当前位置:文档之家› 烟气脱硫脱硝行业介绍

烟气脱硫脱硝行业介绍

烟气脱硫脱硝行业介绍
烟气脱硫脱硝行业介绍

1.烟气脱硫技术

由于我国的大部分煤炭、铁矿资源中含硫量较高,因此在火力发电、钢铁、建材生产过程中由于高温、富氧的环境而产生了含有大量二氧化硫的烟气,从而给我国大气污染治理带来了极大的环保压力。

据国家环保部统计,2012年全国二氧化硫排放总量为2117.6万吨,其中工业二氧化硫排放量1911.7万吨,而分解到三个重点行业分别如下:电力和热力生产业为797.0万吨、钢铁为240.6万吨、建材为199.8万吨,三个行业共计1237.4万吨达到整个工业二氧化硫排的64.7%。“十一五”期间,我国全面推行烟气脱硫技术以后,我国烟气脱硫通过近十年的发展,积累了大量的工程实践经验,其中最常用的为湿法、干法以及半干法烟气三种脱硫技术。

1.1湿法脱硫技术

1.1.1石灰石-石膏法

这是一种成熟的烟气脱硫技术,在大型火电厂中,90%以上采用湿式石灰石—石膏法烟气脱硫工艺流程。该工艺采用石灰石(即氧化钙)浆液作为脱硫剂,与烟气中的二氧化硫发生反应生产亚硫酸钙,亚硫酸钙与氧气进一步反应生产硫酸钙。硫酸钙经过过滤、干燥后形成脱硫副产品石膏。

这项工艺的关键在于控制烟气流量和浆液的pH值,在合适的工艺条件下,即使在低钙硫比的情况下,也能保持较高的脱硫效率,通常可以达到95%以上。但是该工艺流程复杂且需要设置废水处理系统,因而工程造价高、占地面积大。同时,由于石灰石浆液的溶解性较低,即使通过调节了浆液pH值提高了石灰石的溶解度,但是在使用喷嘴时由于压力的变化,仍然容易发生堵塞喷嘴的情况并且易磨损设备,因而大幅度增加了脱硫设施后期的运营维修费用。

同时由于脱硫烟气中的粉尘成分复杂,在采用石灰石-石膏法时生成的脱硫石膏的杂质含量较多,在石灰石资源丰富的我国,这种品质有限的脱硫石膏很难具有利用价值,通常只能采用填埋进行处理。为了解决这一问题,有企业采用白云石(即氧化镁)作为脱硫剂来替代石灰石,从而使脱硫副产品由石膏变为了七水硫酸镁,而七水硫酸镁由于其水溶性高易于提纯,因而可以制成为合格品质的化学添加剂或化肥使用,其经济价值要远高于脱硫石膏。但是与其相关对的是脱硫剂白云石的成本也远高于石灰石,给企业后期运营成本也带来较大的压力。

1.1.2氨法

氨法脱硫工艺与石灰石-石膏法工艺类似,不同的地方是以氨水作为脱硫剂,在反应塔内含硫烟气与脱硫剂循环溶液进行充分接触,烟气中的二氧化硫与氨水反应,生产亚硫酸铵溶液,并通过曝氧进一步氧化成硫酸铵溶液。硫酸铵溶液采用三效蒸发器进行蒸发结晶

制成硫酸铵结晶,再经过干燥处理后形成可以脱硫副产品硫酸铵。

典型的氨法脱硫工艺由氨水供应系统、烟气系统、二氧化硫吸收系统、硫铵制备系统、水处理系统等组成。氨法脱硫工艺由于氨水与酸性气体的反应活性高,脱硫效率比石灰石浆液更高,因此运行能耗远低于石灰石-石膏法,而且脱硫副产品可以制作为合格品质的氮肥进行销售,具有一定的经济价值。并且氨水可以与烟气中的氮氧化物发生氧化还原反应,对烟气起到一定的脱硝作用。

但是该工艺流程比石灰石-石膏法更为复杂且需要设置废水处理系统和蒸发系统,因而工程造价高、占地面积大。由于氨水容易挥发,且高浓度的氨气具有毒性,因此在生产过程中对设备的密封性能要求较高,否则易发生二次污染。同时硫酸铵作为强电解质,其水溶液对设备具有较强的腐蚀性,因此整个生产工艺对生产设备的防腐性能要求也较高。所以,由于工艺流程的复杂和对设备质量的较高要求,氨法脱硫工艺的工程造价远高于石灰石-石膏法。

1.2干法脱硫技术

1.2.1吸附介质吸附法

吸附介质吸附法主要是依靠活性炭、分子筛等吸附介质对烟气中的二氧化硫进行选择性吸附,并通过高温蒸汽对吸附介质进行解吸附从而制备硫酸的工艺。但该工艺尚处于实验阶段,尚无成功的工业实践案例,其烟气处理量较小,处理大排放量的火力电厂和钢铁烧结机的烟气可行性较低。而且活性炭等吸附介质价格昂贵并存在使用寿命,因此即使该工艺成功运用在工业实践中,其较高的运营费用也会给企业带来极大的压力。

1.2.2电子束照射法

电子束法烟气脱硫工艺大致由烟气预除尘、烟气加湿冷却、喷氨、电子束照射、副产品收集、副产品处置六道工序组成。锅炉排出的高温烟气经静电除尘后,进入冷却塔进行冷

却,使烟气温度降到适于脱硫脱硝的温度。根据二氧化硫和氮氧化物的浓度及所设定的脱除率,向反应器中注入化学计量的氨气或者液氨。烟气在反应器中被电子束照射,使二氧化硫和氮氧化物被氧化后,并与注入的氨气中和,生成固态的硫铵和硝铵粉末。再用干式静电除尘器捕集这些副产品微粒,净化后的烟气由引风机升压并与未处理的烟气混合升温后排入烟囱。

由于该工艺省去了副产品蒸发和废水处理系统,整套设备的占地面积较小,且可以对烟气同时进行脱硫和脱硝,同时生成的副产品可以作为氮肥进行销售,具有一定的经济价值。

但是该工艺在工程实践过程中应用时间较短,技术成熟度较低,设备可靠性较差,使用的脱硫剂液氨对设备也具有较强的腐蚀性,因此该工艺对设备的防腐蚀性能要求较高。再加上整个工艺的关键设备电子束发生装置价格昂贵且仅能通过进口购买,使得设备投资较大。而且由于该工艺需要对未进行脱硫脱硝的高温烟气进行预除尘和加湿冷却,对这两道工序的设备腐蚀情况严重,需要该部分设备具有较高的防腐性能,因此进一步增加了工程造价和后期维护费用。

1.3半干法脱硫技术

1.3.1旋转喷雾法

旋转喷雾干燥脱硫工艺引进自丹麦的GEA/Niro公司,在西欧国家采用该工艺进行烟气脱硫的情况较多。该工艺利用生石灰经过消化后制成的熟石灰浆液具有较高的反应活性,在通过旋转喷头雾化后的石灰浆液在喷雾脱硫塔中与烟气中的二氧化硫接触,石灰浆液与二氧化硫反应后生成干燥的亚硫酸钙粉末,最后连同烟气中的粉尘一起被除尘器收集。

该工艺主要是由旋转喷雾脱硫塔、布袋除尘器、脱硫剂贮存及浆液制备系统等组成。与石灰石-石膏法相比,由于该工艺雾化后的石灰浆液与烟气反应面积更大,从而确保了其较高的脱硫效率。而且由于半干法脱硫会使得下游烟道和烟囱内的湿度较低,从而避免了对该部分设备的腐蚀。

但是由于该工艺为了确保烟气在脱硫塔内与脱硫喷雾的反应时间,需要通过扩大脱硫塔直径来降低塔内烟速,因此脱硫塔的占地面积较大。而且脱硫副产物为亚硫酸钙,该产品性质不稳定、易发生再次分解重新生成二氧化硫,因此需要另设一套副产品处理系统来确保其得到有效处置,不会发生二次污染。对我国的该技术潜在用户来说,该工艺的核心设备雾化喷头还是依靠从丹麦进口,且该设备易磨损,需要定期更换,因此造成工程总体造价和后期维护成本较高。

