当前位置:文档之家› 野外数据采集

野外数据采集

野外数据采集
野外数据采集

野外数据采集

数字测图作业通常分为野外数据采集和内业数据处理编辑两大部分。野外数据采集通常利用全站仪或RTK GPS接收机等测量仪器在野外直接测定地形特征点的位置,并记录地物的连接关系及其属性,为内业成图提供必要的信息,它是数字测图的基础工作,直接决定成图质量与效率。

数据编码

野外数据采集仅仅采集碎部点的位置(点的坐标信息)是不能满足计算机自动成图要求的,还必须将地物点的连接关系和地物诚性信息(地物类别)记录下来。通常是用按一定规则构成的符号串来表示地物属性和连接关系等信息,这种有一定规则的符号串称为数据编码。数据编码的基本内容包括:地物要素编码(或称地物特征码、地物属性码、地物代码)、连接关系码(或连接点号、连接序号、连接线型)、面状地物填充码等。

一、国家标准地形要索分类与编码

按照《1:500 1:1OOO 1:2000外业数字测图规程》(GB/T 14912—2005)的规定,野外数据采集编码的总形式为:地形码+信息码。地形码是表示地形图形要素的代码。

在《基础地理信息要素分类与代码》(GB/T 13923—2006)和《城市基础地理信息系统技术规范》(CJJ100—2004)中对比例尺为1 : 500、1 : 1000、1 : 2 000的代码位数的规定是6位十进制数字码,分别为按数字顺序排列的大类、中类、小类和子类码,具体代码结构如图8-16所示。左起第一位为大类码;第二位为中类码,是在大类基础上细分形成的要素码;第三、第四位为小类码,是在中类基础上细分形成的要素码;第五、第六位为子类码,是在小类基础上细分形成的要素码。代码的每一位均用0?9表示,例如对于大类:1为定位基础(含测量控制点和数学基础);2为水系;3为居民地及设施;4为交通;5为管线;6为境界与政区;7为地貌;8为植被与土质。表8-1为8个大类中大比例尺成图中基础地理信息要素部分代码的示例。

图8-16 碎部点编码规则

表8-1 1:500、1:1000、1:2000基础地理信息要素部分代码

Xmap数字测图系统的编码是在《基础地理信息要素数据字典第1部分:1 : 500 1 :1 000 1:2 000基础地理信息要素数据字典》 (GB/T —2007)7位编码方式的基础上,扩展了一位的编码,这扩展用来表示要素的表示方法。Xmap的编码统一为8位数字,即前六位要素分类代码+第七位图形代码+第八位要素表示方法。要素的表示方法如下:

1.点要素的表示方法

点要素的表示有三种形式:标注点、定位点、有向点。

标注点指无实体对应的点要素的表现形式,如高程点、比高点、特殊高程点等。

定位点指有实体对应的点要素的表现形式,如灯塔、盐井等。

有向点指具有方向性的点要素的表现形式,如泉、里程碑等。应在属性表中定义“方向”属性项。

2.线要素的表示方法

线要素的表示有三种形式:线、中心线、有向线。

线指无实体对应的线要素的表现形式,如等高线、地类界、境界线等。

中心线指有实体对应的线要素的表现形式,如地铁、机耕路、溜索桥、隧道等。

有向线指具有方向性的线要素的表现形式,是要求依照一定方向采集的线,如单线河、田坎/路堑/沟堑/路堤、自然文化保护区界等。

3.面要素的表示方法

面要素的表示有两种形式,轮廓线构面和范围线构面。

轮廓线构面用于表示具有明确边界的面要素,如单幢房屋。

范围线构面用于表示不具有明确边界的面要素,如危险海区、自然、文化保护区域等。4.复合要素的表示方法

复合要素由点、线、面或辅助制图的点、线、面组合而成,如珊瑚滩的表示由面和辅助制图的线组合而成。

二、全要素编码方案

全要素编码通常是由若干个十进制数组成,其中每一位数字都按层次分,都具有特定的含义。有的采用五位,有的采用六位、七位、八位,甚至十一位编码的都有。各种编码都有各自的特点,但一般都是用其中三位表示地物编码,其他是将一些不是最基本的、规律的连接及绘图信息都纳入编码。

如五位数字编码规定,前三位为整数,后两位为小数。整数为地物编码,且自定义地物的类别,如把常用的地物分为点、建筑物、圆形物、地面线状地物、地上(高空)线状地物及独立地物六大类;二位小数则用来进一步说明地物的方向或流向、楼层等。

如CASS数字测图系统的编码主要参照《1 : 500 1 :1 000 1:2 000地形图图式》 (GB/T 7929—1995)的章节号为所有的地形符号进行了编码。编码统一为6位数字,其规则是“1(或2、3) +图式序号+顺序号+次类号”。其中3?9章的内容第一位数字为1,10?12章的内容第一位数字为2,对于地籍测量的内容第一位数字为3;“图式序号”指GB/T 7929— 1995版中符号的章节号(去除点),如三角点章节为,则其图式序号为311,示坡线的章节号为,则其图式序号为013;“顺序号”为此类符号顺序号,从零开始;“次类号”指同一图式章节号中不同图式符号,从零开始。如简单房屋、陡坎(未加固)、水井在图式上的章节号分别为,,,CASS赋予它们的编码分别为141200,204201,185102。因为在图式的下又将水井划分为依比例尺的水井和不依比例尺的水井,所以CASS依比例尺的水井编号为185101,不依比例尺的水井编号为185102。对于有辅助符号位的编码,在其骨架线编码后加“-顺序号”,如围墙辅助符号位的边线编码为144301-1,围墙辅助符号位的短线编码为144301-2。

全要素编码方式的优点是各点编码具有唯一性,计算机易识别与处理,但外业直接编码输入较困难。目前多数测图系统采用图标菜单自动给出地形符号编码,即选定屏幕菜单的绘图图标,就给定了对应的地形符号编码。

三、简编码方案

由于国家标准地形要素分类与编码推出得比较晚,且记忆与使用不方便,目前的数字测图系统多采用以前各自设计的编码方案,其中简编码就是比较实用易行的方案。

简编码是在野外作业时仅输入简单的提示性编码,经内业简码识别后,自动转换为程序内部码。南方CASS测图系统的有码作业模式,是一个有代表性的简码输入方案。CASS系统的野外操作码(也称为简码或简编码)可区分为类别码(表8-2)、关系码(表8-3)和独立符号码(表8-4)3种,每种只由1?3位字符组成。其形式简单、规律性强、易记忆,并能同时采集测点的地物要素和拓扑关系,能够适应多人跑尺(镜)、交叉观测不同地物等复杂情况。

1.类别码

类别码(亦称地物代码或野外操作码)如表8-2所示,是按一定的规律设计的,不需要特别记忆。有1?3位,第一位是英文字母,大小写等价,后面是范围为O?99的数字,如代码F0, F1,F2,…,F6分别表示坚固房,普通房,一般房屋……简易房。F取“房”字的汉语拼音首字母,0?6表示房屋类型由“主”到“次”。另外,KO表示直折线型的陡坎,UO表示曲线型的陡坎;Xl表示直折线型内部道路,Ql表示曲线型内部道路。由U、Q的外形很容易想象到曲线。类别码后面可跟参数,如野外操作码不到3位,与参数间应有连接符“—”,如有3位,后面可紧跟参数,参数有下面几种:控制点的点名、房屋的层数、陡坎的坎高等,如表示以该点为圆心,半径为 m的圆。

表8-2 类别码符号及含义

2.关系码

关系码(亦称连接关系码),共有4种符号:“ + ”、“- ”、“A$ ”和“P”配合来描述测点间的连接关系。其中“ + ”表示连接线依测点顺序进行;”- ”表示连接线依测点相反顺序进行连接,“P”表示绘平行体;“A$ ”表示断点识别符,如表8-3所示。

表8-3 连接关系码的符号及含义

3.独立符号码

对于只有一个定位点的独立地物,用A X X表示,如表8-4所示,如A14表示水井,A70表示路灯等。

表8-4 部分独立地物(点状地物)编码及符号含义

四、其他编码方案

块结构编码将整个编码分成几个部分,如分为点号、地形编码、连接点和连接线型四部分,分别输入。其中,地形编码是参考图式的分类,用3位整数将地形要素分类编码。每一个地形要素都赋予一个编码,使编码和图式符号一一对应。如:100代表测量控制点类;104代表导线点;200代表居民地类,又代表坚固房屋;210代表建筑中的房屋。清华山维的EPSW

测绘系统就是采用这种数据编码。由于每个测点都要输入地形编码,需要绘图员较熟练记住地形编码,这给绘图员带来一定困难(尽管采用了“无记忆编码”输入法)

