风电叶片用竹基纤维复合材料力学性能的评价
- 格式:pdf
- 大小:279.64 KB
- 文档页数:4
纤维增强复合材料的力学性能分析纤维增强复合材料(Fiber Reinforced Composites,FRC)是一种由纤维和基体组成的材料。
与传统的金属材料相比,纤维增强复合材料具有较高的强度和刚度,同时还具备良好的耐久性和耐腐蚀性能。
在各个领域中广泛应用,特别是航空航天、汽车和建筑等工业领域。
首先,我们来分析纤维增强复合材料的力学性能。
纤维增强复合材料的强度主要取决于纤维的性质和纤维与基体之间的相互作用。
不同类型的纤维(如碳纤维、玻璃纤维和高强度聚合物纤维等)具有不同的力学性能。
碳纤维具有优异的拉伸强度和刚度,使其成为高性能应用的理想选择。
与金属相比,纤维增强复合材料在弯曲、剪切和挤压等力学加载方式下表现出更好的性能。
其次,纤维与基体之间的相互作用起着至关重要的作用。
纤维增强复合材料的强度和刚度受到纤维与基体之间的粘结强度影响。
粘结强度取决于纤维和基体之间的物理和化学相互作用。
优化纤维与基体之间的粘结强度可以提高纤维增强复合材料的力学性能。
除了强度和刚度之外,纤维增强复合材料还具有良好的疲劳和冲击性能。
疲劳性能是指材料在长期循环加载下的耐久性,而冲击性能则是材料在突然加载下的耐久性。
纤维增强复合材料由于其结构的特殊性能,具有较高的疲劳和冲击强度。
这使得它们在高负荷和高速冲击场合下仍能保持稳定的性能。
此外,纤维增强复合材料还具有优异的耐腐蚀性能。
金属材料容易受到氧化、腐蚀和腐蚀疲劳等环境因素的影响,从而导致材料的性能下降。
而纤维增强复合材料由于不容易受到环境腐蚀的影响,因此具有更好的耐久性和使用寿命。
最后,纤维增强复合材料的设计和制造也是影响其力学性能的重要因素。
纤维的布局和层序、基体的固化过程以及材料的加工工艺都会对材料的性能产生影响。
因此,在实际应用中,需要仔细设计和控制这些工艺参数,以确保纤维增强复合材料的力学性能能够得到充分发挥。
综上所述,纤维增强复合材料具有较高的强度、刚度和耐久性,以及良好的疲劳、冲击和耐腐蚀性能。
竹纤维检测报告1. 引言本报告旨在对竹纤维进行检测,并提供有关竹纤维材料性能和特征的详细分析。
竹纤维是一种天然纤维,由竹子的纤维素构成,具有轻质、强度高、环保等优点,近年来得到了越来越广泛的应用。
为了确保竹纤维在各个领域的安全和质量,本次检测旨在对竹纤维样品进行全面的检验和评估。
2. 检测方法本次竹纤维检测主要采用以下方法:2.1 成分分析使用红外光谱(FTIR)仪器对竹纤维样品进行测试,以确定其主要成分。
红外光谱分析是一种常用的确定材料组成的方法,可以通过检测样品中不同基团的振动频率来确定其成分。
2.2 纤维形态观察通过显微镜观察竹纤维的形态特征,包括纤维长度、直径和形状等,以评估其纤维形态特征,进而推断其性能。
2.3 物理性能测试使用万能材料试验机对竹纤维样品进行物理性能测试,包括拉伸强度、弹性模量、断裂伸长率等,来评估竹纤维的力学性能。
2.4 热性能测试使用差示扫描量热仪(DSC)对竹纤维样品进行热性能测试。
通过检测样品在加热过程中吸收或释放的热量变化,可以了解竹纤维的热行为,如熔点、热分解温度等。
3. 检测结果3.1 成分分析通过红外光谱分析,确定竹纤维的主要成分为纤维素。
纤维素是竹纤维的主要成分,占据了样品中的90%以上。
3.2 纤维形态通过显微镜观察,竹纤维呈现出细长的形态,平均直径约为20微米,长度在1-5厘米之间。
竹纤维的形态特征说明其具有较好的柔软性和可塑性。
3.3 物理性能经物理性能测试得出以下结果: - 拉伸强度:XXX MPa - 弹性模量:XXX GPa -断裂伸长率:XXX %这些数据表明竹纤维具有较高的强度和较好的延展性,适用于各种工程领域。
3.4 热性能经热性能测试得出以下结果: - 熔点:XXX ℃ - 热分解温度:XXX ℃竹纤维在高温下表现出较好的热稳定性,适合在高温环境下使用。
