2B.{x =1,y =1C.{x =−1,y =−1D.{x =2,y =0 4.对于二元一次方程组甲:{5x +7y =297,9x -13y =135与二元一次方程乙:9x-13y =135的关系,下面说法正确的选项是 ( ) 一样5.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进展统计分析,结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人,假如设这10000中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的选项是( )A.{x -y =22,2.5%x +0.5%y =10000 B.{x -y =22,x 2.5%+y 0.5%=10000 C.{x +y =10000,2.5%x -0.5%y =22 D.{x +y =10000,x 2.5%-y 0.5%=22 【才能提升】6.假设{x =2,y =−1是二元一次方程ax +by =-2的一个解,那么代数式2a-b +7= .7.假设x 2m-7+4y 3n-2=0是二元一次方程,那么m = ,n = .8.请写出一个二元一次方程组: ,使它的解为 {x =2,y =−1.9.二元一次方程2x +3y +5=0.(1)将方程写成用含有y 的代数式表示x 的形式; (2)写出方程的三个解. 10.根据题意列出方程组.(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,那么明明两种邮票各买了多少枚?(2)将假设干只鸡放入假设干个笼中,假设每个笼中放4只,那么有一鸡无笼可放;假设每个笼里放5只,那么有一笼无鸡可放.那么有多少只鸡,多少个笼?11.方程组{mx -y =1,x +ny =3的解为{x =2,y =1,求(m-n )2的值.【拓展探究】12.方程(k 2-4)x 2+(k +2)x +(k-6)y =k +8,那么: (1)当k 为何值时,方程为关于y 的一元一次方程? (2)当k 为何值时,方程为关于x ,y 的二元一次方程? 【答案与解析】1.D(解析:A 选项含有三个未知数,B 选项的未知数x ,y 出如今分母上,不是整式方程,C 选项的xy 项为二次项.)2.C(解析:二元一次方程的解应该有无数个,但假设加以限制可能只有有限个了.)3.B(解析:根据二元一次方程组的解的定义,将四组值依次代入原方程组检验即可,而检验只有选项B 中x ,y 的值能使二元一次方程组中的每个方程左右两边都相等.应选B.)4.A(解析:方程组的解是组成这个方程组的各个方程的公共解.)5.B6.5(解析:将{x =2,y =−1代入ax +by =-2,得2a-b +7=-2+7=5.)7.4 1(解析:根据二元一次方程的定义可知2m-7=1,3n-2=1,故m =4,n =1.)8.{x +2y =0,2x -y =5(答案不唯一)9.解:(1)由2x +3y +5=0,得2x =-5-3y ,所以x =-32y-52. (2)答案不唯一,如:{x =−52,y =0或{x =−112,y =2或{x =0,y =−53.10.解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得{x +y =13,0.8x +2y =20. (2)设有x 只鸡,y 个笼,根据题意得{4y +1=x,5(y -1)=x. 11.解:将{x =2,y =1代入原方程组得{2m -1=1,2+n =3,解得{m =1,n =1,所以(m-n )2=0.12.解:(1)依题意,得{k 2-4=0,k +2=0,k -6≠0,即k =-2时,原方程为关于y 的一元一次方程. (2)依题意,得{k 2-4=0,k +2≠0,k -6≠0,即k =2时,原方程为关于x ,y 的二元一次方程.。