二维编码方案是在GB/T 14804—1993规定的地形要索代码的基础上进行了扩充,以反映图形的框架线、轴线、骨架线、标识点(Label点)等。它对地形要素进行了更详细的描述,一般由6?7位代码组成。二维编码没有包含连接信息,连接信息码由绘图操作顺序反映,二维编码数位多,观测员很难记住这些编码,故广州开思SCS G2000测图系统的电子平板采用无码作业。测图时对照实地现场利用屏幕菜单和绘图专用工具或用鼠标提取地物属性编码,绘制图形。

测图前的准备工作

测图前的准备工作主要有:控制测量、仪器器材与资料准备、测区划分、人员配备等。

一、控制测量

数字测图既可采用传统的先控制测量后碎部测图、从整体到局部的作业方法,也可采用图根控制测量与碎部测量同步进行的“一步测量法”。但对于大面积的高等级控制测量,一般仍遵循从整体到局部、分级布设、逐级加密的测量原则。

控制测量包括平面控制测量和高程控制测量。其作业方法、精度要求与白纸测图法中的控制测量基本相同。由于数字测图主要采用全站仪采集数据,测站点到地形点的距离即使1km,也能保证测量精度,故对图根点密度要求已不很严格,大大低于白纸测图的要求,一般以在500 m以内能测到碎部点为原则。通视条件好的地方,图根点可稀疏些;地物密集、通视困难的地方,图根点可密些。

在实际作业中,采用全站仪采集数据,通常用“辐射法”直接测定图根控制点。辐射法就是在某一通视良好的等级控制点上安置全站仪,用极坐标测量方法,按全圆方向观测方式直接测定周围几个图根点坐标,点位精度可在1cm以内。该法最后测定的一个点必须与第一个点重合,以检査仪器是否变动。重合误差应小于图根点精度。

另外,对于小面积或局部区域,有些数据采集软件有“一步测量法”功能,不需要单独进行图根控制测量,这样在一定程度上提高外业的工作效率,如图8-17所示,A,B,C,D 为已知点,1,2,3…为图根导线,1',2',3'…为碎部点,一步测量法作业步骤如下:

(1)全站仪置于B点,先后视A点,再照准1点测水平角、垂直角和距离,可求得1点坐标。

(2)不搬运仪器,再施测B站周围的碎部点1',2',3'…。根据B点坐标可得到碎部点

的坐标。

(3)B站测量完毕,仪器搬到1点,后视B点,前视2点,测角、测距,得2点坐标(近似坐标),再施测1点周围碎部点,根据1点坐标可得周围碎部点坐标(近似坐标)。

同理,可依次测得各导线点坐标和该站周围的碎部点坐标,但要注意及时勾绘草图、标注点号。

(4)待测至C点,则可由B点起至C点的导线数据计算附合导线闭合差,并对导线进行平差处理,然后利用平差后的导线坐标,再重新改算各碎部点的坐标。

图8-17 一步测量法

二、仪器器材与资料准备

实施数字测图前,应根据作业单位的具体情况和相应的作业方法准备好仪器、器材、控制成果和技术资料。仪器、器材主要包括全站仪、对讲机、充电器、电子手簿或便携机、备用电池、通讯电缆、反光棱镜、皮尺或钢尺、草图本、工作底图等。出测前应为全站仪、对讲机充足电。

目前数字测图系统在野外进行数据采集时,若采用测记法时要求绘制较详细的草图。绘制草图采取现场绘制,也可以在工作底图上进行,底图可以用旧地形图、晒蓝图或航片放大影像图。在数据采集之前,最好提前将测区的全部已知成果输入电子手簿、全站仪或便携机,以方便调用。若采用简码作业或者电子平板测图,可省去绘制草图。

三、测区划分

为了便于多个作业组作业,在野外采集数据之前,通常要对测区进行“作业区”划分。数字测图不需按图幅测绘,而是以道路、河流、沟渠、山脊线等明显线状地物为界,将测区划分为若干个作业区,分块测绘。对于地籍测量来说,一般以街坊为单位划分作业区。分区的原则是各区之间的数据(地物)尽可能地独立(不相关)。对于跨区的地物,如电力线等,应测定其方向线,供内业编绘。

四、人员配备

一个作业小组一般需配备:草图法时测站观测员(兼记录员)1人,镜站跑尺员1?2人,领尺员(绘草图)1?2人;简码作业时观测员1人,镜站跑尺员 1?2人;电子平板作业时观测员1人,绘图员1人(也可以由观测员承担),镜站跑尺员1?2人。领尺员负责画草图或记录碎部点属性。内业绘图一般由领尺员承担,故领尺员是作业组的核心成员,需技术全面的人担任。

碎部点测算原理与方法

从理论上讲,数字测图要求先确定所有碎部点的坐标及记录碎部点的绘图信息(即数据采集),才能利用计算机自动成图。在野外数据采集中,若用全站仪测定所有独立地物的定位点及线状地物、面状地物的转折点(统称碎部点)的坐标,不仅工作量大,而且有些点无法直接测定。因此,必须灵活运用“测算法”,测算结合来确定碎部点坐标。

碎部点坐标“测算法”的基本思想是:在野外数据采集时,使用全站仪适当采用仪器法(主要是极坐标法)测定一些“基本碎部点”,再用勘丈法(只丈量距离)测定一部分碎部点的位置,最后充分利用直线、直角、平行、对称、全等等几何特征,在室内计算出所有碎部点的坐标。

下面介绍几种常用的碎部点测算方法。

一、仪器法

1.极坐标法

极坐标法是测量碎部点最常用的方法。如图8-18所示,Z为测站点,O为定向点,为待求点。在Z点安置好仪器,量取仪器高照准O点,读取定向点O的方向值(常配置为零,以下设定向点的方向值为零然后照准待求点,照准镜高为,方向值读数为;再测出Z 至点间的斜距和竖直角,(全站仪大部分以天顶距表示,= 90°- )水平距离=,则待定点坐标和高程可由式(8-65)求得,即

图8-18极坐标法

(8-65)

式中,其中为Z、方向的坐标方位角,为Z、O方向的坐标方角。2.直线延长偏心法

当待求点(目标点)与测站点不通视或无法立镜时,可使用偏心观测(如直线延长偏心法、距离偏心法、角度偏心法等)间接测定碎部点的点位。其中,直线延长偏心法是最常用的方法,偏心法对高程无效。

如图8-19所示,Z为测站点,欲测定B点,但Z、B间不通视。此时可在地物边线方向找B'(或B")点作为辅助点,先用极坐标法测定其坐标,再用钢尺量取BB'(或BB")的距离4即可求出B点的坐标。

(8-66)式中,为A、B'方向的方位角。

图8-19直线延长偏心法

3.距离偏心法

如图8-20所示,欲测定B点,但B点(电线杆中心)不能立标尺或反光镜,可先用极坐标法测定偏心点 (水平角读数为,水平距离为),再丈量偏心点到目标点B的水平距离 d即可求出目标点B的坐标。

图8-20距离偏心法

(1)当偏心点位于目标前方或后方()时,如图8-20(a),即偏心点在测站和目标点的连线上,B点的坐标可由式(8-67)求得,即

(8-67)

式中,为ZB方向的坐标方位角(式中,当所测点位于连线上时,d取“ + ”;当位于ZB 延长线上时,d取“ - ”)。

(2)当偏心点位于目标点B的左或右边()时,偏心点至目标点的方向和偏心点至测站点Z的方向应成直角,如图8-20(b),B点的坐标可由式(8-68)求得,即

(8-68)

式中,,(当偏心点位于左侧时,取“+”;位于右侧时,q取“-”)。

注:当偏心距较大时,直角必须用直角棱镜设定。

(3)当偏心点位于目标点B的左或右边()时,选择偏心点至测站点的距离与目标点B至测站点的距离相等处(等腰偏心测量法),可先测得的坐标和之间的距离,如图8-20(c),B点的坐标可按式(8-69)求得,即

(8-69)

式中,,当位于ZB的左侧时,取“-”号,右侧时取“ + ”号。

一般情况下,偏心距较小,此时(弧长)。可由式(8-70)求得,即

(8-70)

4.角度偏心法

如图8-21所示,欲测定目标点B,由于B点无法到达或B点不便立镜,将棱镜安置在离仪器到目标B相同水平距离的另一个合适点(或)上进行测量,先测定至棱镜的距离()后转动望远镜照准待测目标点B,读取水平角,则测得B点坐标为

(8-71)式中,为ZB方向的方位角。

图8-21 角度片偏心法图8-22 方向直线交会法

5.方向直线交会法

如图8-22所示,A、B为已测定的碎部点,欲测定AB直线上的点,只需照准该点,读取方向值(不测距),用前方交会公式(戎格公式)可计算出点坐标。计算公式为

(8-72)