4. 结论根据本次竹纤维的检测结果,可以得出以下结论: 1. 竹纤维主要成分为纤维素,具有良好的化学稳定性; 2. 竹纤维形态呈现细长的特点,平均直径约为20微米,具有较好的柔软性和可塑性; 3. 竹纤维具有较高的拉伸强度和弹性模量,具有良好的机械性能; 4. 竹纤维在高温下表现出较好的热稳定性。
纤维增强复合材料的力学性能与设计优化纤维增强复合材料(Fiber Reinforced Composites,FRC)是一种由纤维与基体相互结合形成的材料。
纤维通常由高强度的材料如碳纤维、玻璃纤维或有机纤维制成,而基体则由具有良好韧性的树脂材料如环氧树脂或聚合物构成。
FRC具有轻质、高强度、耐腐蚀和优异的耐磨损特性,因此在许多工业领域中得到广泛应用。
力学性能是评价FRC材料性能的重要指标之一。
它涵盖了多个方面,包括强度、刚度、韧性、疲劳性能等。
首先,强度是指材料在承受外部加载时的抵抗力。
在纤维增强复合材料中,纤维起到了增强材料强度的作用,可以通过纤维的类型、体积分数和纤维排列方式来调节材料的强度。
其次,刚度是指材料对变形的抵抗力。
刚度与纤维的排列方式、基体材料的刚度以及纤维和基体界面的黏合强度有关。
韧性是指材料抵抗断裂的能力。
纤维增强复合材料具有良好的韧性,特别是碳纤维增强复合材料,其疲劳性能也十分出色。
设计优化是指通过改变FRC材料的组成和结构,在保持或提高强度、刚度和韧性等力学性能的基础上,使材料尽可能轻、耐久和经济。
设计优化可以通过多种方法实现。
一种常见的方法是通过有限元分析(Finite Element Analysis,FEA)模拟材料的受力情况,利用计算机模拟来预测材料的性能,进而指导设计。
通过调整纤维体积分数、纤维排列方式、基体材料和纤维增强剂等参数,设计优化可以找到最佳组合,使得材料在特定载荷条件下能够承受最大荷载。
此外,设计优化还可以通过增加纤维的层数和改变纤维的分布,来提高材料的强度和刚度。
层数的增加能够有效提高材料在平面内的强度,而纤维分布的改变则可以提高材料在不同方向上的性能。
例如,将纤维按照斜角排列可以提高材料的剪切强度,将纤维按照环向排列可以提高材料的环向刚度。
这些方法可以通过试验和优化算法结合来实现,以找到最佳的设计方案。
除了以上内容,还可以通过添加填充物、表面修饰和纤维合成等方式来优化FRC材料的力学性能。
风力发电叶片质量标准
风力发电叶片的质量标准包括以下几个方面:
1. 材料质量:叶片通常采用玻璃纤维和碳纤维等复合材料制造,材料必须符合相应的国家标准或行业标准,确保叶片的强度、刚度和耐久性等性能。
2. 外观质量:叶片的外观应该光滑、平整,表面不能有明显的凹凸、裂纹、气泡等缺陷,以确保叶片在运行过程中的aerodynamic performance。
3. 尺寸准确性:叶片的尺寸应符合设计要求,并且保持一致性。
叶片的长度、宽度、厚度和弯曲角度等参数必须在一定的公差范围内,以确保叶片的 aerodynamic performance。
4. 力学性能:叶片必须能够承受风力的作用并转化为机械能,因此其力学性能非常重要。
叶片的强度、刚度、耐久性等指标必须符合设计要求,在实际运行中能够承受风力的冲击和变化。
5. 静态与动态平衡:叶片安装在风力发电机上后,需要具有良好的静态和动态平衡,以减少振动和噪声,并保证风力发电机的正常运行。
以上是一些常见的风力发电叶片质量标准,具体的标准和要求可能会根据国家、行业以及叶片制造商的要求而有所不同。
高性能纤维复合材料的力学性能测试与分析引言高性能纤维复合材料是一种结构材料,在许多领域都有重要的应用,如航空航天、汽车工业和体育器材制造等。
为了确保这些复合材料具备足够的强度和耐久性,力学性能的测试与分析必不可少。
本文将探讨高性能纤维复合材料的力学性能测试方法和分析技术。
一、拉伸性能测试拉伸测试是评估复合材料抗拉强度和抗拉刚度的常用方法。
测试时,采用万能材料试验机对复合材料样品施加拉伸载荷并测量变形和应力。
通过测定应力-应变曲线,可以得到材料的弹性模量、屈服强度和断裂强度等参数。
二、弯曲性能测试弯曲测试是评估复合材料抗弯强度和抗弯刚度的重要手段。
通常采用三点弯曲或四点弯曲测试方法。
这些测试能够模拟实际应用中的受力情况,测定了复合材料在实际工况下的性能。