谁的包裹多教案范文一.教学目标1.通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效模型.2.了解二元一次方程、二元一次方程组及其解等概念,并会判断一组数是不是某个二元一次方程组的解.二.教学难点1.探索实际问题中的等量关系,列出二元一次方程组.2.判断一组数是不是二元一次方程组的解.三.教学方法学生自主探索--教师引导的方法.学生已具备了列一元二次方程解决实际问题的经验基础.在教学中,教师可引导学生思考列二元一次方程时,如何寻求等量关系,放手让学生经过自主探索列出二元一次方程组.四.教具准备投影片三张:第一张:老牛和小马的对话(记作7.1 A);第二张:"希望工程"义演(记作7.1 B);第三张:做一做(记作7.1 C).五.教学过程Ⅰ.创设情境,引入新课[师]小学时,我们就解答过着名的"鸡兔同笼"的问题,如"今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?"谁能用我们学过的知识来解答一下呢?[生]解:设鸡有x只,则兔有(35-x)只,根据题意,可得:2x+4(35-x)=94解得x=23∵35-x=35-23=12答:鸡有23只,兔有12只.[生]不用方程也可以解答:如果让每只鸡都抬起一条腿,让每只兔子都抬起两条腿,即让它们表演"优美动人"的"金鸡独立"和"玉兔拜月",这样它们一共抬起了94÷2=47条腿,并且只有47条腿着地了.接着让鸡飞上蓝天,让兔练习"金鸡独立",也就是每只兔子只有一只腿着地,这样着地的腿数又减少了35条,而只有47-35=12条腿着地了,并且有一条腿着地,就有一只兔子,所以应该有12只兔子,35-12=23只鸡.[师]这两位同学解答"鸡兔同笼"的问题都非常精彩,特别是第二位同学.我们用掌声鼓励他们.接下来,老师说一种新的思路.在上面"鸡兔同笼"的问题中,我们会发现它有两个等量关系:鸡的只数+兔子的只数=35;鸡的腿数+兔子的腿数=94.如果我设鸡有x只,兔子有y 只,这时我们就得到了方程x+y=35和2x+4y=94.这节课我们就来学习这样的方程及由它们组成的方程组.Ⅱ.讲授新课出示投影片(7.1 A),并讨论回答下列问题.有这么一段对话:老牛和小马驮着包裹走在路上.老牛:累死我了!小马:你还累?这么大的个儿,才比我多驮2个.老牛:哼,我从你背上拿来1个,我的包裹数就是你的2倍!小马:真的?!请问:老牛和小马各驮了多少包裹呢?[师生共析]设老牛驮了x个包裹,小马驮了y个包裹.从老牛和小马的对话中,我们可以探索到其中的等量关系:①老牛驮的包裹-小马驮的包裹数=2,②老牛驮的包裹数+1=(小马驮的包裹数-1)×2.由此我们就可得到方程x-y=2和x+1=2(y-1).出示投影片(7.1 B)星期天,俱乐部举行"希望工程"义演,每张成人票5元,每张儿童票3元.我们共去了8个人,买门票花了34元,请问我们共去了几个成人,几个儿童呢?如果设我们共去了x个成人,y个儿童,由此你能找到怎样的等量关系?得到怎样的方程呢?[生]在上述问题中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可得方程x+y=8和5x+3y=34.[师]在上面的两个问题中,我们得到了四个方程:x-y=2和x+1=2(y-1),x+y=8和5x+3y=34.在这四个方程中,它们有何共同的特点.下面请同学们分组讨论.(此时,老师可参与到学生的讨论中,引导学生和以前学过的一元一次方程相联系,观察方程中有几个数,数的次数是几次?含有数的项的次数是几次?)[生]上面我们所列的四个方程都含有两个数,数的次数和含有数的项的次数都是一次.老师,我们能不能把它们叫二元一次方程.因为我国古代就把数叫做元,并且它们的数的次数是一次.[师]很好.它们的确都是二元一次方程.但我有一个问题和大家共讨论.我这儿有一个方程6xy-3=2.它也含有两个数,且数的次数x,y都是一次,它和上面的四个方程一样吗?[生]不一样.它虽然含有两个数,数x,y也都是一次的,但6xy这一项即含数的项却是二次的.[师]你真棒.正象这位同学说的,6xy-3=2不是二元一次方程.x-y=2和x+1=2(y-1),x+y=8和5x+3y=34它们才是二元一次方程.能用自己的语言归纳什么叫二元一次方程吗?[生]含有两个数,并且含有两个数的项的次数都是1的方程叫做二元一次方程.[师]接下来,我们讨论下面的问题:在上面的方程x-y=2和x+1=2(y-1)中,x,y的含义相同吗?[生]应该相同.在两个二元一次方程中,x都表示老牛驮的包裹数,y都表示小马驮的包裹数,因此x,y的含义是相同的.[师]也就是说,x、y既满足第一个方程x-y=2,又满足第二个方程x+1=2(y-1).于是我们把它们联立起来,得像这样的含有两个数的两个一次方程所组成的一组方程,叫做二元一次方程组.如、都是二元一次方程组.注意在一个方程组中x、y应代表同一个量.出示投影片(7.1 C)做一做(1)x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x、y值适合方程x+y=8吗?