式中,。当时。

使用该法测定位于一条直线上的碎部点时较为方便。

二、勘丈法

勘丈法指利用勘丈的距离及直线、直角的特性测算出待定点的坐标。勘丈法对高程无效。1.直角坐标法

直角坐标法又称为正交法,它是借助测线和垂直短边支距测定目标点的方法。正交法使用钢尺丈量距离,配以直角棱镜作业。如图8-23所示,已知A,B两点,欲测碎部点i(l,2,3?i),则以AB为轴线,自碎部点i向轴线作垂线(由直角棱镜定垂足)。假设以A为原点,只要量测得到原点A至垂足的距离,和垂线的长度,就可求得碎部点i的位置,即

(8-73)

式中,。当碎部点位于轴线(AB方向)左侧时,取“-”;右侧时,取“+”。

图8-23 直角坐标法

2.距离交会法

如图8-24所示,已知碎部点A,B欲测碎部点i则可分别量取至A,B点距离,,即可求得点的坐标。先根据已知边和,求出角即

(8-74)再根据戎格公式,求得。

(8-75)

图8-24 距离交会法图8-25 直线内插法

3.直线内插法

如图8-25所示,已知A,B两点,欲测定AB直线上1,2,3,…i,各点,可分别量取相邻点间的距离,,等,从而求出各内插点的坐标。公式为

(8-76)

式中

4.微导线法

当构筑物为直角的情况时,只要测定任意两个直角点,丈量构筑物的各边长,即可计算出所有直角点的坐标。

(1)定向微导线

如图8-26所示直角构筑物,已知A,B两点坐标,欲求1,2,3,…i各点,可分别量取相邻点间的距离…,,即可依次推出各点的坐标为

(8-77)

式中,(当脚标等于-1时,为A;当脚标等0时,为B)。当i为左折点时取“-”,右折点时取“ + ”,如1点位于方向的左侧,称为左点;3点位于12方向的右侧,称为右折点。

(2)无定向微导线

如图8-27所示直角构筑物,已知A,B两点坐标,欲求1,2,3,…“各点,可分别量取相邻点间的距离即可依次推出各点的坐标。

先依据丈量的a,b(注a,b可以是同方向的几条边长的代数和)长度,求两已知点的ab 距离为S,再按余弦公式(8-78)求得角,然后按照前方交会式(8-75)计算得到P点的

坐标。此后以为直角构筑物定向方向,按照上述定向微导线法进行计算即可。

(8-78)

图8-26 定向微导线图8-27 无定向微导线

三、计算法

计算法不需要外业观测数据,仅利用图形的几何特性计算碎部点的坐标。

1.矩形计算法

如图8-28所示,已知A,B,C三个房角点,求第四个房角点,可按下式计算得到,即

(8-79) 2.垂足计算法

如图8-29所示,已知碎部点A、B、1、2、3、4,且11'丄AB、22'丄AB、33'丄AB、44'丄AB,求1',2',3',4'各点,则可由下式(8-16)计算得到其坐标。

图8-28 矩形计算法图8-29 垂足计算法

(8-80)

式中,,i=l,2,3,4;平距和坐标方位角由坐标反算得到。

使用此法确定规则建筑群内楼道口点、道路折点十分有利。

3.直角点计算法

如图8-30所示,在测站上可以测定房角点A、B、D,但直角点C却无法测定,而且BC 和CD的长度也不易直接量取,此时可以用下式(8-17)计算直角点的坐标。

(8-81)式中:

4.直线相交法

如图8-31所示,A、B、C、D为4个已知碎部点,且AB与CD相交于i,则交点i的坐标为

(8-82)式中,,相减小于0时加360

图8-30 直角点坐标法图8-31 直线相交

5.平行曲线定点法

图8-32是两条平行曲线,已知平行曲线一边点1、2、3、4…和与1点间距为的另一曲线上的点1',求另一边线对应点2',3',4'…的坐标。

(1)对于直线部分,其坐标公式为

(8-83)

式中,,当所求点位于已知边的左侧时取“-”;所求点位于已知边的右侧时取“+”。

(2)对于曲线部分,其坐标公式为

(8-84)

式中,,当所求曲线点位于已知边的左侧,且时,或当所求点位于右侧,且时,c = 0;当所求曲线点位于已知边的右侧,且时,或当所求点位于左侧,且时,c= 180°。

此法用于计算曲线道路另一侧点的坐标是十分便利的。

图8-32 平行曲线定点法

6.对称点法

图8-33是一轴对称地物,测出1,2,…,5和A点后,再测出A点的对称点B,即可按式(8-85)分别求出各对称点1', 2',…,5'的坐标。

(8-85)

式中,,。

许多人工地物的平面图形是轴对称图形,运用该法,可大量减少实测点。

在本节公式中,坐标方位角需用坐标反算时,可由式(8-86)求得(的计算不需判断语句,编程简单)。

(8-86)式中,SGN为取正负号函数,ATN为反正切函数。

图8-33 对称点法

测记法野外数据采集

测记法就是用全站仪或GPS RTK在野外测量地形特征点的点位,用仪器内存储器记录测点的定位信息,用草图笔记或简码记录其他绘图信息,到室内将测量数据传输到计算机,经人机交互编辑成图。由于测记法外业操作方便,外业作业时间短,是测绘人员常采用的作业方法。测记法按使用仪器的不同可区分为全站仪法数据采集和RTK法数据采集,它们都有无码作业和简码作业之分。

一、全站仪法数据采集

使用全站仪进行野外数据采集是目前较为广泛的一种方法。首先在已知点(等级控制点、图根点或支站点)上安置全站仪,并量取仪器高,若使用电子手簿,连接好电子手簿。然后启动操作全站仪和电子手簿,对仪器的有关参数进行设置,如外界温度、大气压,使用的棱镜常数,仪器的比例误差系数等。随后调用全站仪中数据采集程序,输入测站点,后视定向点信息。在开始采集数据前还需要选择第三个已知点进行测量,用其测量值与已知坐标值相比较,如果二者差值在限差以内,则可进行下一步碎部点数据采集工作,如果出现错误或超限情况,可从以下方面来查找问题:检查已知点和定向点的坐标值是否输错、已知点成果表是否抄错、成果计算是否有误、仪器设备是否有故障等;如果在测站点上不方便或者找不到第三个已知检査点,可直接测量后视定向点来检査。定向检査通过后,即可开始数据采集。特殊情况下也可在通视良好、测图范围广的地点安置全站仪,利用全站仪中后方交会的功能进行自由设站,先测算出测站点的坐标,再用该点作为已知点进行数据采集。

下面以徕卡TS02全站仪为例,具体介绍全站仪数据采集方法。为满足不同的功能应用需求,徕卡TS02全站仪安装内置标配程序和选配程序,其中标配程序有测量、放样、自由设站、高程传递、建筑轴线法、面积(平面&表面)体积计算、对边测量、悬高测量、隐蔽点测量、偏心测量、参考线、道路放样等程序,选配程序有参考弧、参考面、隧道测量、油罐测量等。

开机后,显示主菜单:

通过导航键选择,按确认键即可进入相应的功能。

1.仪器设置

(1)基本设置

从主程序-配置-常规设置中,设置倾斜补偿和方位改正的状态,单轴倾斜补偿是指仅对垂直角进行补偿,双轴倾斜补偿是指垂直角和水平角都得到补偿。当仪器架设在不稳定的地方如抖动的平台、船上等,应关闭补偿器,避免因抖动造成补偿器超出工作范围而无法进行测量工作。一般情况下,选择双轴补偿,并方位改正设置为打开状态。

从主程序-配置-EDM设置中,选择测量模式。(1)P-标准,使用棱镜的精测模式。(2)NP-标准,无棱镜测距模式。(3)NP-跟踪,无棱镜连续测距模式。(4)带棱镜(>),使用棱镜进行长距离测量模式。(5)P-快速,使用棱镜快速测距模式,测量速度提高但精度降低。(6)P-跟踪,使用棱镜连续测距模式。(7)反射片,使用反射片测距模式。若使用免棱镜测量模式,当待测点反射率较高(90%以上),测程可达400多米。若使用非徕卡棱镜,则要输入相应的棱镜常数。

进入任一测量程序,选择功能键,通过翻页功能,设置距离单位和角度单位。距离单位有美制英尺(US-ft)、国际单位英尺(INT-ft)、美制英尺-英寸1/8(ft-in1/8)、米等,角度单位有格(百分度制gon)、度(十进制)、度分秒、密位(mil)等,国内用户一般选择米为距离单位、度分秒为角度单位。

其他设置可按默认值设置。

(2)作业设置

设置作业相当于建立一个用户目录,把不同类型的测量数据如碎部点测量数据、编码、已知点、测站点、定向点等都保存该目录下,可以单独管理,分别输出、编辑或删除。内业数据传输时,全站仪连接电脑后,可以在该目录下导出所需数据。作业名称由字母和/或数字组成,可根据个人习惯命名。

(3)测站设置

测站设置程序就是为计算待测目标点的三维坐标值提供起算数据。要求输入测站点和定

向点信息。定向方法分角度定向和坐标定向,角度定向是指已知测站点和定向点的方位角,设站时输入该已知方位角,瞄准定向点进行设定;坐标定向是指已知后视点坐标,设站时可通过列表查找该点坐标或输入进行设定。