弯曲测试结果还可用于设计结构和计算材料的可靠性。
三、压缩性能测试压缩测试是评估复合材料在压力作用下的强度和稳定性的方法。
压缩载荷可能导致复合材料产生局部破坏或压缩失稳,通过测试可以获取复合材料的压缩强度和压缩模量等重要参数。
不同的压缩试验方法可用于评估不同类型的复合材料,如纤维增强复合材料和泡沫复合材料。
四、剪切性能测试剪切测试用于评估复合材料在剪切载荷下的强度和破坏性能。
通过施加剪切载荷并记录失效模式,可以确定材料的剪切强度和最大承载能力。
剪切性能测试对于评估复合材料的结构稳定性和连接性能非常重要。
五、疲劳性能测试疲劳测试用于评估复合材料在重复应力循环下的性能和寿命。
这种测试能够模拟实际工况中的长期应力作用,通过测量应力-循环次数曲线,可以确定复合材料的疲劳强度和寿命。
这对于确保复合材料在长期使用中不出现疲劳失效非常重要。
六、力学性能分析通过对测试结果的分析,可以获得多种力学性能指标,如弹性模量、屈服强度、断裂强度、抗弯强度和抗疲劳强度等。
此外,还可以利用断口扫描电镜观察断裂面形貌,以了解复合材料的失效机制和强度分布情况。
这些分析结果对于材料设计、结构分析和优化具有重要的指导意义。
复合材料的力学性能与应用研究进展复合材料是由两种或两种以上具有不同物理和化学性质的材料通过特定工艺组合而成的一种新型材料。
由于其独特的性能优势,复合材料在众多领域得到了广泛的应用,并成为材料科学研究的热点之一。
本文将重点探讨复合材料的力学性能以及其在不同领域的应用研究进展。
一、复合材料的力学性能1、强度复合材料的强度通常高于其组成成分的单独材料。
这是因为复合材料中的增强相(如纤维)能够有效地承担载荷,阻止裂纹的扩展。
例如,碳纤维增强复合材料(CFRP)具有极高的强度,其强度可达到钢铁的数倍。
2、刚度刚度是材料抵抗变形的能力。
复合材料的刚度可以通过选择合适的增强相和基体材料进行调整。
例如,玻璃纤维增强复合材料(GFRP)在保持一定强度的同时,具有较好的刚度,适用于制造需要承受较大载荷的结构件。
3、韧性韧性是材料在断裂前吸收能量的能力。
复合材料的韧性往往优于传统材料,这是由于其内部的纤维和基体之间的界面能够有效地分散应力,延缓裂纹的扩展。
例如,芳纶纤维增强复合材料具有出色的韧性,在航空航天领域得到了广泛应用。
4、疲劳性能在循环载荷作用下,复合材料的疲劳性能表现优异。
其内部的纤维能够分担载荷,减少局部应力集中,从而延长材料的使用寿命。
例如,汽车工业中使用的复合材料零部件在长期的振动和交变载荷作用下,仍能保持良好的性能。
二、复合材料的应用研究进展1、航空航天领域在航空航天领域,复合材料的应用越来越广泛。
由于其轻质高强的特点,复合材料被用于制造飞机的机翼、机身等结构件,不仅减轻了飞机的重量,提高了燃油效率,还增强了飞机的性能和可靠性。
例如,波音 787 飞机的机身结构中复合材料的使用比例超过了 50%。
此外,复合材料还被用于制造卫星的结构件和太阳能电池板支架等,为航天任务的成功提供了有力保障。
2、汽车工业随着环保和节能要求的不断提高,汽车轻量化成为了发展的趋势。
复合材料在汽车工业中的应用逐渐增加,如汽车车身、底盘、发动机罩等部件。
文章标题:深度剖析复合材料及其结构的力学、设计、应用和评价一、引言复合材料作为一种具有优异性能的新型材料,在工程领域中得到了广泛的应用。
复合材料的力学特性、结构设计、应用领域和评价标准是复合材料研究的重要内容。
本文将从深度和广度两个方面来探讨复合材料及其结构的力学、设计、应用和评价,以帮助读者全面了解这一主题。
二、复合材料的力学特性1.1 引言复合材料的力学特性是指复合材料在受力作用下的力学行为,包括抗拉、抗压、屈服等特性。
1.2 弹性模量和强度复合材料的弹性模量是衡量其刚度的重要参数,而强度则是衡量其承载能力的重要指标。
复合材料的弹性模量和强度与其结构设计和材料组成密切相关,需要根据实际应用来评价。
1.3 疲劳特性复合材料具有疲劳寿命有限的特点,其疲劳特性是指在受到交变载荷下,复合材料的力学性能变化规律。
评价复合材料的疲劳特性对于其在实际工程中的应用具有重要意义。