1.3.2循环硫化床法

循环流化床烟气脱硫技术是以循环流化床原理为基础,在循环流化床内实现二氧化硫与脱硫剂充分反应的一种脱硫方法。从锅炉或焚烧炉出来的烟气与反应器内的石灰粉进行中和反应,达到脱硫的目的。除尘器下来的大部分物料经物料循环系统返回循环流化床反应器,只有非常少量的干态副产品,省去了废水处理系统。。

整个循环流化床烟气脱硫系统由消石灰制备和注入系统、脱硫反应系统、气固分离系统、物料循环和外排系统、注水系统等组成。利用循环流化床作为脱硫反应器的最大优点是,可以通过喷入雾化的水将床温控制在最佳反应温度下,利用反应器内良好的气固接触、混合、湍动作用实现二氧化硫与脱硫剂的充分反应,而通过物料的多次循环使得脱硫剂具有很长的反应停留时间,大大提高了脱硫剂的利用率和脱硫效率,在合适的钙硫比的情况下脱硫效率可达90%~97%以上与湿法脱硫指标相当。另外,由于石灰粉是以干料形式投入,从而避免了石灰石-石膏法中容易出现的堵塞的情况,而且处理后的烟气也可不设加热

器直接排空,设备和管道基本上不存在腐蚀问题,可用普通碳钢制造。

但是该工艺由于要求待处理的烟气成分和温度需要按照系统设计要求保持稳定,抗波动能力较差,仅适合生产稳定的火电生产工艺,对钢厂烧结工艺的适应性较差。而且脱硫灰和除尘灰相互影响,脱硫系统之后必须再加除尘设备,一方面运行控制要求较高,而且除尘灰和脱硫灰成分都比较复杂,难以进行有效的综合利用。

2.烟气脱硝技术

同样,氮氧化物也是我国大气污染的重要来源,而氮氧化物主要来自与两个方面,一个是我国部分化石能源中存在较高含量的碳氮有机物,在燃烧过程中当温度达到800℃以上时会发生热裂解,从而进一步在空气中被氧化形成氮氧化物;另一个是在有空气助燃的高温情况下,当温度达到1500℃时,空气中的氧气和氮气会发生反应,从而形成氮氧化物,因此我国的石化、火力发电、钢铁、建材等行业的生产过程中会产生大量的氮氧化物,形

成了我国大气污染的重要来源。

据国家环保部统计,2012年全国氮氧化物排放总量为2337.8万吨,其中工业氮氧化物排放量1658.1万吨,而分解到三个重点行业分别如下:电力和热力生产业为1018.7万吨、建材274.2万吨、97.2万吨,三个行业共计1390.1万吨占工业氮氧化物排放量的83.8%。由于长期以来我国烟气脱硝技术尚未成熟,因此未能进行大面积的推广,根据现有的烟气脱硝主要可以分为以下湿法和干法类:

2.1湿法脱硝技术

湿法脱硝技术主要是通过两个方面来进行烟气脱硝,一是利用氮氧化合物气体在某些酸(稀硝酸、稀硫酸)或某些碱(氢氧化钠、氢氧化钾、氨水等)中具有较高的溶解度,直接通过这些吸收剂进行溶解吸收;二是利用某些强氧化性的酸(主要为次氯酸、硝酸)将烟气中的NO x氧化为性质稳定且易于碱液反应的N2O3,再通过碱液与其进行酸碱中和反

应来进行吸收,从而达到脱硝的目的。该工艺流程简单,造价和运营费用较低,但由于该工艺的脱硝效率有限,且处理量较小,仅适用于氮氧化物含量较高的烟气,因此主要在某些特殊化工行业使用,基本没有在工业窑炉使用的案例。

2.2干法脱硝技术

2.2.1非选择性催化还原法(SNCR法)

选择性非催化还原法(SNCR法)是一种经济实用的氮氧化物脱除技术,于20世纪70年代中期首先在日本的燃气、燃油电厂中得到应用,并逐步推广到欧盟和美国。该工艺是利用液氨、尿素等作为还原剂,在注入到锅炉之前雾化或者注入到锅炉中靠炉内的热量蒸发雾化。在合适的温度范围内(850~1100℃),气相的氨或者尿素就会分解为自由基NH3和NH2,并与NO x进行氧化还原反应,生产氮气和水。

该工艺由于主要是依靠运营控制手段将雾化后的还原剂直接喷入窑炉内,保证合适的炉内温度和还原剂浓度来达到还原脱硝的目的,因此在设备方面较简单,可以直接通过对锅炉进行改造来实现,工程造价较低,占地面积小,适用于老旧厂区改造。同时由于整个工艺流程不需要使用催化剂,使得运行成本较低。而且该工艺氮氧化物经过处理后生成了无污染的氮气和水,不存在其他有害副产品产生二次污染的风险。

但是,该工艺由于控制难度较大,对生产稳定性和运营水平具有较高的要求,当反应炉内温度过低时,还原反应无法有效进行,脱硝效果得不到保证,而当炉内温度过高时,还原反应生产的氮气容易再次经过高温与氧气反应生产氮氧化物,抵消了还原剂的脱除作用。而且在反应炉内燃烧过程中产生的扰流还会干扰还原剂与氮氧化物的有效混合程度,从而一方面影响了整个系统的脱硝效率,使得SNCR法的脱硝率仅能保持在80%上下。另一方面,由于部分氨气未能与氮氧化物进行反应,会随着烟气外排而对外界产生新的污染。

同时,由于该工艺未采用催化剂,为了保证还原气氛,需要大量的使用还原剂,而还原剂液氨属于有毒物质,贮存难度较大,容易在贮存和生产过程中发生泄漏,造成二次污染。

2.2.2选择性催化还原法(SCR法)

在众多的脱硝技术中,选择性催化还原法(SCR法)是脱硝效率最高,最为成熟的脱硝技术。该工艺在日本、欧洲和美国被广泛的作为主要的电厂控制氮氧化物技术,SCR 方法已成为目前国内外电厂脱硝比较成熟的主流技术。SCR法是在SNCR法的基础上,为了解决反应温度较高且难控制的问题,利用催化剂(二氧化钛钛、五氧化二钒和三氧化钼等)的作用和在氧气存在条件下,氨气优先氮氧化物发生还原脱除反应,生成氮气和水,而不和烟气中的氧进行氧化反应。通过催化剂的催化作用,SCR法的反应温度由SNCR法的1000℃左右降至了300~400℃下进行,相当于锅炉空气预热器的烟气温度,从而大大降低了催化还原法的工艺控制难度。

但是,该工艺催化剂价格较高且改造工程复杂,因此其工程造价和运营费用较高。而且由于该工艺需要在烟道中增加催化反应层,一方面由于多孔解构的催化剂介质增加了烟

道的空气阻力,因此需要在使用SCR工艺时增加引风机和除尘风机的功率;另一方面对于二氧化硫含量较高的烟气由于容易产生硫铵结晶覆盖并堵塞催化剂介质,从而减弱催化剂的效果并加大了烟道的空气阻力,因此需要增加高压水冲灰系统或者蒸汽吹灰系统。

3.烟气脱硫脱硝市场

3.1大气污染治理相关政策

近年来,全国范围内出现的大面积持续雾霾天气引发了民众对大气污染的强烈关注,而新一届政府对于提高人民生活质量作为国家发展的根本出发点,在此背景下,大气污染治理受到政府的高度重视,先后出台了多项相关政策。在环保部2012年9月27日发布的《重点区域大气污染防治“十二五”规划》中,关于大气污染治理的投资规模达3500亿元,其中脱硫和脱硝领域规划分别规划投资730亿元和530亿元。而在2011年12月15日发布的《国家环境保护“十二五”规划该规划》中要求到2015年全国二氧化硫总排放量控制在2086.4万吨以内,而氮氧化物排放量控制在2046.2万吨以内。