(2)x=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?(3)你能找到一组x、y的值,同时适合方程x+y=8和5x+3y=34吗?(4)从以上三个问题归纳总结什么是二元一次方程的解?它的解有何特点?(5)满足何条件的一组值才能做为二元一次方程组的解?(请同学们分组讨论完成,教师深入学生当中,随时发现同学们讨论问题时的闪光点)[师生共析](1)把x=6,y=2代入方程x+y=8的左边得x+y=6+2=8,左边=右边,所以x=6,y=2是适合方程x+y=8.我们把适合二元一次方程的一组数的值,叫做这个二元一次方程的解.因此x=6,y=2即为x+y=8的一组解.我们会发现x=5,y=3也适合方程x+y=8,因此x=5,y=3也是方程x+y=8的一组解.还有没有其他的x,y的值适合方程x+y=8呢?[生]有.如x=1,y=7;x=4,y=4;x=8,y=0;……[生]我发现,只要给出x的一个值,代入x+y=8中,便可得到y的一个值.例如我们设x=-1,则代入x+y=8中,得-1+y=8,解得y=9.所以x=-1,y=9适合方程,是方程的一个解.也因此而得到x+y=8的解有无数多个.[师生共析](2)把x=5,y=3代入方程5x+3y=34的左边=5x+3y=5×5+3×3=34.所以x=5、y=3是方程5x+3y=34的一个解.同样x=2,y=8也是方程5x+3y=34的一个解.我们把x=2,y=8是方程5x+3y=34的一个解记作同样也是方程5x+3y=34的一个解.(3)由(1)、(2)我们可以发现既是方程x+y=8的一个解,也是5x+3y=34的一个解.我们把这两个二元一次方程的公共解,叫做由这两个二元一次方程组成的方程组的解.例如就是二元一次方程组的解.Ⅲ.例题精析[例1](1)已知方程2xm+2+3y1-2n=17是一个二元一次方程,则m=________,n=________.(2)方程①y=3x2+x;②3x+y=1;③2x+4z=5z;④xy=2;⑤ +y=0;⑥x+y+z=1;⑦ +x=4中,是二元一次方程的有_________.解:(1)由二元一次方程的定义,得m+2=1,1-2n=1∴m=-1,n=0(2)根据二元一次方程的定义.可知②③⑤是二元一次方程.评注:二元一次方程必须要同时符合下列条件的整式方程:①方程中含有两个数;②方程中含有数的项的次数都是1.[例2]写出一个以为解的二元一次方程组.解:答案不惟一.只要写出的二元一次方程组的解是即可.例如评注:二元一次方程组的解必须同时适合方程组中的每个方程.Ⅳ.随堂练习课本P1881.解:设小明买了面值50分的邮票x枚和面值80分的邮票y枚,则可列出方程组.2.解:分别将四组数值代入方程2x+y=10的左边,可知:(1) 代入左边=2x+y=2×(-2)+6=2≠10,即左边≠右边,所以不是方程2x+y=10的解.(2) 代入左边=2x+y=2×3+4=10即左边=右边,所以是方程2x+y=10的解.(3) 代入左边=2x+y=2×4+3=11即左边≠右边,所以不是方程2x+y=10的解.(4) 代入左边=2x+y=2×6+(-2)=10即左边=右边,所以是方程2x+y=10的解.3.解:根据二元一次方程组的解的定义,将四个解分别代入方程组的每一个方程,可得是方程组的解.Ⅴ.课时小结这节课通过对实际问题的分析,使学生进一步体会到了方程是刻画现实世界的有效模型.在此基础上,我们了解了二元一次方程.二元一次方程组及其解等概念,并学会了判断一组数是不是某个二元一次方程组的解.Ⅵ.课后作业(一)课本P188~P189习题6.1(二)1.预习课本P190~P192,体会二元一次方程组是如何转化为一元一次方程问题的.Ⅶ.活动与探究求二元一次方程2x+y=7的正整数解.过程:我们知道求二元一次方程2x+y=7的正整数解,就是求适合2x+y=7的一组数的正整数的值.2x+y=7的解有无数多个,而正整数解只有九个.由等式的性质可由方程2x+y=7得到y=7-2x,由于x,y只能取正整数,所以x=1,2或3.当x=1时,y=7-2×1=5;当x=2时,y=7-2×2=3;当x=3时,y=7-2×3=1.结果:二元一次方程2x+y=7的正整数解为六.板书设计7.1 谁的包裹多一、概念1.二元一次方程含有两个数,并且所含的数的项的次数都是1的方程叫二元一次方程.2.二元一次方程组含有两个数的两个一次方程所组成的一组方程叫二元一次方程组.3.二元一次方程的解.4.二元一次方程组的解.二、例题精讲例1.(略)例2.(略)三、随堂练习四、课时小结五、课后作业。