高一数学课件:求函数解析式方法
- 格式:ppt
- 大小:222.00 KB
- 文档页数:6
人教版新高一数学必修一求函数的解析式换元法
人教版新高一数学必修一求函数的解析式换元法是求函数的重
要方法之一,它能帮助学生掌握函数的求解方法,是数学学习的重要组成部分。
本文将介绍如何使用换元法来求函数的解析式,以便学生能够更有效地学习和理解求函数的概念。
首先,要想用换元法求得函数的解析式,我们需要了解其中的基本概念,即换元法的概念与其定义。
它是一种将原函数形式中的变量进行替换的方法,使其变为另外一种函数,从而可以解决函数的求解。
下面我们来看一个例子,用换元法求函数解析式。
假设有函数y=5x+3,我们将其中的x替换成y,可以得到
y-3=5(x-3),两边同时除以5,可以得到x=y-3/5.以看出,用换元法之后得到的函数解析式为:x=y-3/5。
这样,我们就可以得到函数解析式,从而更有效地求函数解析式。
另外,换元法在求函数解析式过程中也有一些注意事项:
1、在换元之前,首先识别函数的形式,确定变量的范围;
2、其次,要注意换元时的相互变换是否正确;
3、最后,要根据指定的变量,实际算出求解结果函数;
4、最后,要正确核对最终结果,以免出现错误。
以上就是换元法求函数解析式的基本方法,通过这种方法,可以有效地求得函数的解析式。
换元法是求函数解析式的有效方法,其不仅可以使学习者更容易理解函数的性质,而且可以提高学习者的函数求解能力,是一种有效的数学学习方法。
总之,换元法在求函数解析式过程中非常有用,它可以帮助学生更好地掌握和理解函数求解方法,增进学生学习数学的兴趣,提高学生数学学习的能力。
高一数学求函数解析式的方法嘿,同学们!咱今天就来好好唠唠高一数学里求函数解析式的那些事儿。
咱就说函数解析式,那可真是数学世界里的一把钥匙啊!它能帮咱打开好多知识的大门呢。
先来说说待定系数法,这就好比是给函数这个神秘的家伙穿上合适的衣服。
咱先根据题目给的条件,判断出函数的大概模样,然后设出相应的解析式,再通过已知的信息把那些系数给确定下来,这不就大功告成啦!就像拼图一样,一块一块地把它拼完整,是不是很有意思呀?还有换元法,哇哦,这个可神奇啦!就好像变魔术一样。
把一个复杂的式子用一个新的变量来代替,让问题一下子变得简单明了。
就好像把一团乱麻解开,找到那根关键的线头,轻轻一拉,一切都顺顺当当啦。
再说说配凑法,这就像是个巧匠,把各种零件巧妙地组合在一起。
通过对已知式子的摆弄,凑出我们需要的函数解析式,是不是很有成就感呀!咱举个例子哈,比如说有个函数 f(x)满足某个条件,咱就可以通过这些方法去找出它具体的解析式。
这就好像是侦探在破案,根据蛛丝马迹去找到真相。
想象一下,你就是那个聪明的侦探,面对这些函数问题,一点一点地分析,一步一步地找到答案,那感觉多棒呀!而且哦,求函数解析式可不仅仅是为了做题,它在好多实际问题中都有大用处呢。
比如说计算成本啦,预测趋势啦,用处可多了去啦。
所以呀,同学们,一定要把这些方法好好掌握住,它们可是咱在数学世界里闯荡的宝贝呀!别嫌麻烦,多练几遍,你就会发现,原来求函数解析式也没那么难嘛。
加油哦,相信你们都能搞定的!反正不管怎么说,高一数学的求函数解析式方法就是很重要,咱可得认真对待,好好学。
等咱学会了,那数学成绩还不得蹭蹭往上涨呀!哈哈,就这么定啦!。
高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
例1. 已知2211()x x x f x x +++=,试求()f x 。
解:设1x t x +=,则11x t =-,代入条件式可得:2()1f t t t =-+,t ≠1。
故得:2()1,1f x x x x =-+≠。
说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。
例2. (1)已知21()2()345f x f x x x +=++,试求()f x ;(2)已知2()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111()2()345f f x x x x +=++,与条件式联立,消去1f x ⎛⎫ ⎪⎝⎭,则得:()222845333x f x x x x =+--+。
(2)由条件式,以-x 代x 则得:2()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:()2543f x x x =-+。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
例4. 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ;(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f ;(3)已知x xx x x f 11)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。
【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2≠++=a c bx ax x f ,设法求出c b a ,,即可。
求函数)(x f 解析式常用的方法济宁一中高一数学组 贾广素(邮编272000)电话:130****4397根据实际问题求解函数的表达式,是利用函数知识解决实际问题的基础。
因此,有必要掌握函数解析式的求法,下面就介绍几种求解函数解析式的常用方法:一、直接法直接法就是从题设(已知)条件出发,执因索果,进行演绎推导,从而得出函数解式的方法。
例1、 已知432)(2++=x x x f ,求函数)1(+x f 的解析式。
解:由于432)(2++=x x x f ,∴)1(+x f =4)1(3)1(22++++x x =9722++x x。
例2、 已知)(x f 是奇函数,且当0>x 时)1()(x x x f -=,求当0<x 时)(x f 的解析式。
解: 当0>x 时)1()(x x x f -=,∴当x<0时,-x>0,从而)1())(1)(()(x x x x x f +-=---=-又 )(x f 是奇函数,)()(x f x f -=-;)1()(x x x f +=∴。
注:直接法是一种正向的思维,解决问题时要善于将稍复杂的问题进行分解,各个击破,它不需要特殊的技巧。
二、待定系数法用一些字母作为待定系数,然后根据条件列出含有待定系数的方程式或方程组,解出这些待定系数,从而求出函数解析式的方法称为待定系数法。
例3、已知)(x f 是一次函数,并且满足172)1(2)1(3+=--+x x f x f ,求函数)(x f 的解析式。
解:设)0()(≠+=a b ax x f ,则)1(2)1(3--+x f x f =ba axb a ax 222333-+-++=b a ax ++5,又 172)1(2)1(3+=--+x x f x f ,比较系数得⎩⎨⎧=+=1752a b a 解得7,2==b a ,所以所求函数的解析为72)(+=x x f 。
例4、已知二次函数)(x f y =的最大值等于13,且,5)1()3(=-=f f 求函数)(x f 的解析式。