根据国家保环部2014年4月14日披露的信息显示,2013年全国二氧化硫排放总量2043.9万吨、氮氧化物排放总量2227.3万吨,可见截至目前为止,我国二氧化硫减排任务完成情况较好,但氮氧化物的治理技术由于尚不成熟未能大面积推广,因此在氮氧化物减排方面的工作进展并不理想。

虽然我国总体二氧化硫排放量得到了有效控制,但是根据2012年8月6日发布的《节能减排“十二五”规划》中要求到2015年工业二氧化硫排放量要求控制在1866万吨以内,工业氮氧化物排放量要求控制在1391万吨以内,其中重点行业明细如下:

由重点行业监测指标可以看出,虽然二氧化硫排放量总体指标得到了控制,但工业二氧化硫排放距离目标指标仍有相当大的差距,特别是钢铁行业由于产能规模的大幅度增加,导致钢铁行业二氧化硫排放量不降反升。而氮氧化物排放量由于我国相关技术的不成熟,导致未能大面积推广烟气脱硝装置,因而造成我国氮氧化物排放任务指标形式严峻。

2013年4月25日,国家环保部发布了《关于公布全国燃煤机组脱硫脱硝设施等重点大气污染减排工程的公告》,为了督促燃煤机组脱硫脱硝设施、钢铁烧结机及球团脱硫设施、水泥熟料生产线脱硝设施的正常运行,现将全国已建成投运的燃煤机组脱硫脱硝设施、钢铁烧结机及球团脱硫设施、水泥熟料生产线脱硝设施名单予以公告。其中,全国燃煤脱硫机组共4659台,总装机容量7.18亿千瓦;燃煤脱硝机组共548台,总装机容量2.26亿千瓦;钢铁烧结机脱硫设施389台,烧结机总面积6.32万平方米;钢铁球团脱硫设施44台,球团年生产能量块1461万吨;水泥熟料生产线脱硝设施148台,熟料年生产能力1.57亿吨。

为了进一步推进我国烟气脱硫、脱硝技术得到广泛应用。对于火电行业,要求新建燃煤机组全面实施脱硫、脱硝,实现达标排放。尚未安装脱硫、脱硝设施的现役燃煤机组全部要配套烟气脱硫设施,不稳定达标排放的燃煤机组要实施脱硫改造。而对单机容量30万千瓦以上的燃煤机组、东部地区和其他省会城市单机容量20万千瓦及以上的燃煤机组,均要实行脱硝改造。要求完成5056万千瓦现役燃煤机组脱硫设施配套建设以及4亿千瓦现役燃煤机组脱硝设施建设,对已安装脱硫设施但不能稳定达的4267万千瓦燃煤机组实施脱硫改造。到2015年燃煤机组脱硫效率达到95%、脱硝效率达到75%以上。

对于非火电行业,要求实施钢铁烧结机烟气脱硫,到2015年所有烧结机和位于城市建成区的球团生产设备烟气脱硫效率达到95%以上。有色金属行业冶炼烟气中二氧化硫含量

大于3.5%的冶炼设施,要安装硫回收装置。石油炼制行业催化裂化装置要配套建设烟气脱硫设施,现有硫磺回收装置硫回收率达到99%。水泥行业要求实施新型干法窑降氮脱硝,新建、改扩建水泥生产线综合脱硝效率不低于60%。焦化行业焦炉煤气硫化氢脱除效率达到95%。此外,钢铁烧结机、有色金属窑炉、石化催化裂化装置、焦化炼焦炉需配套实施低氮燃烧改造或安装脱硝设施。

3.2烟气脱硫市场

火电是我国电力的主要构成部分,我国火电发电量占总发电量的比例近年来一直保持在80%左右,国家能源局统计数据显示2013年底我国火电总装机容量8.6亿千瓦,占总发电装机容量的69.1%,2011-2013年新增火电装机容量分别为5886、5100、3650万千瓦。按照目前新建烟气脱硫装置150元/千瓦左右的平均市场价格,若未来三年内保持每年不低于3000万千瓦的新增火电装机容量,则每年可以给烟气脱硫行业创造45亿元规模的增量市场。

而根据中国电力企业联合会发布的统计信息,2013年我国新增火电厂烟气脱硫机组容量约3600万千瓦,已投运火电厂烟气脱硫机组容量约7.2亿千瓦,占全国现役燃煤机组容量的83.7%,即仍有1.4亿千瓦尚未安装脱硫装置的火电燃煤机组,而这部分机组可以为烟气脱硫行业210亿元的存量市场。

2013年脱硫公司当年新增投运的火电厂烟气脱硫机组容量前十

由以上数据可以看出,2013年全国新增投运电厂烟气脱硫机组容量前十的脱硫公司当年新增火电烟气脱硫机组总计2053万千瓦,占到当年全国市场份额的57.03%,仅占2013年我国需要进行脱硫改造的1.77亿千瓦火电燃煤机组的11.6%。考虑到我国“十二五规划”将在2015年到期,可见我国火电厂烟气脱硫市场在未来两年内仍处于充分竞争的阶段,不存在市场过度竞争的情况。

2013年脱硫公司累计投运的火电厂烟气脱硫机组容量前十

钢铁行业是我国大气二氧化硫污染第二大来源,目前全国约有1200余套钢铁烧结机,据工信部统计2013年钢铁行业在建和建成投运的烧结脱硫设施373套(455台烧结机),即还有约750余套烧结机仍未进行烟气脱硫改造,按照工信部2013年最低标准90m2的烧结机面积的淘汰落后产能标准,我国至少仍有67500平米的烧结机需要进行烟气脱硫改造,采用市场平均10万元/平方米的改造价格进行测算,烧结机烟气脱硫市场至少有67亿元。

3.3烟气脱硝市场

同样,根据中国电力企业联合会发布的统计信息,2013年我国新增火电厂烟气脱硝机组容量约2亿千瓦,已投运火电厂烟气脱硝机组容量约4.3亿千瓦,占全国现役燃煤机组容量的50%。按照4.3亿千瓦未安装脱硝装置的火电机组,每年有10%进行安装,可以贡献4300万千瓦的市场,再加上我国每年保持新增3000万千瓦规模的火电机组,即每年至少有7300万千瓦的火电烟气脱硝市场。按照目前市场火电烟气脱硝装置新建平均价格100元/千瓦,预计未来每年火电烟气脱硝市场不低于73亿元。

