2018年秋七年级数学上册第3章一元一次方程3.4一元一次方程模型的应用第4课时分段计费问题和方案问题习题
- 格式:ppt
- 大小:3.57 MB
- 文档页数:24
3.4 一元一次方程模型的应用第4课时分段计费、方案问题【知识与技能】通过分段计价问题及方案问题的分析与解决过程,并初步掌握分段计价问题和方案问题的解决方法。
【过程与方法】培养和提高列一元一次方程解决分段计价问题的能力及小组协作精神。
【情感、态度与价值观】体会数学源于生活、用于生活。
1、预习【学生活动】课代表组织进行抽测,检测同学预习情况。
分段计费问题:标准内的计费+超标部分的计费= .植树问题:间隔数+ =植树棵树;间隔数间距= ;方案一的路长方案二的路长.2、新课讲授今天我们来学习一元一次方程的应用——分段计费、植树(板书课题“一元一次方程的应用——分段计费、植树”)【展示-提升】【学生活动】由课代表随机抽取一个小组展示:例1:现有树苗若干棵,计划栽在一段公路的一侧,要求路的两段各有1棵,并且每两棵树的间隔相等.方案一:如果每隔5米栽1棵,则树苗缺21棵;方案二:如果每隔5.5米栽1棵,则树苗刚好用完。
请算出原有树苗的棵树和这段路的长度.(课前板书在黑板上)1.展示组引入:请大家一起来看到例1。
2.展示组分析:这是一道有关植树问题的题型.通过预习交流,我们知道了“间隔数1植树棵树;间隔数间距路长;方案一的路长方案二的路长.”从此例题中,我们可以知道方案一应植棵树21x,方案二应植棵树x;方案一路长)121(5x,方案二路长)1(5.5x;且方案一的路长=方案二的路长.3.展示组讲解:所以我们可以根据此等量关系来建立方程:解:设原有树苗x,根据等量关系,得 1155 )20211(5211 )1(5.5)121(5因此,这段路长为解之得xxx 答:原有树苗211棵,这段路的长路为1155m.4.展示组总结:解决植树有关的问题,我们可以把植树的有关等量关系式先列出来,然后根据等量关系是列方程来解决它.练习1:检测反馈第1题.例2:我国很多城市水资源缺乏,为了加强居民的节水意识,合理利用水资源,很多城市制定了用水收费标准.A市规定了每户每月的标准用水量,不超过标准用水量的部分按每立方米2.1元收费,超过标准用水量的部分按每立方米3元收费.该市张大爷家5月份用水9立方米,需交费2.16元.A市规定的每户每月标准用水量是多少立方米?1.展示组引入:请大家一起来看到例2. 2.展示组讲解:所以根据预习交流我们知道标准内的计费+超标部分的计费=总计费及题意我们分析问题中的等量关系可以建立方程. 解:设A市规定的每户每月标准水量是x立方米. 根据题意得: 2.16)9(32.1xx 解之得:6x 答:A市规定的每户每月标准水量是6立方米. 3.展示组总结:解决这些与实际生活有关的问题,我们可以把它转化成我们课本所学习的知识来解决它,可以根据问题的实际情况建立我们学习过的一元一次方程模型,而本题的关键是要找到等量关系标准内的计费+超标部分的计费=总计价..【教师活动】教师对该小组的展示进行点评以及各项环节评分,同时课代表对非展示组的参与,纪律等评分项进行评分.【梳理-总结】【教师活动】该环节由教师进行总结,强调本堂课的重点、难点以及易错点,对知识形成条理,加深学生对知识的掌握.【检测-反馈】1.圆形场地(难题):有一个圆形花坛,绕它走一圈是120米.如果在花坛周围每隔6米栽一株丁香花,再在每相邻的两株丁香花之间等距离地栽6株月季花.可栽丁香花多少株?可栽月季花多少株?每2株紧相邻的月季花相距多少米?2. 某市出租汽车3千米起步价10元,行驶2千米以后,每千米收费2元(不足1千米按1千米计算).王明和李鸿要到离学校15千米的博物馆为同学们联系参观事宜。
第4课时利用一元一次方程解决分段计费、盈不足问题【知识与技能】寻找等量关系,运用一元一次方程解决实际生活中分段计费和盈不足问题.【过程与方法】通过探索和交流,构建自己的思维框架,根据实际问题列出方程,感受数学在实际生活中的应用价值.【情感态度】培养学生分类讨论思想,解决实际生活中的问题.【教学重点】找出问题中的等量关系.【教学难点】找出问题中的等量关系,分类讨论列出方程.一、情景导入,初步认知在分段计费、盈不足问题中,最基本的等量关系式是什么?如何分类讨论?【教学说明】为本节课的教学做准备.二、思考探究,获取新知本问题首先要分析所交水费27.44元中是否有超标部分,由于 1.96×12=23.52(元),小于27.44元,所以含有超标部分的水费,则等量关系式为:月标准内水费+超标部分水费=该月所交水费设月标准用水量为x t,根据等量关系,得1.96x+(12-x)×2.94=27.44解得:x=8所以,该市家庭月标准用水量是8吨.