2.数据采集的操作步骤

(1)键入控制点坐标

使用全站仪在野外采集数据时,通常先在室内将图根控制点坐标逐个键入或按文件形式导入全站仪,以减轻测站安置工作量。先由主菜单中的管理进入已知点编辑:——选择作业。

——新建已知点。

——依次输入N(x),E(y),Z(H)坐标数据,根据提示确认。

——亦可对已输入的点进行编辑修改、删除等操作。

(2)整置仪器

在测站点上安置仪器,打开仪器电源开关,在红外激光和屏幕电子水准管的辅助下对中、整平仪器。

(3)设置作业

在主菜单下,选择程序-测量-设置作业,输入数据采集文件名。

(4)设置测站

通过列表查找测站点或输入测站点坐标,确定后提示输入仪器高。

(5)设置定向

按F1键,进入人工输入功能,输入定向方位角,按测存即可。若按F2键,则进行坐标定向,通过列表查找后视点或输入后视点坐标,测存,确定即可。

(6)碎部点测量

按F4键,进入碎部点测量界面,按F1键即开始碎部点测量。照准目标(棱镜),依次输入点号、编码、目标高(镜高),选择某一测量方式(如斜距(SD)或坐标(NEZ))开始测量、记录。

二、RTK法数据采集

利用RTK法进行数据采集,在开始测量之前,首先要对仪器和控制软件进行正确的设置,然后才能测得符合要求的结果。现以华测X90 RTK为例,具体的操作步骤如下。1.安装基准站

基准站的架设包括GPS天线的安装,电台天线的安装,以及GPS天线、电台天线、基准

站接收机、数传电台、蓄电池之间电缆连线的连接。架设时,对于电台模式,发射天线要远离GPS接收机3m以上,并注意各个脚架的稳固性,避免被大风刮倒的可能性。

选择基准站的位置有以下要求:

(1)周围应便于安置和操作仪器,视野开阔,视场内障碍物的高度角不宜超过15°。

(2)远离大功率无线电发射源(如电视台、电台、微波站等),其距离不小于200 m;远离高压输电线和微波无线电信号传送通道,其距离不得小于50 m。

(3)附近不应有强烈反射卫星信号的物体(如大型建筑物等)。

(4)远离人群及交通比较繁忙的地段,避免人为的碰撞或移动。

2.配置坐标系统

根据测童任务的要求和当地的投影带及投影标高情况,在手簿中选择或输入正确的坐标系统、椭球参数等,其操作为:单击“配置\坐标系管理”选项,弹出如图8-35所示的对话框,在其中进行配置。

图8-35 坐标系统配罝

3.新建、保存任务

选择“文件\新建任务”选项,输入自己工作的任务名,选择工作的坐标系统,以及需要描述的情况等。新建完任务后一定要保存任务,否则新建下一个任务会使当前任务的测量数据丢失。

4.设置基准站

选择“配置\基准站”选项,如图8-36所示。

数据采集系统简介研究意义和应用.doc

一前言 1.1 数据采集系统简介 数据采集,是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机(或微处理器)的测量软硬件产品来实现灵活的、用户自定义的测量系统。该数据采集系统是一种基于TLC549模数转换芯片和单片机的设备,可以把ADC采集的电压信号转换为数字信号,经过微处理器的简单处理而交予数码管实现电压显示功能,并且通过与PC的连接可以实现计算机更加直观化显示。 1.2 数据采集系统的研究意义和应用 在计算机广泛应用的今天,数据采集的在多个领域有着十分重要的应用。它是计算机与外部物理世界连接的桥梁。利用串行或红外通信方式,实现对移动数据采集器的应用软件升级,通过制订上位机(PC)与移动数据采集器的通信协议,实现两者之间阻塞式通信交互过程。在工业、工程、生产车间等部门,尤其是在对信息实时性能要求较高或者恶劣的数据采集环境中更突出其应用的必要性。例如:在工业生产和科学技术研究的各行业中,常常利用PC或工控机对各种数据进行采集。这其中有很多地方需要对各种数据进行采集,如液位、温度、压力、频率等。现在常用的采集方式是通过数据采集板卡,常用的有A/D 卡以及422、485等总线板卡。卫星数据采集系统是利用航天遥测、遥控、遥监等技术,对航天器远地点进行各种监测,并根据需求进行自动采集,经过卫星传输到数据中心处理后,送给用户使用的应用系统。 1.3 系统的主要研究内容和目的 本课题研究内容主要包括:TLC549的工作时序控制,常用的单片机编辑C语言,VB 串口通信COMM控件、VB画图控件的运用等。 本课题研究目的主要是设计一个把TLC549(ADC)采集的模拟电压转换成八位二进制数字数据,并把该数据传给单片机,在单片机的控制下在实验板的数码管上实时显示电压值并且与计算机上运行的软件示波器连接,实现电压数据的发送和接收功能。

资源数据采集技术方案

资源数据采集技术方案 公司名称 2011年7月 二O一一年七月

目录 第1 部分概述 (3) 1.1 项目概况 (3) 1.2 系统建设目标 (3) 1.3 建设的原则 (4) 1.3.1 建设原则 (4) 1.4 参考资料和标准 (5) 第2 部分系统总体框架与技术路线 (5) 2.1 系统应用架构 (6) 2.2 系统层次架构 (6) 2.3 关键技术与路线 (7) 第3 部分系统设计规范 (9) 第4 部分系统详细设计 (9)

第1 部分概述 1.1 项目概况 Internet已经发展成为当今世界上最大的信息库和全球范围内传播知识的主要渠道,站点遍布全球的巨大信息服务网,为用户提供了一个极具价值的信息源。无论是个人的发展还是企业竞争力的提升都越来越多地依赖对网上信息资源的利用。 现在是信息时代,信息是一种重要的资源,它在人们的生活和工作中起着重要的作用。计算机和现代信息技术的迅速发展,使Internet成为人们传递信息的一个重要的桥梁。网络的不断发展,伴随着大量信息的产生,如何在海量的信息源中查找搜集所需的信息资源成为了我们今后建设在线预订类旅游网重要的组成部分。 因此,在当今高度信息化的社会里,信息的获取和信息的及时性。而Web数据采集可以通过一系列方法,依据用户兴趣,自动搜取网上特定种类的信息,去除无关数据和垃圾数据,筛选虚假数据和迟滞数据,过滤重复数据。直接将信息按照用户的要求呈现给用户。可以大大减轻用户的信息过载和信息迷失。 1.2 系统建设目标 在线预订类旅游网是在线提供机票、酒店、旅游线路等旅游商品为主,涉及食、住、行、游、购、娱等多方面的综合资讯信息、全方位的旅行信息和预订服务的网站。 如果用户要搜集这一类网站的相关数据,通常的做法是人工浏览网站,查看最近更新的信息。然后再将之复制粘贴到Excel文档或已有资源系统中。这种做法不仅费时费力,而且在查找的过程中可能还会遗漏,数据转移的过程中会出错。针对这种情况,在线预订类旅游网信息自动采集的系统可以实现数据采集的高效化和自动化。

野外数据采集与巡护信息系统

5.5.1.2 野外数据采集与巡护信息系统 5.5.1.2.1 需求分析 野外考察是获取数据资源的重要方法之一,它是保护自然保护区物种免受 人为破坏和开展大熊猫等物种的生态生物学研究的基础。卧龙及周边其它大熊 猫自然保护区每年都需要开展定期和不定期的野外调查,以获取物种分布和人 为干扰等数据。自然保护区的野外调查分为野外监测和野外巡护,获取的数据 包括动物生境信息、大熊猫粪便咬节、样线调查、竹子样方和植被样方等。 目前,卧龙以及其它大熊猫自然保护区的野外调查数据获取方式是科研人 员提前准备好一定格式的纸质报表,在野外考察过程中手写录入。待回到办公 室后,再将获取的数据录入计算机系统。这种方法的缺点:(1)需要录入两次,效率较低,而且容易出错;(2)实时性差;(3)格式不规范;(4)无法集成采集多信息源(文本、图片、音频、视频等);(5)纸质材料在野外环境下容易破损和丢失,不便保存,也影响到数据的有效长期保存。另外在卧龙保护区 的保护和科研工作中,都要进行野外巡护,通常来说工作人员都是携带相关的 设备去野外进行调研,然后记录下这次野外巡护过程中经过的地点,在这些地 点拍的照片或者记录的信息,作为这次巡护过程的信息保存下来。目前这种记 录过程都是靠人工完成,而且无法把巡护的路径和照片等信息进行自动集成整合,实现野外巡护多源信息的自动化集成和保存。所以需要一套野外观测数据 的自动化采集与巡护信息系统。 5.5.1.2.2 标准规范 《全球定位系统(GPS)测量规范(GBT18314-2001)》 《全球定位系统城市测量技术规程(CJJ 73-97)》