2013年脱硝公司当年新增投运的火电厂烟气脱硫机组容量前十

由以上数据可以看出,2013年全国新增投运电厂烟气脱硝机组容量前十的脱硝公司当

烟气脱硫脱硝技术方案

1、化学反应原理 任意浓度的硫酸、硝酸,都能够跟烟气当中细颗粒物的酸、碱性氧化物产生化学反应, 生成某酸盐和水,也能够跟其它酸的盐类发生复分解反应、氧化还原反应,生成新酸和新盐,通过应用高精尖微分捕获微分净化处理技术产生的巨大量水膜,极大程度的提高烟气与循环 工质接触、混合效率,缩短工艺流程,在将具有连续性气、固、液多项流连续进行三次微分 捕获的同时,连续进行三次全面的综合性高精度微分净化处理。 2、串联叠加法工作原理 现有技术装备以及烟气治理工艺流程的效率都是比较偏低,例如脱硫效率一般都在98%左右甚至更低,那么,如果将三个这样工作原理的吸收塔原型进行串联叠加性应用,脱硫效率一定会更高,例如99.9999%以上。 工艺流程工作原理 传统技术整治大气环境污染,例如脱硫都是采用一种循环工质,那么,如果依次采用三种化学性质截然不同的循环工质,例如稀酸溶液、水溶液和稀碱溶液进行净化处理,当然可以十分明显的提高脱除效率,达到极其接近于百分百无毒害性彻底整治目标。 1、整治大气环境污染,除尘、脱硫、脱氮、脱汞,进行烟气治理,当然最好是一体 化一步到位,当然首选脱除效率最高,效价比最高,安全投运率最高,脱除污染因子最全 面,运行操作最直观可靠,运行费用最低的,高效除尘、脱硫、脱氮、脱汞一体化高精尖 技术装备。 2、高效除尘、脱硫、脱氮、脱汞一体化高精尖技术装备,采用最先进湿式捕获大化 学处理技术非选择性催化还原法,拥有原创性、核心性、完全自主知识产权,完全国产化,发明专利名称《一种高效除尘、脱硫、脱氮一体化装置》,发明专利号。 3、吸收塔的使用寿命大于30年,保修三年,耐酸、耐碱、耐摩擦工质循环泵,以及 其它标准件的保修期,按其相应行业标准执行。 4、30年以内,极少、甚至可以说不会有跑、冒、滴、漏、渗、堵现象的发生。 5、将补充水引进到3#稀碱池入口,根据实际燃煤含硫量和烟气含硝量调整好钠碱量 以及相应补充水即可正常运行。 6、工艺流程: 三个工质循环系统的循环工质,分别经过三台循环泵进行加压、喷淋。 (1)可以采用废水的补充水进入进行第三级处理的稀碱池,通过第三级循环泵或者称 为稀碱泵,进行第三次微分捕获微分净化处理,然后溢流至中水池。 (2)从稀碱池溢流来的稀碱水自流进入中水池,经过第二级循环泵或者称为中水泵的 加压循环,进行第二次微分捕获微分净化处理的喷淋布水。 (3)从中水池溢流来的中水进入稀酸池,第一级循环泵或者称为稀酸泵泵出的循环工 质,在进行第一级微分捕获微分净化处理循环过程当中,在稀酸池经过处理,成为多元酸, 通过补充水和澄清水保持两个循环系统工作。

烟气脱硫脱硝行业介绍.docx

1.烟气脱硫技术 由于我国的大部分煤炭、铁矿资源中含硫量较高,因此在火力发电、钢铁、建材生产过程中由于高温、富氧的环境而产生了含有大量二氧化硫的烟气,从而给我国大气污染治理带来了极大的环保压力。 据国家环保部统计,2012年全国二氧化硫排放总量为2117.6万吨,其中工业二氧化硫排放量1911.7万吨,而分解到三个重点行业分别如下:电力和热力生产业为797.0万吨、钢铁为240.6万吨、建材为199.8万吨,三个行业共计1237.4万吨达到整个工业二氧化硫排的64.7%。“十一五”期间,我国全面推行烟气脱硫技术以后,我国烟气脱硫通过近十年的发展,积累了大量的工程实践经验,其中最常用的为湿法、干法以及半干法烟气三种脱硫技术。

1.1湿法脱硫技术 1.1.1石灰石-石膏法 这是一种成熟的烟气脱硫技术,在大型火电厂中,90%以上采用湿式石灰石—石膏法烟气脱硫工艺流程。该工艺采用石灰石(即氧化钙)浆液作为脱硫剂,与烟气中的二氧化硫发生反应生产亚硫酸钙,亚硫酸钙与氧气进一步反应生产硫酸钙。硫酸钙经过过滤、干燥后形成脱硫副产品石膏。 这项工艺的关键在于控制烟气流量和浆液的pH值,在合适的工艺条件下,即使在低钙硫比的情况下,也能保持较高的脱硫效率,通常可以达到95%以上。但是该工艺流程复杂且需要设置废水处理系统,因而工程造价高、占地面积大。同时,由于石灰石浆液的溶解性较低,即使通过调节了浆液pH值提高了石灰石的溶解度,但是在使用喷嘴时由于压力的变化,仍然容易发生堵塞喷嘴的情况并且易磨损设备,因而大幅度增加了脱硫设施后期的运营维修费用。 同时由于脱硫烟气中的粉尘成分复杂,在采用石灰石-石膏法时生成的脱硫石膏的杂质含量较多,在石灰石资源丰富的我国,这种品质有限的脱硫石膏很难具有利用价值,通常只能采用填埋进行处理。为了解决这一问题,有企业采用白云石(即氧化镁)作为脱硫剂来替代石灰石,从而使脱硫副产品由石膏变为了七水硫酸镁,而七水硫酸镁由于其水溶性高易于提纯,因而可以制成为合格品质的化学添加剂或化肥使用,其经济价值要远高于脱硫石膏。但是与其相关对的是脱硫剂白云石的成本也远高于石灰石,给企业后期运营成本也带来较大的压力。

石灰石湿法烟气脱硫控制系统毕业设计详解

河南机电职业学院 毕业论文(毕业设计) 题目:火电厂石灰石湿法脱硫控制技术 所属系部:电子工程系 专业班级:电气自动化技术12-1 学生姓名:王霄飞 指导教师:苗国耀 2015 年06月11 日

毕业论文(实习报告)任务书

指导教师签字:教研室主任签字: 年月日年月日

毕业论文(毕业设计)评审表

目录 1 绪论 (1) 1.1 选题背景及意义 (1) 2 火电厂脱硫系统的工艺原理 (2) 2.1石灰石-石膏湿法脱硫工艺流程 (2) 2.2 吸收系统 (3) 2.2.2工艺水系统和排放系统 (8) 2.3脱硫系统运行控制方式 (9) 2.3.1 启动 (10) 2.3.2停运 (11) 2.3.3 紧急停运 (13) 2.3.4 变负荷运行 (14) 2.3.5 装置和设备保护措施 (15) 3 FGD系统的DCS控制系统的设计 (16) 3.1烟气系统控制 (16) 3.2石灰石浆液制备系统控制 (17) 3.3 石灰石浆液浓度控制 (18) 3.4石灰石浆液箱液位控制 (19) 3.5石膏脱水系统控制 (20) 3.6 FGD系统仪表选型及影响因素 (21) 3.7 流程总图 (23) 3.8 MACSV系统组态设计 (24) 3.8.1数据库总控工程建立 (24) 3.9本章小结 (27) 4结论 (28) 参考文献 (29)

摘要:石灰石湿法烟气脱硫是目前工艺较为成熟、应用最广泛的脱硫工艺,其脱硫过程是气液反应,反应速度快、脱硫效率高,综合经济性能较好,在国内电厂脱硫工艺中被广泛应用。在烟气脱硫系统中,控制系统的设计非常重要,控制系统设计是否恰当直接影响脱硫系统的运行,甚至影响主机系统的长期安全稳定运行。本文设计的脱硫控制系统有完善的热工模拟量控制,并且各项功能在DCS系统中统一实现。 首先简要介绍了石灰石-石膏湿法烟气脱硫技术及其控制系统的现状、发展趋势、主要工艺设备、工艺流程及原理。接着对脱硫控制系统的控制方案进行了详细设计和研究,主要包括自动调节系统设计、联锁保护条件设计等。最后,对脱硫重要仪表进行了选型和设计。 本文对烟气脱硫工程的自动化控制给出完整、详细的分析和方案。通过国产的HOLLiAS-MACS系统以达到烟气脱硫项目的自动化控制。 关键词:石灰石湿法脱硫脱硫控制

烟气脱硫脱硝运行管理

烟气脱硫脱硝运行管理 一、运行管理的内容 烟气脱硫脱硝装置的运行管理,是指从焦炉烟道引出烟道气至净化装置,经处理后,排出达标烟气的全过程的管理,主要包括以下几个方面。 准备:物资、人力、资金、能源及组织等的准备。如:负责装置运行的技术人员,操作工人的技术技能培训;装置各系统所需生产物资的准备;电气控制及工艺设备的维护与保养等。 计划:根据生产计划,编制脱硫装置的运行控制方案和各阶段的执行计划,有利于公司做好综合调度,节能降耗,提高效益。 组织:合理安排运行过程中的各操作岗位及岗位之间的协调,制定好岗位责任制和岗位操作规程。 控制:即运行计划的实施,是对运行全过程的全面控制,包括进度、消耗、成本、质量、故障等的控制。 二、运行管理人员职责 脱硫脱硝装置运行操作管理人员的任务是,根据设计及工艺要求进行科学管理。在烟气负荷及污染物含量等条件发生变化时,充分利用装置的操作弹性进行适时调整,及时发现并处理运行过程中的异常问题,使烟气净化系统高效、低效地发挥净化处理作用,达到较为理想的环境效益、经济效益和社会效益。 对操作运行人员,应该做到“四懂四会”——懂烟气处理的基本知识、工艺原理和工艺流程,懂装置各工艺设备的操作、使用方法,懂界区内各工艺介质的性质及管道布置,懂技术经济指标含义与计算方法、化验指标的含义及其应用;会操作,会检查,会排除运行中的故障,会维护和保养。 三、规章制度 (一).岗位责任制 1. 接受上级领导的调度和指挥。 2. 执行和遵守操作技术规程、安全规程、部门和公司颁布的其他规程、制度、命令、指示,维护设施的正常运行。 3. 做好当班记录并书写工整,信息准确可靠。 4. 对岗位的生产活动负责,及时发现、处理运行过程中的不正常现象,维