【教学说明】分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题.解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决.2.班委会决定,由小敏、小聪两人负责选购圆珠笔、钢笔共22支,送给山区学校的同学.他们去了商场,看到圆珠笔每支5元,钢笔每支6元.(1)若他们购买圆珠笔、钢笔刚好用去120元,问圆珠笔、钢笔各买了多少支?(2)若购圆珠笔可9折优惠,钢笔可8折优惠,在所需费用不超过100元的前提下,请你写出一种选购方案.解:(1)设圆珠笔买了x支,则钢笔买了(22-x)支,根据题意得:5x+6(22-x)=120,解得:x=12.所以22-x=22-12=10.答:圆珠笔、钢笔分别买了12支、10支.(2)是一道方案设计题,也是一道开放型题,答案不唯一,根据题意,圆珠笔的单价为910×5=4.5(元);钢笔的单价为810×6=4.8(元),由于圆珠笔的单价小而钢笔的单价大,因此尽量圆珠笔多买些.①当买圆珠笔19支,钢笔3支时,19×4.5+3×4.8=99.9(元)<100(元)满足条件;②当买圆珠笔20支,钢笔2支时,20×4.5+2×4.8=99.6(元)<100(元)满足条件;③当买圆珠笔21支,钢笔1支时,21×4.5+1×4.8=99.3(元)<100(元)满足条件.故有三种方案,圆珠笔19支,钢笔3支或圆珠笔20支,钢笔2支或圆珠笔21支,钢笔1支.【教学说明】这一层次及时鼓励学生通过观察、分析、小组讨论,找出其中的等量关系,并尝试用文字语言表述出来,有利于提高学生的分析问题能力和语言表达能力.三、运用新知,深化理解1.教材P103 动脑筋.2.某城市按以下规定收取每月煤气费,用煤气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费.已知某用户10月份的煤气费平均每立方米0.88元,求该用户10月份应交的煤气费是多少元?解:由10月份煤气费平均每立方米0.88元,可得10月份用煤气一定超过60m3,设10月份用了煤气x立方米,由题意得:60×0.8+(x-60)×1.2=0.88×x,解得:x=75(立方米),则所交电费=75×0.88=66(元).答:10月份应交煤气费是66元.3.某水果批发市场香蕉的价格如下表:购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克价格6元5元4元张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?分析:由于张强两次共购买香蕉50千克(第二次多于第一次),那么第二次购买香蕉多于25千克,第一次少于25千克.由于50千克香蕉共付264元,其平均价格为5.28元,所以必然第一次购买香蕉的价格为6元/千克,即少于20千克,第二次购买的香蕉价格可能是5元,也可能是4元.我们再分两种情况讨论即可.解:(1)当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得: 6x+5(50-x)=264解得:x=1450-14=36(千克)(2)当第一次购买香蕉少于20千克,第二次购买香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264解得:x=32(不符合题意)答:第一次购买14千克香蕉,第二次购买36千克香蕉.4.某移动通讯公司开设了两种业务:一是“全球通”,使用者先缴纳50元月租费,然后每通话1分钟再付通话费0.40元;二是“快捷通”,使用者不缴纳月租费,每通话1分钟付通话费0.60元.(1)小明的爸爸一个月通话时间约为200分钟,你认为他应选择哪种通讯业务,可使费用较少?请说明理由.(2)每月通话时间为多少分钟时,两种通讯业务缴纳的费用一样?解:(1)他应选择快捷通业务;使用全球通业务需要50+0.4×200=130(元),使用快捷通业务需要0.6×200=120(元),120元<130元,所以他应选择快捷通业务.(2)设每月通话时间为x分钟时,两种通讯业务缴纳的费用一样.50+0.4x=0.6x ,解得x=250.所以通话250分钟时两种费用相同.5.某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.解:方案一:4000×140=560000(元);方案二:15×6×7000+(140-15×6)×1000=680000(元);方案三:设精加工x 吨,则6x +14016x =15; 解得:x=60, 7000×60+4000×(140-60)=740000(元);答:选择第三种方案.