《国家三角测量规范(GB/T 17942-2000)》 《数字地形图系列和基本要求(GB/T 18315-2001)》 《数字测绘产品质量要求第1 部分(GB/T 1794.1-2000)》 《软件工程术语(GB/T 11457)》 《计算机软件开发规范(GB 8566)》 《计算机软件产品开发文件编制指南(GB 8567)》 《计算机软件质量保证计划规范(GB/T 12504)》 《计算机软件配置管理计划规范(GB/T 12505)》 《软件配置管理计划(CADCSC)》 5.5.1.2.3 建设方案 野外数据采集与巡护信息系统主要是根据自然保护区科研人员野外监测和巡护的需求,能够动态定制数据采集信息,在野外考察过程中通过携带的移动 设备实现数据的数字化采集,并能够将采集到的科学数据通过网络或者存储卡自动导入后台数据库系统中。同时实现巡护路径和巡护信息获取与保存、无缝集成和可视化展现,实现保护区巡护信息的有效管理,为巡护工作提供参考,更好的促进保护工作。该系统应主要实现如下功能: (1)野外数据采集: 1)基础数据维护:维护野外采集点的信息。 2)采集任务管理:生成采集任务,并将其发送到采集终端上。 3)采集数据管理及分析:接受采集到的信息,并根据业务需要进行分析和管理。 4)身份认证:完成野外作业人员的身份认证管理。保证调查结果真实有效。

实时数据采集系统方案

实时数据采集系统项目解决方案

目录 1、背景 (2) 1. 1、引言 (2) 1.2、项目目标 (2) 2、应用系统体系结构 (3) 2.1、实时数据采集系统的原理构架 (3) 3、实时数据采集系统的主要功能….. .............................................................. .3 4、实时数据采集系统主要技术特征 (4) 4.1、数据传输方面 (5) 4.2、数据存储方面 (5) 4.3、历史数据 (5) 4.4、图形仿真技术 (5) 5、实时数据采集系统性能特征 (5) 5.1、数据具有实时性 (6) 5.2、数据具有稳定性 (6) 5.3、数据具有准确性 (6) 5.4、数据具有开放性 (6) 6、DCS及实时数据采集机连接说明 (6) 7、系统运行环境说明 (7) 7.1系统网络环境说明 (8) 7.2硬件环境说明 (8)

1、背景 1. 1、引言 随着国家大力推进走新型工业化道路,以信息化带动工业化,以工业化促进信息化。电力企业面临着日趋激烈的竞争。降低成本,提高生产效率,快速响应市场,是电力企业不断追求的目标。要实现上述目标,必须把企业经营生产中的各个环节,包括市场分析、经营决策、计划调度、过程监控、销售服务、资源管理等全部生产经营活动综合为一个有机的整体,实现综合信息集成,使企业在经营过程中保持柔性,因此,建立全厂统一的生产实时数据平台,就成了流程企业今后生产信息化的关键。 1.2、项目目标 “实时数据采集系统”是为生产过程进行实时综合优化服务信息系统提供数据基础。 企业信息化建设的关键问题是集成,即在获取生产流程所需全部信息的基础上,将分散的控制系统、生产调度系统和管理决策系统有机地 集成起来,不同业务和系统间能够实时的交换和共享数据。 ?建立统一的企业数据模型。 ?解决分期建设的不同应用系统、不同电厂之间彼此隔离、互不匹配、 互不共享的“信息孤岛”问题。 ?保证数据来源一致性,提高数据经过层层抽取之后的可信度。 ?汇总、分析和展示企业历史的业务数据。 ?企业管理层能够直接根据各个电厂的真实数据进行统计数据、分析 逐步钻取直到数据根源。 ?透明底层的数据,监督统计分析数据的准确性。

野外数据采集方法

野外数据采集方法 野外数据采集包括两个阶段:控制测量、碎部点采集。控制测量的方法与传统的测图中的控制测量基本相似,但以导线测量为主的方式测定控制点位置。碎部点数据采集与传统的作业方法有较大的差别。这里主要介绍采用全站仪进行碎部点数据采集的两种方法。 一、测记法数据采集 碎部点的数据采集每作业组一般需要仪器观测员1人、绘草图领尺(镜)员1人、立尺(镜)员1~2人,其中绘草图领尺员是作业组的核心、指挥者。作业组的仪器配备:全站仪1台、电子手簿1台、通讯电缆1根、对讲机1副、单杆棱镜1~2个,皮尺1把。 数据采集之前,先将作业区的已知点成果输入电子手簿。绘草图领尺员了解测站周围地形、地物分布,并及时勾绘一份含主要地物、地貌的草图(也可在放大的旧图上勾绘),以便观测时标明所测碎部点的位置及点号。仪器观测员在测站点上架好仪器、连接电子手簿,并选定一已知点进行观测以便检查。之后可以进行碎部点的采集工作。采集碎部点时,观测员与立镜员或绘草图员之间要及时联络,以便使电子手簿上记录的点号和草图上标注的点号保持一致。绘草图员必须把所测点的属性标注在草图上,以供内业处理、图形编辑时用。草图的勾绘要遵循清晰、易读、相对位置准确、比例一致的原则。一个测站的所有碎部点测完之后,要找一个已知点重测进行检查。 二、电子平板数据采集 测图时作业人员一般配备:观测员1人、电子平板(便携机)操作员1人、立尺(镜)员1~2人。 进行碎部测图时,在测站点安置全站仪,输入测站信息:测站点号、后视点号及仪器高,然后以极坐标法为主,配合其它碎部点测量方法施测碎部点。例如电子平板测 绘系统中,常用的方法有极坐标法、坐标输入法,它们的数据输入 可以通过通信方式由全站仪直接传送到计算机,也可以采用设计友 好、清晰的图形界面对话框输入,如图6-31。 对于电子平板数字测图系统,数据采集与绘图同步进行,即 测即绘,所显即所测。 图6-31 碎部点测量输入对话框

WEB数据采集系统

WEB数据采集系统 一.概述 面对互联网海量的信息,政府机关、企事业单位和研究机构都迫切希望获取与自身工作相关的有价值信息,如何方便快捷地获取这些信息就变得至关重要了。如果采用原始的手工收集方式,费时费力且毫无效率,面对越来越多的信息资源,劳动强度和难度可想而知。因此,现代的政府和企业都迫切需要一种能够提供高质量和高效运作的信息采集解决方案。 本系统针对不同行业用户的应用需求,以抓取互联网为目的,实现在用户自定义规则下,从互联网中抓取指定信息。抓取的信息可存入数据库或直接入库发送至指定栏目,实现网站信息及时更新和数据量提升,从而使得搜索引擎收录量提升,扩大企业信息宣传推广力度。 二.典型应用 1. 政府机关 ●实时跟踪、采集与业务工作相关的信息来源。 ●全面满足内部工作人员对互联网信息的全局观测需求。 ●及时解决政务外网、政务内网的信息源问题,实现动态发布。 ●快速解决政府主网站对各地级子网站的信息获取需求。 ●全面整合信息,实现政府内部跨地区、跨部门的信息资源共享与有效 沟通。 ●节约信息采集的人力、物力、时间,提高办公效率。

2. 企业 ●实时准确地监控、追踪竞争对手动态,是企业获取竞争情报的利器。 ●及时获取竞争对手的公开信息以便研究同行业的发展与市场需求。 ●为企业决策部门和管理层提供便捷、多途径的企业战略决策工具。 ●大幅度地提高企业获取、利用情报的效率,节省情报信息收集、存 储、挖掘的相关费用,是提高企业核心竞争力的关键。 ●提高企业整体分析研究能力、市场快速反应能力,建立起以知识管 ,是提高企业核心竞争力的神经中枢。 理为核心的“竞争情报数据仓库” 3. 新闻媒体 ●快速准确地自动采集数信息。 ●支持每天对数万条新闻进行有效抓取。 ●支持对所需内容的智能提取、审核。 ●实现互联网信息内容采集、浏览、编辑、管理、发布的一体化。三. 系统构架 工作过程描述 采集的目的就是把对方网站上网页中的某块文字或者图片等资源下载到自己的站网上,这个过程需要做如下配置工作:下载网页配置,解析网页配置,修正结果配置,数据输出配置。如果数据符合自己要求,修正结果这步可省略。配置完毕后,把配置形成任务(任务以XML格式描述),采集系统