脱硫脱硝工艺概述

石灰石-石膏湿法脱硫工艺概述 烟气脱硫采用技术为石灰石-石膏湿法烟气脱硫工艺。脱硫剂采用石灰石粉(CaCO3), 石灰石由于其良好的化学活性及低廉的价格因素而成为目前世界上湿法脱硫广泛采用的脱硫剂制备原料。SO2与石灰石浆液反应后生成的亚硫酸钙, 就地强制氧化为石膏,石膏经二级脱水处理可作为副产品外售。 本设计方案采用传统的单回路喷淋塔工艺,将含有氧化空气管道的浆池直接布置在吸收塔底部, 塔内上部设置三层喷淋层和二级除雾器。从锅炉来的原烟气中所含的SO2与塔顶喷淋下来的石灰石浆液进行充分的逆流接触反应,从而将烟气中所含的SO2去除,生成亚硫酸钙悬浮。在浆液池中通过鼓入氧化空气,并在搅拌器的不断搅动下,将亚硫酸钙强制氧化生成石膏颗粒。脱硫效率按照不小于90%设计。其他同样有害的物质如飞灰,SO3,HCI 和HF也大部分得到去除。该脱硫工艺技术经广泛应用证明是十分成熟可靠的。 工艺布置采用一炉一塔方案,石灰石制浆、石膏脱水、工艺水、事故浆液系统等两塔公用。#1锅炉来的原烟气由烟道引出,经升压风机(两台静叶可调轴流风机) 增压后, 送至吸收塔,进行脱硫。脱硫后的净烟气经塔顶除雾器除雾后通过烟囱排放至大气。#2炉的烟道系统流程与#1炉相同,布置上与#1炉为对称布置。 脱硫剂采用外购石灰石粉,用滤液水制成30%的浆液后在石灰石浆液箱中贮存,通过石灰石浆液泵不断地补充到吸收塔内。脱硫副产品石膏通过石膏排出泵,从吸收塔浆液池抽出,输送至石膏旋流站(一级脱水系统),经过一级脱水后的底流石膏浆液其含水率约为50%左右,直接送至真空皮带过滤机进行二级过滤脱水。石膏被脱水后含水量降到10%以下。石膏产品的产量为20.42t/h(#1、#2炉设计煤种,石膏含≤10%的水分)。脱硫装置产生的废水经脱硫岛设置的废水处理装置处理后达标排放或回收利用。 脱硝工艺系统描述 3.1 脱硝工艺的原理和流程 本工程采用选择性催化还原法(SCR)脱硝技术。SCR脱硝技术是指在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水,从而去除烟气中的NOx。选择性是指还原剂NH3和烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。 化学反应原理 4 NO + 4 NH3 + O2 --> 4 N2 + 6 H2O 6 NO2 + 8 NH3 + O2 --> 7 N2 + 12 H2O

烟气脱硫脱硝基本研究方法及运行参数

烟气脱硫脱硝基本研究方法及运行参数 1、烟气脱硫、脱硝共性技术设计开发平台 在长期从事烟气脱硫、脱硝技术的研究开发过程中,针对传统开发模式的不足,我们采用全方位多标准系统级数值模拟和仿真为核心,以实验研究为校正的开发模式对烟气脱硫脱硝反应器及其关联的关键设备进行了分析,对系统工艺进行开发,突破了“设计—小试—中试—工程应用”的传统及因次分析、相似理论等的限制,成功解决了脱硫脱硝多相反应器的设计放大题目,避免旷日持久和用度高昂的逐级开发过程。 烟气脱硫、脱硝共性技术设计开发平台首先基于对资料、参考工程及先前投产工程的经验和运行数据的分析,确定基本的设计方案。然后,根据确定的基本设计方案进行设计,对设计中不确定的因素进行大量的跨标准的数值计算和模拟,其间不确定的参数进行少量的实验室试验获取,以此确定基本的运行参数,并返回至跨标准的数值计算和模拟过程,形成内封闭循环,验证数值计算结果,进步其计算精度,投进工程设计和应用,工程投运后对大量的运行数据进行测试和分析,并以此来修正设计和运行参数,形成外封闭循环,完成技术的自我升级和更新,进步其成熟度。 在烟气脱硫技术设计开发平台基础上,将上述技术路线中涉及的各个层次的内容进行抽象和进步,将其中共性技术回纳成研发、设计、工程治理三大通用的技术开发平台。从分子标准、单元标准、设备标准至系统标准的多标准数值计算和模拟,其支撑学科分别是计算量子化学、计算反应动力学、计算传质学/流体力学和过程系统工程等。这种平台化开发模式具有很强的移植性。 2、烟气脱硫、脱硝共性技术设计开发平台开发实例 以烟气脱硫技术的开发设计为例,针对电力、冶金、化工等行业烟气脱硫的技术要求采用上述的实验研究→设计→数值模拟→要点试验和工程实测为校正的基本研究方法。在冷态实验平台上开展过程工艺、吸收剂活性强化途径等原理性研究,获取指导工程设计的关键工艺参数,通过全方位、多标准、系统级的数值模拟突破吸收塔大比例放大的困难,同时通过热态试验平台和在烟气脱硫装置建设过程中预留分步验证的条件,适时开展系统要点试验和工程实测校正,逐步验证并完善数值计算模型,优化反应器及塔内件的结构和运行参数,实现塔型的精益求精和创新。在此过程中,以全方位多标准的数值模拟为核心,简化试验过程,冷、热态试验台均为局部要点试验装置,作为全方位模拟的辅助与补充,无需中试装置。在高精度数值仿真模拟的支撑下,可有效降低开发本钱,大大缩短开发周期,开发周期由10 年缩短为2~3年,而在短周期开发的过程中,技术成熟度仍能够得到有效的保证。 3、采用烟气脱硫、脱硝共性技术设计开发平台的有益效果 OI2烟气脱硫、脱硝共性技术设计开发平台的成功应用和相关技术的成功开发及应用,突破了国外公司的技术壁垒,大幅度压低了国外技术的要价,实现了关键技术的可升级性,进步对国情的适应能力,并促进了国内相关环保技术研究水平的进步和设备制造产业的发展。

烟气脱硫脱硝技术大汇总

烟气脱硫脱硝技术大汇总 第一部分 脱硫技术 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 1湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙 (CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石

灰法容易结垢的缺点。 B 间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法: 原理:柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。 另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。 2干法烟气脱硫技术 优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,设备简单,占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等。 缺点:但反应速度慢,脱硫率低,先进的可达60-80%。但目前此种方法脱硫效率较低,吸收剂利用率低,磨损、结垢现象比较严重,在设备维护方面难度较大,设备运行的稳定性、可靠性不高,且寿命较短,限制了此种方法的应用。 分类:常用的干法烟气脱硫技术有活性碳吸附法、电子束辐射法、荷电干式吸收剂喷射法、金属氧化物脱硫法等。 典型的干法脱硫系统是将脱硫剂(如石灰石、白云石或消石灰)直接喷入炉内。以石灰石为例,在高温下煅烧时,脱硫剂煅烧后形成多孔的氧化

