2. 教材P35T1,2.
作业
1. 若f(0)=1 , f(n)=nf(n-1), n N
求f(4).
2. 若f(x)=ax2- 2 ,且 f f( 2) 2,
求a.
3. 已知g(x)=1-2x,
f g (x)1 x2 x2(x0 ),求 f(1 2).
;脂美 / 脂美 超刀美盾 / 超刀美盾 水光美宝 / 水光美宝 ;
(2)
求倒数111 Nhomakorabea2 A 3
2
1
B
3
41
4
(3)
定义
给定两个非空数集A和B,如果按 照某个对应关系f ,对于A中的任何一 个数x, 在集合B中都存在唯一确定的 数 f (x) 与之对应, 那么就把对应关系 f叫做定义在A的函数.
记作: f:A→B 或 y= f (x) x∈A.
其中,x叫做自变量, 集合A叫做定义域,
?
设在一个变化过程中有两个变量 x与y, 如果对于x的每一个值, y都有 唯一的值与它对应, 那么就说 y是 x 的函数. x叫做自变量. 思考: (1) y=1(x∈R)是函数吗?
(2) y=x与y= x 2 是同一函数吗?
x
乘2
1
1 A
2
2 3 4B
35
6
平方
1
-1
1
A2
-2
4
3
B
-3
9
(1)
时的函数值.
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
。。
{x a≤x≤b}
[a , b]
..
{x a≤x<b} {x a<x≤b}
{x x<a} {x x≤a} {x x>b}