【教学说明】通过练习,检测学生的掌握情况;教师做适当的提示.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.4”中第2、3、7题.在教学过程中,我重视了知识的产生过程,关注个人的发展,注意到个体间的差异,让每个学生在课堂上都有所感悟,都有各自的体验,不同的学生在数学上都得到不同的发展.3.4 实际问题与一元一次方程第1课时实际问题与一元一次方程(1)知能演练提升能力提升1.一群学生在某电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每名男生看到白色与红色的安全帽一样多,而每名女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有()A.3人B.4人C.7人D.8人2.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1∶2配套,为求x列出的方程是()A.12x=18(28-x)B.12x=2×18(28-x)C.2×18x=18(28-x)D.2×12x=18(28-x)3.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,那么原来的两位数为()A.54B.27C.72D.454.某工程,甲单独做需12天完成,乙单独做需8天完成.现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A.=1B.=1C.=1D.=15.敌我两军相距14 km,敌军于1 h前以4 km/h的速度逃跑,现我军以7 km/h的速度沿敌军逃跑路线追击,几小时后可追上敌军?若设x h后可追上敌军,则可列方程为.6.一种牙膏出口处直径为5毫米,小明每次刷牙都挤出1厘米长的牙膏,这样一支牙膏可以用36次.该品牌牙膏推出新包装,只是将出口处直径改为6毫米,小明还是按习惯每次挤出1厘米的牙膏,这一支牙膏能用次.7.一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是出水管,单开甲管需要16分钟注满,单开乙管需要10分钟注满,单开丙管20分钟可将全池水放完.现在先开甲、乙两管4分钟后,接着关上甲管,开丙管,再过几分钟能将水池注满?设再经过x分钟能将水池注满,则根据题意,列方程得.8.红星服装厂生产某种型号的学生服装,已知每3 m布料可做上衣2件或裤子3条(1件上衣和1条裤子为一套),计划用600 m布料生产这批学生服装,应分别用多少布料生产上衣和裤子使其恰好配套?一共能生产多少套学生服装?9.某工厂安排600名工人生产A,B型机器共69台,已知7名工人能生产一台A型机器,10名工人能生产一台B型机器.(1)有多少工人分别生产A型机器和B型机器?(2)如果人数不变,那么能生产这两种机器共70台吗?创新应用★10.数学活动课上,李老师布置了这样一道题,“学校校办工厂需制作一块广告牌,请来2名工人师傅.已知师傅单独完成需3天,徒弟单独完成需6天,请你补充一个问题并解答.”(1)调皮的小明说:“让我试一试,”上去添了“两人合做需要几天完成?”请你就小明的补充进行解答;(2)小红说:“我也来试一试,”她添了“现由徒弟先做3天,再由两人合做,两人再需要合做几天完成?”请你就小红的补充进行解答.参考答案知能演练·提升能力提升1.C设男生有x人,则女生有(x-1)人.根据题意,得x=2(x-1-1),解得x=4.x-1=3.故这群学生共有7人.2.D因为螺栓和螺母按1∶2配套,所以螺栓的个数是螺母个数的一半,即相等关系为螺栓的个数×2=螺母的个数.3.D设原来两位数的个位上的数字为x,则十位上的数字为(9-x),由题意,得10x+(9-x)-[10(9-x)+x]=9,解得x=5,所以原来的两位数为45.4.D5.7x=4(x+1)+146.25设这一支牙膏能用x次,根据题意,得3.14××10×36=3.14××10·x,解得x=25.7.=1根据相等关系“甲、乙两管4分钟注入的水+乙管x分钟注入的水-丙管x分钟放出的水=1”,列方程得=1.8.解设用x m布生产上衣,则用(600-x)m布生产裤子.根据题意,得×2=×3,解得x=360.600-360=240(m).360÷3×2=240(套).答:用360 m布料生产上衣,240 m布料生产裤子,恰好配套,一共能生产240套学生服装.9.解(1)设生产A型机器的工人有x名,则生产B型机器的工人有(600-x)名.根据题意,得=69,解得x=210.600-210=390(名).答:生产A型机器和B型机器的工人分别有210名和390名.