锅炉烟气脱硫脱硝系统运行问题及处理措施 侯智军

锅炉烟气脱硫脱硝系统运行问题及处理措施侯智军 发表时间:2018-03-21T15:05:26.423Z 来源:《电力设备》2017年第29期作者:侯智军 [导读] 摘要:国家对环保要求的逐渐提高,大部分锅炉厂针对烟气处理系统都进行了深入改造。 (神华亿利能源有限责任公司电厂内蒙古 014300) 摘要:国家对环保要求的逐渐提高,大部分锅炉厂针对烟气处理系统都进行了深入改造。随即而来出现硫酸铵浆液结晶差,液态氨损耗大,脱硫塔喷头堵塞,脱销系统中氨水浓度较低以及氮氧化物指标不达标等一系列问题。 关键词:锅炉烟气;脱硫系统;脱硝系统;运行问题;处理措施 锅炉排出的烟气在脱硫上,工业锅炉目前常用氨法脱硫工艺,即烟气脱硫、氧化空气、硫铵、检修排空、工艺水等子系统。如果采用一炉一塔进行全烟气脱硫,脱硫效率能达到98%以上。在脱硝上,目前常用SNCR脱硝工艺,使用氨水作为还原剂,脱硫效率在50%以上,且NOx排放浓度控制在200mg/Nm3以下。 1锅炉烟气脱硫脱硝概述 1.1脱硫工艺 锅炉烟气脱硫,指的是除去烟气中的SO、SO2等硫化物,以满足保护环境的要求。按照不同的工艺,可以分为石灰石-石膏脱硫、磷铵肥法脱硫、烟气循环流化床脱硫、海水脱硫、氨水洗涤法脱硫、电子束法脱硫等。分析烟气脱硫工艺的特点,主要如下:第一,能够捕捉多种有害气体,从而提高脱硫效率;第二,脱硫过程节水节电、降低了运行成本;第三,脱硫设备操作简单、维修量少,能够适应复杂环境,有利于日常管理和维护;第四,不同工艺能够处理不同含硫量的烟气,或者采用联合工艺,能够提高脱硫效果。 1.2脱硝工艺 锅炉烟气脱硝,指的是除去烟气中的硝化物NOx。从脱硝工艺上来看,主要包括两种类型:一是从源头上治理,减少煅烧期间生成的NOx含量,常见如使用低氮燃烧设备;或者调整配料方案,使用矿化剂降低熟料温度;或者炉和管道分段燃烧,从而控制温度高低。二是从末端治理,降低烟气中的NOx含量,目前应用广泛,常见如活性炭吸附脱硝、电子束脱硝、SCR技术、SNCR技术等。以SNCR脱硝工艺为例,在小型机组中的脱硝效率为80%以上,在大型机组中的脱硝效率为25%-40%,常用于低氮燃烧技术的辅助处理手段,优势在于占地面积小、工程造价低,而且适用于老厂改造工程。 2脱硫脱硝系统存在问题及处理措施 2.1硫酸铵结晶颗粒小及处理 2.1.1主要原因 主要原因是因为进入脱硫塔烟道处防腐层脱落到浓缩段,堵塞二级循环泵喷头,使得脱硫塔浓缩段温度太高。其次可能是液氨投入量太大,脱硫塔pH值太高,影响硫酸铵的结晶效果。也可能是由于锅炉布袋除尘器泄露,导致烟气中粉尘进入脱硫装置,这时二级循环泵喷头流通不顺畅,由于堵塞造成浓缩段封闭,同时温度升高,硫酸铵结晶颗粒太小,分离效果差。 2.1.2解决措施 一般脱硫系统在开车前,首先要进行试车实验。脱硫系统检修后,最少进行两天水联动试车,并对脱硫塔、循环槽进行清理。水联动试车结束后,观察喷头及泵体运行情况,保证不堵塞喷头防止堵塞。 降低对液氨的投入量,对脱硫塔进行整体的调整控制,确保脱硫塔出口烟气稳定。同时控制脱硫塔pH值。将一、二级循环泵的入口过滤器换成管道过滤器,篮式过滤器密闭性差,杂质颗粒会堵塞喷头,影响出料效果。 还可以改进锅炉除尘系统,一般使用较为广泛的是布袋除尘器,可以用电袋复合式除尘来进行替换,确保烟气之后的排放达到国家规范水平和环保要求,从而大大降低烟尘对系统产生的不利影响。 2.2硫酸铵管线断裂 2.2.1主要原因 脱硫塔到硫酸铵厂房的脱硫管线经常破裂,并且修复时间长,导致不能正常出料,破坏原来的结晶颗粒。一般在运行过程中硫酸铵管线的蒸汽伴热经常存在不合适形式,最常解决的办法就是出料后及时用水冲洗,避免对管线的封堵。但是又出现一个问题,由于存在热胀冷缩的特性,特别容易出现管线弯头、膨胀节、法兰处极易拉裂等问题。 2.2.2解决措施 及时联系抢修单位对管线进行连接,避免管线泄露导致出料受限。改造原有的硫铵管线伴热方式,采用电伴热方式来代替蒸汽伴热,除此之外也可以在管线上另外增加膨胀节的个数。 2.3液氨压力不稳定 2.3.1主要原因 对于液氨的供应而言,一般情况下由于管线距离长,使得液氨压力不稳定,结果就是控制二氧化硫比较困难,这样对硫铵的氧化效果同样大打折扣。最常用的方法是用针型阀门调节系统液氨含量,但是当阀门在开度过小,整个操作过程比较困难。 2.3.2解决措施 把氨变成液氨泵,重点强化液氨泵的管理工作。另一种措施是在循环槽或者循环槽顶部处安装压力表,这样可以随时了解管线压力的变化情况,方便工艺操作和调整。 2.4过滤器堵塞频繁 2.4.1主要原因 锅炉厂脱硫系统中循环泵的入口大多都采用篮式过滤器,工作一段时间后系统中的一级循环泵电流就会降低,拆开检修后发现过滤器内存在例如树脂等胶体杂质。篮式过滤器本身存在一个缺点,由于底部有间隙导致密封性差。对其进行检修时发现一些过滤器中的杂质颗粒已经把喷头堵塞。为了防止堵塞喷头造成的影响,脱硫塔超温,结果影响结晶出料。 2.4.2解决措施 首先可以更换过滤器,使用密封效果好的管道过滤器。其次分析得知过滤器入口中堵塞物主要是硫酸铵,经研究后发现一开始使用