数据采集系统的历史与发展

数据采集系统的历史与发展 数据采集系统起始于20设计50年代,1956年美国首先研究了用在军事上的测试系统,目标是测试中不依靠相关的测试文件,由非熟练人员进行操作,并且测试任务是由测试设备高速自动控制完成的。由于该种数据采集测试系统具有高速性和一定的 灵活性可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。大约在60年代后期,国外就有成套的数据采集设备产品进入市场,此阶段的数据采集设备和系统多属于专业的系统。 20世纪70年代中后期,随着微型的发展,诞生了采集器,仪表同计算机溶于一 体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自是这一类的 典型代表。这种接口系统采用积木式结构,把相应的接口卡装在专用的机箱内,然后 由一台计算机控制。第二类系统在工业现场应用较多。这两种系统中,如果采集测试 任务改变,只需将新的仪用电缆接入系统,或将新卡在添加的专业的机箱里即可完成 硬件平台中建,如果采集测试任务改变,只需将新的仪用电缆接入系统,或将新卡再 添加到专用的机箱即可完成硬件平台重建,显然,这种系统比专用系统灵活得多。20 世纪80年代后期,数据采集系统发生了极大的变化,工业计算机,单片机和大规模集成电路的组合,用软件管理,使系统的成本降低,体积减小,功能成倍增加,数据处 理能力大大加强。 20世纪90年代至今,在国际上技术先进的国家,数据采集技术已经在军事,航 空电子设备及宇航技术,工业等领域被广泛应用。由于集成电路制造技术的不断提高,出现了高性能,高可靠性的单片数据采集系统(DAS)。目前有的DAS产品精度已达16位,采集速度每秒达到几十万次以上。数据采集技术已经成为一种专门的技术,在工业领域得到了广泛的应用。该阶段数据采集系统采用更先进的模块式结构,根据不 同的应用要求,通过简单的增加和更改模块,并结合系统编程,就可扩展或修改系统,迅速地组成一个新的系统。该阶段并行总线数据采集系统高速,模块化和即插即用方 向发展,典型系统有VXI总线系统,PCI,PXI总线系统等,数据位以达到32位总线宽度,采用频率可以达到100MSps。由于采用了高密度,屏蔽型,针孔式的连接器和卡 式模块,可以充分保证其隐定性急可靠性,但其昂贵的价格是阻碍它在自动化领域取 得了成功的应用。 串行总线数据采集系统向分布式系统结构和智能化方向发展,可靠性不断提高。 数据采集系统物理层通信,由于采用RS485双绞线,电力载波,无线和光纤,所以其技术得到了不断发展和完善。其在工业现场数据采集和控制等众多领域得到了广泛的 应用。由于目前局域网技术的发展,一个工厂管理层局域网,车间层的局域网和底层 的设备网已经可以有效地连接在一起,可以有效地把多台数据采集设备联在一起,以 实现生产环节的在线实时数据采集与监控。

数据采集系统

目录 摘要 第1章引言 (3) 第2章研华ADAM模块简介 (4) 第2.1节 ADAM4017模拟量输入模块 (4) 第2.2节 ADAM-4520 隔离转换器 (4) 2.2.1 RS-232接口和RS-485接口 (5) 第3章监控组态软件概述 (7) 第3.1节组态与监控组态软件 (7) 第3.2节组态王6.5的介绍 (7) 3.2.1 组态王6.5的程序组成 (8) 3.2.2 组态王6.5变量和命令语言 (10) 第4章数据采集系统的总体结构 (12) 第4.1节数据采集系统的硬件结构 (12) 第4.2节数据采集系统的监控界面设计 (13) 4.2.1 通讯组态 (13) 4.2.2 画面组态 (19) 第5章结论 (24) 参考文献 (26) 致谢 (27)

摘要 文章介绍了以数据采集模块,通讯模块和监控组态软件为基础的多通道模拟量数据采集系统。系统采用研华ADAM40178通道A/D模块进行现场数据的采集,通过研华ADAM4520模块传输到计算机,利用组态王软件对数据进行分析处理,并实时显示数据。 本系统数据库技术、计算机图形接口技术于一体, 实现了系统的动态显示、报警、数据记录, 并提供友好的人机界面, 可靠性高、可维护性强。 关键词:数据采集系统;ADAM4017;ADAM4520;组态王软件 Abstract This article introduced a data acquisition system based on data acquisition module,communication module and monitoring and control configuration software.It use YanHua ADAM4017 PLC to make acquisition of those field data.Then we use YanHua ADAM4520 module to transmite to the computer making data processing and analysis with Kingview softwre and at the same time ,displaying the data. This system includes control technology,database technology and computer graphics interface technology,it achieves dynamic display and warning,data records. In addition,our system provides friendly man-machine interface with advantages such as high reliability and good maintainability. Keywords:data acquisition system,ADAM4017,ADAM4520,Kingview softwre

数据采集系统综合复习资料

《数据采集系统》综合复习资料 填空题 1. 运算放大器构成的放大电路中输入阻抗最大的 放大器。 2. 跟随器在信号调理电路中的主要作用是 。 3. S/H的捕捉时间是指 。 4. A/D转换器常用的编码方式有 、 。 5. I/O端口的寻址方式包括 和 。 6. 舌簧继电器包括 、 两种类型。 7. 半导体式多路开关的特点是 。 8. 多路模拟开关的泄漏是指 。 9. 数据采集系统的发展趋势是、和。 10.某DA是一种10位芯片,其输出分辨率为 。 11.传感器的作用是

。 12.量化是指 。 13.VFC是 器件。 14.双积分A/D转换是基于 原理。 15.双积分A/D转换包括 、 、 三个阶段。 16.12位的量化器,满量程电压为10V,量化间隔为 ,最大 输出为 。 17.DAC的线性误差是指 。 18.某数据采集系统,有4路模拟量输入通道,每路信号最高频率可达50KHz,若要保证采样的信号不失真,则多路开关的切换速度至少为 Hz。 19.12位A/D,单极性应用,V FS=10V,对其调满度时,输入为 V,输出应在 至 之间变化。

20.放大器的零点偏移是指 。 21.测量放大器的特点有 、 、 。 22.某压力测量系统,要求压力测量范围为1Pa~10Pa,则所选A/D转换器的字长至少应为 位才能满足要求。 23.n位A/D转换器的最大输出为 。 24.某12位D/A,-5V—5V双极性应用,输出电压为4V时对应的输入数 字量为。 25.D/A转换器主要由、、数字量接口和电阻开关网络四部分构成。 26.电压比较器的作用是 。 27.基本比较电路包括 和 。 28.电气机械式式多路开关的特点是 。

超高速数据采集技术发展现状

2003年第17卷第4期测试技术学报V o l.17 N o.4 2003 (总第46期)JOURNAL OF TEST AND M EASURE M ENT TECHNOLOG Y(Sum N o.46) 文章编号:167127449(2003)0420287206 超高速数据采集技术发展现状 Ξ马海潮 (辽宁省葫芦岛市92941部队,辽宁葫芦岛市125001) 摘 要: 介绍超高速数据采集技术发展现状和动态.概述当前领先的几种超高速数据采集板卡;给出了目 前主要超高速ADC芯片,对超高速ADC芯片静动态性能指标进行了描述. 关键词: 超高速数据采集系统;闪式ADC;标准总线 中图分类号: T P274 文献标识码:A Extra H igh Speed Data Acquisition Technology D evelop m en ts M A H ai2chao (N o.92941PLA,L iaoning P rovince,H uludao125001,Ch ina) Abstract: T he cu rren t ex tra h igh speed data acqu isiti on techno logy developm en ts are summ arized. Several leading ex tra h igh sp eed data acqu isiti on boards in m arket are given.M ain p roducts of ex tra h igh speed flash ADC ch i p s are p resen ted.T he static and dynam ic characteristics of an ex tra h igh speed ADC ch i p are described. Key words:h igh2sp eed data acqu isiti on system;flash ADC;standard bu s 将模拟信号转换为数字信号、并进行存储和计算机处理显示的过程称为数据采集,而相应的系统则为数据采集系统(D ata A cqu isiti on System)[1~3].数据采集技术是信息科学的一个重要分支,它研究信息数据的采集、存储、处理及控制等工作,它与传感器技术、信号处理技术、计算机技术一起构成了现代检测技术的基础. 由于数据采集技术可以使许多抽象的模拟量数字化,进而给出其量值,或通过信号处理对该模拟量进行分析.与模拟系统相比,数字系统具有精度高、可靠性高等优点,因此,数据采集技术的应用越来越广泛.如温度、压力、位置、流量等模拟量,可以通过不同类型的传感器将其转换为电信号模拟量(如电压、电流或电脉冲等),再通过适当的信号调理将信号送给模拟数字转换器(ADC),使其转换为可以进一步处理的数字信号送给数字信号处理器或微处理机.反之,数字信号处理器或微处理机可通过数字模拟转换器(DA C)将其产生的数字信号转换为模拟信号,再通过信号调理进行输出. 随着科学技术的发展和数据采集技术的广泛应用,对数据采集系统的许多技术指标,如采样率、分辨率、存储深度、数字信号处理速度、抗干扰能力等方面提出了越来越高的要求,其中前两项为评价超高速数据采集系统的最重要技术指标. 提高数据采集系统的采样率可更深入、更细微、更精确地了解物理量变化特性.在许多应用场合,需要超高速数据采集系统来完成许多低速数据采集系统无法完成的工作.在雷达制导方面,需超高速、高精度地大量获取目标数据,并进行实时处理以完成对运动目标的检测和识别.在观测供电传输线上的浪涌电流时,由于浪涌的持续时间仅有几百纳秒,而电压的变化范围则可达几千伏,要精确地了解其变化 Ξ收稿日期:2003205219  作者简介:马海潮(1962-),男,博士,副总工程师,主要从事测控总体和调整数字信号处理系统硬件和软件设计等研究.