(2)设生产A型机器的工人有y名,则生产B型机器的工人有(600-y)名.根据题意,得=70.解得y=233.因为人数必须是非负整数,所以x的值不符合题意.答:如果人数不变,那么不能生产这两种机器共70台.创新应用10.解(1)设两人合做需要x天完成,列方程,得x=1,解得x=2.答:两人合做需要2天完成.(2)设两人再需要合做y天完成,列方程,得×3+y=1.解得y=1.答:两人再需要合做1天完成.检测内容:8.1-8.2得分________ 卷后分________ 评价________一、选择题(每小题3分,共24分)1.(怀化中考)下列不等式变形正确的是( C )A .由a >b 得ac >bcB .由a >b 得-2a >-2bC .由a >b 得,-a <-bD .由a >b 得a -2<b -22.不等式2x -1>3的解集是( C )A .x >1B .x <1C .x >2D .x <23.不等式1+x <0的解集在数轴上表示正确的是( A )4.若关于x 的不等式(a -b )x >0,其中b >a ,则它的解集是( B )A .x >0B .x <0C .x >a -bD .x >b -a5.已知(3x -5y -a )2+|x -1|=0中,y 的值小于1,则a 的取值范围是( B )A .a <-2B .a >-2C .a <8D .无法确定6.已知方程3x -12=1-x 3+a 的解为x =1,则不等式3ax +12≤5a 的解集是( C )A .x ≤3B .x ≥16C .x ≤32D .x ≥-167.某商品的进价为800元,要保证利润率不低于15%,则每件商品的售价不低于( B )A .900元B .920元C .960元D .980元8.一项规定要在6天完成300土方的工程,第一天完成了60土方,现要求比原计划至少提前2天完成任务,以后几天平均每天至少完成的土方数为( D )A .65土方B .70土方C .75土方D .80土方二、填空题(每小题3分,共18分)9.(吉林中考)不等式3+2x >5的解集是__x >1__.10.已知a <b 且b <0,则ab 与b 2的大小关系为__ab>b 2__.11.不等式ax 2+2x 3b -2>-1是关于x 的一元一次不等式,则a =__0__,b =__1__.12.已知关于x 的不等式(1-a)x>2的解集为x<21-a,则a 的取值范围是__a>1__. 13.能使12(3x -1)-(5x +2)>14成立的x 的最大整数值为__-1__. 14.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为__29或6__.三、解答题(共58分)15.(15分)解下列不等式,并把解集在数轴上表示出来:(1)x -1>2x ;解:x<-1(2)4(x -1)+3≥3x ;解:x ≥1(3)2x -13-9x +26≤1. 解:x≥-2 在数轴上表示解集略16.(8分)解不等式x -22≤7-x 3,并求出它的正整数解.解:去分母得3x -6≤14-2x ,移项合并得5x≤20,解得x≤4,则不等式的正整数解为1,2,3,417.(9分)已知x =3是关于x 的不等式3x -ax +22>2x 3的解,求a 的取值范围. 解:将x =3代入不等式得9-3a +22>2,解这个不等式,得a<418.(12分)(宁夏中考)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男女两种款式的书包,已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两款书包共60个,求两款书包各买了多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果购买两种款式的书包共80个,那么女款书包最多能买多少个?解:(1)设男款书包买了x 个,则女款书包买了(60-x)个,由题意得50x +70×(60-x)=3400,解得x =40,则60-x =60-40=20(个),即男款书包买了40个,女款书包买了20个 (2)设女款书包最多能买y 个,由题意得70y +50(80-y)≤4800,解得y≤40,故女款书包最多能买40个19.(14分)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?解:(1)甲厂家所需金额:3×800+80(x-9)=1680+80x;乙厂家所需金额:(3×800+80x)×0.8=1920+64x (2)由题意,得1680+80x>1920+64x,解得x>15.答:购买的椅子至少16张时,到乙厂家购买更划算。