烟气脱硫脱硝技术简介

烟气脱硫脱硝技术简介 :烟气脱硫脱硝技术是应用于多氮氧化物、硫氧化物生成化工工业的一项锅炉烟气净化技术。氮氧化物、硫氧化物是空气污染的主要来源之一。故应用此项技术对环境空气净化益处颇多。目前已知的烟气脱硫脱硝技术有PAFP、ACFP、软锰矿法、电子束氨法、脉冲电晕法、石膏湿法、催化氧化法、微生物降解法等技术。 一、磷铵肥法(PAFP)烟气脱硫技术 磷铵肥法(Phosphate Ammoniate Fertilizer Process,简称PAFP),是我校和四川省环科院、西安热工所、大连物化所等单位共同研究开发的烟气脱硫新工艺(国家“七五”(214)项目新技术083号)。其脱硫率≥95%,脱硫副产品为氮硫复合肥料。此技术的特点是将烟气中的SO2脱除并针对我国硫资源短缺的现状,回收SO2取代硫酸生产肥料,在解决污染的同时,又综合利用硫资源,是一项化害为利的烟气脱硫新方法。而且该技术已于1991年通过国家环保局组织的正式鉴定,获国家“七五”攻关重大成果奖,四川省科技进步二等奖等多项奖励。 二、烟气脱硫脱硝技术活性炭纤维法(ACFP)烟气脱硫技术 活性炭纤维法(Activated Carbon FiberProcess,简称ACFP)烟气脱硫技术是采用新材料脱硫活性炭纤维催化剂(DSACF)脱除烟气中SO2并回收利用硫资源生产硫酸或硫酸盐的一项新型脱硫技术。 该技术脱硫率可达95%以上,单位脱硫剂处理能力会高于活性炭脱硫一个数量级以上(一般GAC处理能力为102Nm3/h.t,而ACF可达104Nm3/h.t)。由于工艺过程简单,设备少,操作简单。投资和运行成本低,且能在消除SO2污染同时回收利用硫资源,因而可在电厂锅炉烟气、有色冶炼烟气、钢铁厂烧结烟气及各种大中型工业锅炉的烟气SO2污染控制中采用,改善目前烟气脱硫技术装置“勉强上得起,但运行不起”的状况。该烟气脱硫技术按10万KW机组锅炉机组烟气计,装置投资费用3500万,年产硫酸3万~4万吨。仅用于全国高硫煤电厂脱硫每年约可减少SO2排放240万吨,副产硫酸360万吨,产值可达数十亿元。该技术已获国家发明专利,并已列入国家高新技术产业化项目指南。 三、烟气脱硫脱硝技术软锰矿法烟气脱硫资源化技术 MnO2是一种良好的脱硫剂。在水溶液中,MnO2与SO2发生氧化还原发应,生成了MnSO4。软锰矿法烟气脱硫正是利用这一原理,采用软锰矿浆作为吸收剂,气液固湍动剧烈,矿浆与含SO2烟气充分接触吸收,生成副产品工业硫酸锰。该工艺的脱硫率可达90%,锰矿浸出率为80%,产品硫酸锰达到工业硫酸锰要求(GB1622-86)。 常规生产工业硫酸锰方法是:软锰矿粉与硫酸和硫精沙混合反应,产品净化得到工业硫酸锰。由于我国软锰矿品位不高,硫酸耗量增大,成本上升。该法与常规生产工业硫酸锰相比是,不用硫酸和硫精沙,溶液杂质也降低,原料成本和工艺成本都有降低,比常规生产工业硫酸锰方法节约成本25%以上,加之国家对环保产品在税收上的优惠,竞争力将大大提高。

各种烟气脱硫、脱硝技术工艺与其优缺点

各种烟气脱硫、脱硝技术工艺与优缺点 2019.12.11 按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。

系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A、石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成

结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 B 、间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法:

最全面的烟气脱硫脱硝技术大汇总

最全面的烟气脱硫脱硝技术大汇总 第一部分脱硫技术 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A 石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。

B 间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3˙nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法: 原理:柠檬酸(H3C6H5O7˙H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。 另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。 二、干法烟气脱硫技术 优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,设备简单,占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等。 缺点:但反应速度慢,脱硫率低,先进的可达60-80%。但目前此种方法脱硫效率较低,吸收剂利用率低,磨损、结垢现象比较严重,在设备维护方面难度较大,设备运行的稳定性、可靠性不高,且寿命较短,限制了此种方法的应用。 分类:常用的干法烟气脱硫技术有活性碳吸附法、电子束辐射法、荷电干式吸收剂喷射法、金属氧化物脱硫法等。 典型的干法脱硫系统是将脱硫剂(如石灰石、白云石或消石灰)直接喷入炉内。以石灰石为例,在高温下煅烧时,脱硫剂煅烧后形成多孔的氧化钙颗粒,它和烟气中的SO2反应生成硫酸钙,达到脱硫的目的。

最主流烟气脱硫脱硝技术大汇总

最主流烟气脱硫脱硝技术大汇总 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A 石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),

以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应 用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 B 间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3˙nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法: 原理:柠檬酸(H3C6H5O7˙H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。

烟气脱硫脱硝技术介绍(借鉴内容)

烟气脱硫脱硝技术介绍 为了控制SO2污染,防治酸雨危害,加快我国烟气脱硫技术和产业发展已刻不容缓。国家烟气脱硫工程技术研究中心对多种烟气脱硫脱硝技术进行了研究开发,主要包括: 1、磷铵肥法(PAFP)烟气脱硫技术 磷铵肥法(Phosphate Ammoniate Fertilizer Process,简称PAFP),是我校和四川省环科院、西安热工所、大连物化所等单位共同研究开发的烟气脱硫新工艺(国家“七五”(214)项目新技术083号)。其脱硫率≥95%,脱硫副产品为氮硫复合肥料。此技术的特点是将烟气中的SO2脱除并针对我国硫资源短缺的现状,回收SO2取代硫酸生产肥料,在解决污染的同时,又综合利用硫资源,是一项化害为利的烟气脱硫新方法。而且该技术已于1991年通过国家环保局组织的正式鉴定,获国家“七五”攻关重大成果奖,四川省科技进步二等奖等多项奖励。 2、活性炭纤维法(ACFP)烟气脱硫技术 活性炭纤维法(Activated Carbon Fiber Process,简称ACFP)烟气脱硫技术是采用新材料脱硫活性炭纤维催化剂(DSACF)脱除烟气中SO2并回收利用硫资源生产硫酸或硫酸盐的一项新型脱硫技术。 该技术脱硫率可达95%以上,单位脱硫剂处理能力会高于活性炭脱硫一个数量级以上(一般GAC处理能力为102Nm3/h.t,而ACF可达104Nm3/h.t)。由于工艺过程简单,设备少,操作简单。投资和运行成本低,且能在消除SO2污染同时回收利用硫资源,因而可在电厂锅炉烟气、有色冶炼烟气、钢铁厂烧结烟气及各种大中型工业锅炉的烟气SO2污染控制中采用,改善目前烟气脱硫技术装置“勉强上得起,但运行不起”的状况。该烟气脱硫技术按10万KW机组锅炉机组烟气计,装置投资费用3500万,年产硫酸3万~4万吨。仅用于全国高硫煤电厂脱硫每年约可减少SO2排放240万吨,副产硫酸360万吨,产值可达数十亿元。该技术已获国家发明专利,并已列入国家高新技术产业化项目指南。 3、软锰矿法烟气脱硫资源化技术 MnO2是一种良好的脱硫剂。在水溶液中,MnO2与SO2发生氧化还原发应,生成了MnSO4。软锰矿法烟气脱硫正是利用这一原理,采用软锰矿浆作为吸收剂,气液固湍动剧烈,矿浆与含SO2烟气充分接触吸收,生成副产品工业硫酸锰。该工艺的脱硫率可达90%,锰矿浸出率为80%,产品硫酸锰达到工业硫酸锰要求(GB1622-86)。 常规生产工业硫酸锰方法是:软锰矿粉与硫酸和硫精沙混合反应,产品净化得到工业硫酸锰。由于我国软锰矿品位不高,硫酸耗量增大,成本上升。该法与常规生产工业硫酸锰相比是,不用硫酸和硫精沙,溶液杂质也降低,原料成本和工艺成本都有降低,比常规生产工业硫酸锰方法节约成本25%以上,加之国家对环保产品在税收上的优惠,竞争力将大大提高。该工艺原料软锰矿价廉,大约200~300元/吨,估计5年左右可收回投资。该工艺不但治理了工业废气,处理了制酸废水,并且回收了硫酸锰产品,具有明显的社会环境和经济效益。 4、电子束氨法烟气脱硫脱硝技术 电子束氨法烟气脱硫脱硝工业化技术(简称CAEB-EPS技术),充分挖掘电子束辐照烟气脱硫脱硝技术的潜力,结合中国具体国情,具有投资省、运行费用低、运行维护简便、可*性高等独有的特点,居国际先进水平。 CAEB-EPS技术是利用高能电子束(0.8~1MeV)辐照烟气,将烟气中的二氧化硫和氮氧化物转化成硫酸铵和硝酸铵的一种烟气脱硫脱硝技术。该技术的工业装置一般采用烟气降温增湿、加氨、电子束辐照和副产物收集的工艺流程。除尘净化后的烟气通过冷却塔调节烟气的温度和湿度(降低温度、增加含水量),然后流经反应器。在反应器中,烟气被电子束辐照产生多种活性基团,这些活性基团氧化烟气中的SO2和