综合数据采集系统测试分析

综合数据采集系统测试分析 【摘要】本文阐述了综合数据采集系统测试的重要性,归纳了测试依据与标准,并对典型故障进行分析和总结。 【关键词】综合数据采集系统;参数测试;总线 1、引言 随着直升机不断向高度综合化、智能化和通用化方向发展,用于记录飞机姿态信息和各种重要飞行信息的飞行参数记录系统[1]逐渐被综合数据采集系统取代,其功能也得到了进一步扩展。综合数据采集系统应用AFDX、1553B等数字总线技术实现对直升机维护数据、状态数据和飞行数据的采集。本文阐述了综合数据采集系统试验测试依据与标准,对试验测试的典型故障进行分析和总结。 2、测试的意义及必要性 综合数据采集系统是直升机重要机载系统之一。所记录的数据经地面数据处理站分析处理后,可用于直升机维护、训练评估和事故分析[2]。由于部件集成度高,与机载设备交联复杂,采集信号多样化,因此为了保障系统工作的可靠性,需要对其性能进行检测。 建立综合数据采集系统的试验能力,其意义和必要性主要体现在以下几点:(1)在科研、生产过程中,如果将系统部品直接装机,一旦出现故障无法定位,还会给其它交联的机载设备带来安全隐患,因此需要对其进行装机前校验。 (2)由于综合数据采集系统主要应用于直升机飞行事故评估,其记录数据的可靠性将直接影响判定结论,因此必须建立系统试验能力,实现对系统记录数据可靠性检测。 (3)对综合数据采集系统试验能力的建设,利于对其它机载系统故障的判读与解析,极大地提高了解决总装通电和试飞时故障问题的能力。 (4)可建立对单机试验测试数据的管理,形成测试档案提供给用户,为直升机今后的故障预测与系统维护提供科学依据。 3、测试依据与标准 按照GJB6346-2008《军用直升机飞行参数采集要求》的规定,采集信号的类型分为模拟量、数字量、开关量和频率量信号,标准中对各类参数的采集精度、采样间隔、信号源和采集范围都进行了明确规定。在对综合数据采集系统记录参数进行测试时,结合此标准,针对不同机型用户的要求,来制定相应的系统参数采集标准。 试验测试时对对参数的采集应遵循以下原则: (1)参数的模拟范围应全面、准确。既能够反映整机工作状态,又能够准确反映飞机状态急剧变化及飞机系统工作瞬间异常变化的情况。 (2)对每个参数的采集点设计,应从机载信号源头进行引接,确保真实、准确的反映机载设备的工作状态,中间未经转接与数据处理。 (3)与机载其它系统交联进行参数采集测试时,不能影响其它系统的正常工作。 4、典型故障分析 4.1采集点选择错误 对发动机系统的“发动机停车”参数进行测试时,发现不管如何模拟信号状态变化,测试结果均显示“停车”状态。

高速数据采集技术发展综述

高速数据采集技术发展综述 摘要:高速数据采集系统广泛应用于军事、航天、航空、铁路、机械等诸多行业。区别于中速及低速数据采集系统,高速数据采集系统内部包含高速电路,电路系统1/3以上数字逻辑电路的时钟频率>=50MHz;对于并行采样系统,采样频率达到50MHz,并行8bit以上;对于串行采样系统,采样频率达到200MHz,目前广泛使用的高速数据采集系统采样频率一般在200KS/s~100MS/s,分辨率16bit~24bit。本篇文章主要简单介绍高速数据采集技术的发展,高速数据采集系统的结构、功能、原理、实现形式以及一些主要的应用。 关键词:高数数据采集系统、系统结构、系统原理、系统功能、实现形式、应用举例。 引言:高速数据采集技术在通信、航天、雷达等多个领域中广泛应用。随着软件无线电、通信技术、图像采集等技术的发展,对数据采集系统的要求越来越高,不仅要求较高的采集精度和采样速率,还要求采集设备便携化、网络化与智能化,并且需要将采集信息稳定的传输到计算机,进行显示与数据处理。同时,以太网协议已经成为当今局域网采用的最通用的通信协议标准。在嵌入式领域中,将以太网协议与数据采集系统相结合,形成局域网,实现方便可靠的数据传输与控制,是当前的研究热点。 1. 高速数据采集的发展 数据采集系统起始于20世纪50年代,由于数据采集测试系统具有高速性和~定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。到了70年代中后期,在数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,另一类是工业现场数据采集系统。就使用的总线而言,实验室数据采集系统多采用并行总线,工业现场数据采集系统多采用串行数据总线。随着微型机的发展,诞生了采集器、仪表等同计算机融为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因此获得了惊人的发展他3。随着计算机的普及应用,数据采集系统得到了极大的发展,基于标准总线并带有高速DSP的高速数据采集板卡产品也越来越多,技术先进、市场主流的厂商主要有Spectrum Signal Processing,SPEC,Signatec,Acquisition Logic,Blue Wave等公司 2001年Acquisition logic公司推出了基于PCI总线,采样率为500MS/s,1GS/s的8bit数据采集板卡AL500和AL51G,它的存储深度分别为64MB,256MB和1000MB三种。PCI 总线为主模式,数据宽度32bit,时钟频率33MHz,在突发模式下传输速率可达到133MB /s。两种板卡还同时具有数字信号处理功能:通过板卡上的现场可编程门阵列FPGA来实

数据采集的新技术及发展动态

数据采集的新技术及发展动态 1、数据采集系统的历史与发展 数据采集系统起始于20世纪50年代,1956年美国首先研究了用在军事上的测试系统,目标是测试中不依靠相关的测试文件,由非熟练人员进行操作,并且测试任务是由测试设备高速自动控制完成的。由于该种数据采集测试系统具有高速性和一定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。大约在60年代后期,国外就有成套的数据采集设备产品进入市场,此阶段的数据采集设备和系统多属于专用的系统。20世纪70年代中后期,随着微型机的发展,诞生了采集器、仪表同计算机溶为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因此获得了惊人的发展。 从70年代起,数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,另一类是工业现场数据采集系统。就使用的总线而言,实验室数据采集系统多采用并行总线,工业现场数据采集系统多采用串行数据总线。 20世纪80年代随着计算机的普及应用,数据采集系统得到了极大的发展,开始出现了通用的数据采集与自动测试系统。该阶段的数据采集系统主要有两类,一类以仪器仪表和采集器、通用接口总线和计算机等构成。例如:国际标准ICE625(GPIB)接口总线系统就是一个典型的代表。这类系统主要用于实验室,在工业生产现场也有一定的应用。第二类以数据采集卡、标准总线和计算机构成,例如:FTQ总线系统是这一类的典型代表。这种接口系统采用积木式结构,把相应的接口卡装在专用的机箱内,然后由一台计算机控制。第二类系统在工业现场应用较多。这两种系统中,如果采集测试任务改变,只需将新的仪用电缆接入系统,或将新卡再添加到专用的机箱即可完成硬件平台重建,显然,这种系统比专用系统灵活得多。 20世纪80年代后期,数据采集系统发生了极大的变化,工业计算机、单片机和大规模集成电路的组合,用软件管理,使系统的成本降低,体积减小,功能成倍增加,数据处理能力大大加强。 20世纪90年代至今,在国际上技术先进的国家,数据采集技术已经在军事、航空电子设备及宇航技术、工业等领域被广泛应用。由于集成电路制造技术的不断提高,出现了高性能、高可靠性的单片数据采集系统(DAS)。目前有的DAS 产品精度已达16位,采集速度每秒达到几十万次以上。数据采集技术已经成为一种专门的技术,在工业领域得到了广泛的应用。该阶段数据采集系统采用更先进的模块式结构,根据不同的应用要求,通过简单的增加和更改模块,并结合系统编程,就可扩展或修改系统,迅速地组成一个新的系统。 该阶段并行总线数据采集系统向高速、模块化和即插即用方向发展,典型系统有VXI总线系统,PCI、PXI总线系统等,数据位已达到B) 位总线宽度,采样频率可以达到100MSps[1]。由于采用了高密度,屏蔽型,针孔式的连接器和卡式模块,可以充分保证其稳定性及可靠性,但其昂贵的价格是阻碍它在自动化领域普及的一个重要因素。但是,并行总线系统在军事等领域取得了成功的应用。串行总线数据采集系统向分布式系统结构和智能化方向发展,可靠性不断提高。数据采集系统物理层通信,由于采用RS485、双绞线、电力载波、无线和光纤,所以其技术得到了不断发展和完善。其在工业现场数据采集和控制等众多领域得到了广泛的应用。,由于目前局域网技术的发展,一个工厂管理层局域网,车间层的