【资料】烟气脱硫脱硝技术简介6

【资料】烟气脱硫脱硝技术简介6

45t/h锅炉烟气脱硫脱硝技术方案 (2) 燃煤锅炉烟气脱硫脱硝技术简介 (37) 烟气脱硫脱硝技术简介 (50) 45t/h锅炉烟气脱硫脱硝技术方案 45t/h锅炉烟气现场调查 燃煤质量状况 标识符号指标名称单位实际指标备注R 燃煤发热量大卡4500 A 煤中灰分% 25 S 燃煤全硫分% 3.8 C 燃煤中碳含 量% 80 O 燃煤中氧含 量% 6 H 燃煤中氢含 量% 4 W 燃煤中水分% 10 锅炉烟气排放现状

项目符 号调查项目名称单位实测指标ω锅炉蒸吨位t/n 38 t1 接口处温度℃112 υ接口烟气流速m/s 8.4 D 接口断面长× 宽cm 198×198 Q 烟气流量m3/h 118541 QN 标态干烟气流 量Nm3/h 84057 V0 空气理论需要 量Nm3/kg 9.926 QY 空气实际需要 量Nm3/kg 12.013 q 环评烟气验算 量m3/t 11746 锅炉烟气中污染物排放现状 序号项目 名称 初始生成 量 最终排放 量 年度 减排 量 要求系 统脱除 效率Kg /h mg/N m3 Kg/ h mg/N m3 (吨)达到%

1 烟尘66 8 6540 8.1 6 80 4754 97.55 2 SO2 56 9 5569 20. 49 200 3951 95.4 3 NOx 45 44 4 15. 35 150 217 65.4 锅炉烟气脱除效率难点分析 当地环保部门对本项目提出的最新要求目前国内 60t/h以下锅 炉AC-GTsx 的平均先进 水平 达到本 项目指 标的难 易程度 控制项目脱除效 率 (%) 排放标 准 (mg/N m3) (%) 烟 尘 97.55 80 99 易SO2 95.4 200 96 易NO x 65.4 150 47 难建议与商权

脱硝电除尘脱硫简介

脱硝、电除尘、脱硫简介 一、脱硝系统: (一)#5、6机组: 1、主要设备简介: 1)低氮燃烧器:低氮燃烧器是国内外燃煤锅炉控制NOx排放的优先选用技术。现代低NOx燃烧技术将煤质、制粉系统、燃烧器、二次风及燃尽风等技术作为一个整体考虑,以低NOx 燃烧器和空气分级为核心,在炉内组织燃烧温度、气氛和停留时间,形成早期的、强烈的、煤粉快速着火欠氧燃烧,利用燃烧过程产生的氨基中间产物来抑制或还原已经生成的NOx。低NOx直流燃烧器:燃烧器首要任务是燃烧,浓淡偏差稳燃措施也有助于控制NOx。在煤粉喷嘴前,通过偏流装置(弯头、百叶窗、挡块)使煤粉浓缩分离成浓淡两股。喷嘴设扰流钝体,一方面可卷吸高温烟气回流,另一方面使浓相煤粉在绕流时偏离空气,射入高温回流烟气区域。这样,在燃烧器钝体下游,可形成高浓度煤粉在高温烟气中的浓淡偏差欠氧燃烧,从而有效控制燃烧初期的NOx生成量。 2)脱硝SCR:SCR是一种成熟的深度烟气氮氧化物后处理技术,无论是新建机组还是在役机组改造,绝大部分煤粉锅炉都可以安装SCR装置。典型的烟气脱硝SCR工艺流程见图,具有如下特点:

●脱硝效率可以高达95%,NOx排放浓度可控制到 50mg/m3以下,是其他任何一项脱硝技术都无法单独达到的。 ●催化剂是工艺关键设备。催化剂在和烟气接触过程中, 受到气态化学物质毒害、飞灰堵塞和冲蚀磨损等因素的影响,其活性逐渐降低,通常3~4年增加或更换一层催化剂。对于废弃的催化剂,由于富集了大量痕量重金属元素,需要谨慎处理。 ●反应器内烟气垂直向下流速约4~4.5m/s,催化剂通道 内烟气速度约5~7m/s。300MW、600MW及1000MW机组对应的每台SCR反应器截面积分别约80~90m2、150~180m2、230~250m2。 ●脱硝系统会增加锅炉烟道系统阻力约约700~1000Pa, 需提高引风机压头。 ●SCR系统的运行会增加空预器入口烟气中SO3浓度,并 残留部分未反应的逃逸氨气,二者在空预器低温换热面上反应形成硫酸氢铵,易恶化空预器冷端的堵塞和腐蚀,需要对空预器采取抗硫酸氢铵堵塞措施。 ●受制于锅炉烟气参数、飞灰特性及空间布置等因素的 影响,根据反应器的布置位置,SCR工艺分为高灰型、低灰型和尾部型等三种:高灰型SCR是主流布置,工作环境相对恶劣,催化剂活性惰化较快,但烟气温度合适(300~400℃),经济性最高;低灰型SCR和尾部型SCR的选择,主要是为了净化催化剂运行的烟气条件或者是受到布置空间的限制,由于需将烟气加热到300℃以上,只适合于特定环境。

焦化厂烟气脱硝脱硫一体化解决方案

110万吨/年焦炉烟气脱硝脱硫一体化技术方案 110万吨/年焦炉烟道气与脱硝脱硫一体化 设 计 方 案 廊坊市晋盛节能技术服务有限公司

目录 1. 项目概述 (2) 1.1. 项目概况 (2) 2. 设计依据 (2) 2.1. 设计原则 (2) 2.2. 设计标准 (3) 2.3. 设计原始参数 (3) 2.3.1 烟气参数 (3) 2.3.2 气候条件 (4) 2.4. 设计要求 (4) 2.5. 工程范围 (4) 3. 烟气脱硫脱硝一体化工艺 (5) 3.1. 总工艺流程 (5) 3.2. 脱硝工艺 (5) 3.3. 脱硫工艺 (7) 4. 烟气脱硫脱硝一体化技术说明 (8) 4.1. 脱硝技术 (8) 4.1.1脱硝系统的构成 (8) 4.1.2脱硝系统主要设备 (9) 4.2. 脱硫技术 (11) 4.2.1脱硫工艺描述 (11) 4.2.2脱硫主要设备 (11) 5. 经济及环境效益分析 (13) 5.1脱硫脱硝环境效益及节约费用 (13) 5.2脱硫脱硝运行费用 (13) 5.3脱硫脱硝投资费用 (14) 5.4设备清单 (13)

1.项目概述 1.1.项目概况 焦化厂是专门从事冶金焦炭生产及冶炼焦化产品、加工、回收的专业工厂。焦 、NOx及烟尘等,炉烟囱排放的大气污染物为焦炉煤气燃烧后产生的废气,主要有SO 2 污染物呈有组织高架点源连续性排放,是污染最为严重的行业之一。 2012年6月,环境保护部及国家质量监督检验检疫局联合发布了《炼焦化学工业污染物排放标准》,明确规定了焦化工业的大气污染物排放标准。 廊坊市晋盛节能技术服务有限公司一体化烟气治理技术,就是将烟气烟气除尘技术,烟气脱硫、脱硝技术捆绑在一起,形成一套集成创新的装置,这套装置既能除尘、脱硫、脱硝,从而达到烟气资源化利用的目的。从此改变烟气治理只有投入,没有产出的困境。 2.设计依据 2.1.设计原则 2.1.1脱硫脱硝 对尾气同时进行脱硝及脱硫治理。 采用高效、先进、运行稳定、管理方便的治理工艺及技术,保证废气的达标排放; 烟气净化治理不影响焦化厂生产工艺的正常运行。 精心布设系统的流程,减少运行过程的物耗及能耗,降低运行成本; 根据工程的实际情况尽量减少脱硝装置的建设投资。 改造工程将充分利用现有设备和场地,力求工艺流程和设备布置合理。 所有设备的制造和设计完全符合企业标准及安全可靠,连续有效运行的要求,确保净化系统能够安全、稳定的运行。

相关主题
文本预览
相关文档 最新文档