数据采集系统的设计与实现

长江大学工程技术学院 课程设计报告
课设题目
课程名称




学生姓名




指导教师


数据采集系统的设计与实现 汇编语言+微型计算机技术
信息系
2012 年 8 月 28 日~2012 年 9 月 9 日

目录
目录 长江大学工程技术学院 ..................... 错误!未定义书签。 一、设计目的 ............................. 错误!未定义书签。 二、设计内容 ............................. 错误!未定义书签。 三、硬件设计及分析 ....................... 错误!未定义书签。
1.总体结构图......................... 错误!未定义书签。 2.各部件端口地址设计及分析 ............ 错误!未定义书签。 3.各部件的组成及工作原理 .............. 错误!未定义书签。 四、软件设计及分析 ....................... 错误!未定义书签。 1.总体流程图......................... 错误!未定义书签。 2.主要程序编写及分析.................. 错误!未定义书签。 五、系统调试 ............................. 错误!未定义书签。 1.调试环境介绍........................ 错误!未定义书签。 2. 各部件的调试....................... 错误!未定义书签。 3.调试方法及结果...................... 错误!未定义书签。 六、总结与体会 ........................... 错误!未定义书签。 七、附录 ................................. 错误!未定义书签。

数据采集系统

湖南工业大学科技学院 毕业设计(论文)开题报告 (2012届) 教学部:机电信息工程教学部 专业:电子信息工程 学生姓名:肖红杰 班级: 0801 学号 0812140106 指导教师姓名:杨韬仪职称讲师 2011年12 月10 日

题目:基于单片机的数据采集系统的控制器设计 1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述。 近年来,数据采集及其应用技术受到人们越来越广泛的关注,数据采集系统在各行各业也迅速的得到应用。如在冶金、化工、医学、和电器性能测试等许多场合需要同时对多通道的模拟信号进行采集、预处理、暂存和向上位机传送、再由上位机进行数据分析和处理,信号波形显示、自动报表生成等处理,这些都需要数据采集系统来完成。但很多数据采集系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对操作环境要求高等问题。人们需要一种应用范围广、性价比高的数据采集系统,基于单片机的数据采集系统具有实现处理功能强大、处理速度快、显示直观,性价比高、应用广泛等特点,可广泛应用于工业控制、仪器、仪表、机电一体化,智能家居等诸多领域。总之,无论在那个应用领域中,数据采集与处理越及时,工作效率就超高,取得的经济效益就越大。 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的信号,并送入计算机,然后将计算得到的数据进行显示或打印,以便实现对某些物理量的监测,其中一些数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的市场需求量大,特别是随着技术的发展,可用数据器为核心构成一个小系统,而目前国内生产的主要是数据采集卡,存在无显示功能、无记忆存储功能等问题,其应用有很大的局限性,所以开发高性能的,具有存储功能的数据采集产品具有很大的市场前景。 随着电子技术的迅速发展,,一些高性能的电子芯片不断推出,为我们进行电子系统设计提供的更多的选择和更多的方便,单片机具有体积小、低功耗、使用方便、处理精度高、性价比高等优点,这些都使得越来越广泛的选用单片机作为数据采集系统的核心处理器。一些高性能的A/D转换芯片的出现也为数据采集系统的设计提供了更多的方便,无论是采集精度还是采样速度都比以前有了较大的提高。其中一些知名的大公司如MAXIM公司、TI公司、ADI公司都有推出性能比效突出的 A/D转换芯片,这些芯片普通具有低功耗、小尺寸的特点,有些芯片还具有多通道的同步转换功能。这些芯片的出现,不仅因为芯片价格便宜,能够降低系统设计的成本,而且可以取代以前繁琐的设计方法,提高系统的集成度。 数据采集器是目前工业控制中应用较多的一类产品,数据采集器的研制已经相当成熟,而且数据采集器的各类不断增多,性能越来越好,功能也越来越强大。 在国外,数据采集器已发展的相当成熟,无论是在工业领域,还是在生活中的应用,比如美国FLUKE公司的262XA系列数据采集器是一种小型、便携、操作简单、使用灵活的数据采集器,它既可单独使用又可和计算机连接使用,它具有多种测量

基于PDA的数据采集系统方案

基于PDA的地下管线数据采集系统流程图

1.1概述 在地下管线的生成过程中,取全,取准野外各项原始管线资料信息,是地下管线野外数据采集的主要要求之一,其数据采集的容包括空间定位信息,大量文字描述信息,所涉及的信息种类多,容复杂,信息量大,受人为因素的影响大.目前野外管线数据采集基本维持着野外记录本手写记录的工作方式,这种传统的方法越来越不适应当今信息时代的要求.嵌入式GIS应用于野外数据采集具有无可比拟的优势.基于嵌入式GIS的地下管线野外数据采集系统,是集PDA和嵌入式GIS技术于一身的新型系统,具有便于携带,易于掌握的特点,可改变传统的野外数据采集的工作方式.提高地下管线管理的质量和效率 在Windows Mobile 5.0为系统平台上开发而成。系统在总结现有地下管线普查作业方法的基础上,以提高作业效率、保证数据成果质量为目标,实现数据采集跟踪与外业紧密衔接,优化和改善了传统作业流程,为推进和提升地下管线普查外业一体化流程奠定了基础。 1、管线普查现状存在的主要问题 1)目前管线普查所采用的基本流程图(图1) 2)管线普查中目前存在的主要问题 (1)手工纸质记录维护难度大、查找困难: 由于纸质记录的局限性,当数据量增大时,对图纸记录维护和查询将变得越来越来困难,如果作业小组的草图没有及时的建立成业数据库,则重号、错连、漏入等人为出错几率会直线增加。 (2)由外业管线探测到业建立数据库,中间环节多,出错几率大: 现有的管线普查流程可以看出,由外业管线探测到业建立数据库,白天外业采集作业,晚上业加班录入数据,现在还有的做法是同一管线属性(如埋深、管径数值型属性)事先记录在草图上,再由草图抄写管线探测手簿,然后根据管线探测手簿由业人员建立成管线数据库,管线属性和连接关系至少经过两到三道工序才能建立到数据库中,在不同人员,不同工序的影响下,加大了的数据出错的几率。(3)填写管线探测手簿与业建库加大了业处理工作量:

实验三野外数据采集

实验三全站仪数字测图外业数据采集指导书 一、实验目的与要求 1.掌握用GTS-102N全站仪进行数字测图外业数据采集的作业方法。 2.会使用数字测图系统软件进行数据传输。(如CASS7.0)。 二、实验内容 1.全站仪地面数字测图外业数据采集。 2.全站仪数字化测图的数据传输。 三、实验步骤简要 数字化测图根据所使用设备的不同,可采用两种方式实现:草图法和电子平板法。电子平板法由于笔记本电脑价格较贵,电池连续使用短,数字测图成本高,固实际中多采用草图法。 1.草图法数字测图的流程:外业使用全站仪测量碎部点三维坐标的同时,领图员绘制碎部点构成的地物形状和类型并记录下碎部点点号(必须与全站仪自动记录的点号一致)。 内业将全站仪或电子手簿记录的碎部点三维坐标,通过CASS传输到计算机、转换成CASS 坐标格式文件并展点,根据野外绘制的草图在CASS中绘制地物。如图1所示。 图1草图法数字测图的流程 2.全站仪野外数据采集步骤 ①置仪:在控制点上安置全站仪,检查中心连接螺旋是否旋紧,对中、整平、量取仪器高、开机。 ②创建文件:在全站仪Menu中,选择“数据采集”进入“选择一个文件”,输入一个文件名后确定,即完成文件创建工作,此时仪器将自动生成两个同名文件,一个用来保存采集到的测量数据,一个用来保存采集到的坐标数据。 ③输入测站点:输入一个文件名,回车后即进入数据采集之输入数据窗口,按提示输入测站点点号及标识符、坐标、仪高,后视点点号及标识符、坐标、镜高,仪器瞄准后视点,进行定向。 ④测量碎部点坐标:仪器定向后,即可进入“测量”状态,输入所测碎部点点号、编码、镜高后,精确瞄准竖立在碎部点上的反光镜,按“坐标”键,仪器即测量出棱镜点的坐标,并将测量结果保存到前面输入的坐标文件中,同时将碎部点点号自动加1返回测量状态。再输入编码、镜高,瞄准第2个碎部点上的反光镜,按“坐标”键,仪器又测量出第2个棱镜点的坐标,并将测量结果保存到前面的坐标文件中。按此方法,可以测量并保存其后所测碎

相关主题
文本预览
相关文档 最新文档