1.4 断裂韧性复合材料的断裂韧性是指其在受到外部冲击或载荷作用下耐受破坏的能力,是衡量复合材料抗拉伸、抗压、抗扭转能力的重要参数。
三、复合材料的结构设计2.1 纤维增强复合材料纤维增强复合材料是指将纤维材料与基体材料结合形成复合结构的材料。
纤维增强复合材料的结构设计是根据不同的应用场景和受力条件进行优化的重要环节。
2.2 层合板结构设计层合板是一种典型的复合材料结构,在航空航天、汽车制造等领域得到广泛应用。
其结构设计需要考虑到不同材料层间的粘结、层间应力分布等因素。
2.3 复合材料复合结构设计复合材料的复合结构设计是指在复合材料的基础上,结合其他材料或结构进行设计,以满足特定工程需求。
四、复合材料的应用领域3.1 航空航天领域复合材料在航空航天领域中得到了广泛的应用,例如飞机机身、发动机零部件等都采用了复合材料的结构设计。
3.2 汽车制造领域汽车制造领域是复合材料的另一个重要应用领域,车身、发动机罩等部件都在不同程度上采用了复合材料。
复合材料力学性能复合材料是由两种或两种以上不同性质的材料组成的材料,具有轻质、高强度、耐腐蚀等特点,因此在航空航天、汽车制造、建筑等领域得到广泛应用。
复合材料的力学性能是评价其质量和可靠性的重要指标,包括强度、刚度、韧性、疲劳性能等方面。
本文将就复合材料的力学性能进行探讨。
首先,复合材料的强度是其最基本的力学性能之一。
强度是材料抵抗外部力量破坏的能力,通常包括拉伸强度、压缩强度、剪切强度等。
复合材料的强度受到纤维和基体的影响,纤维的强度决定了复合材料的整体强度,而基体则起到了支撑和保护纤维的作用。
因此,合理选择和设计纤维和基体的材料和结构对于提高复合材料的强度至关重要。
其次,复合材料的刚度也是其重要的力学性能之一。
刚度是材料抵抗变形的能力,通常体现为弹性模量。
复合材料由于其纤维的高强度和基体的刚度,具有较高的整体刚度,能够在外部载荷作用下保持较小的变形,因此在工程应用中得到了广泛的应用。
另外,复合材料的韧性也是其重要的力学性能之一。
韧性是材料抵抗断裂的能力,通常体现为断裂韧性和冲击韧性。
复合材料由于其纤维的高强度和基体的韧性,具有较高的整体韧性,能够在受到冲击载荷时不易发生断裂,因此在航空航天等领域得到了广泛的应用。
最后,复合材料的疲劳性能也是其重要的力学性能之一。
疲劳性能是材料在交变载荷下抵抗疲劳断裂的能力,复合材料由于其纤维和基体的结构特点,具有较好的疲劳性能,能够在长期交变载荷下保持较高的强度和韧性,因此在汽车制造等领域得到了广泛的应用。
综上所述,复合材料的力学性能是评价其质量和可靠性的重要指标,强度、刚度、韧性、疲劳性能等方面的性能都是其重要的表征。
因此,在复合材料的设计和制造过程中,需要充分考虑这些力学性能,合理选择和设计材料和结构,以确保复合材料具有良好的力学性能,能够满足工程应用的要求。
复合材料风电叶片结构强度非线性分析摘要:风能作为清洁、可再生能源的一员,具有容量大、开发和维护成本低的优势。
风电叶片作为风电机组的关键部件是能量吸收的载体,占据机组约20%的成本,同时,也是风电机组载荷的主要来源,风电叶片的强度和可靠性对风电机组的寿命和能量输出至关重要。
基于此,本文主要对复合材料风电叶片结构强度非线性进行分析探讨。
关键词:复合材料;风电叶片;结构强度;非线性分析1、叶片结构强度叶片不仅受到结构刚度和叶尖挠度的约束,还需要满足材料强度和结构稳定性的要求,使得叶片在极限外载荷作用下不发生材料的失效和结构的失稳。
1.1复合材料强度现代大型风电叶片由纤维增强聚合物基复合材料制造,不同于传统各向异性材料,复合材料的失效规律更加复杂,因此,在判断叶片复合材料失效时,文中采用蔡-吴失效准则,该失效准则考虑复合材料各向异性,且广泛应用于复合材料失效的判据,其表达式为式中:F11,F12,F22,F66,F1以及F2为张量系数;Xt和Xc分别为复合材料沿纤维主方向的拉伸和压缩强度;Yt和Yc分别为复合材料垂直于纤维主方向的拉伸和压缩强度;S为复合材料平面内的剪切强度。
1.2结构线性和非线性屈曲屈曲稳定性是叶片复合材料薄壳结构安全性分析的重要方面。
根据经典结构稳定性理论,线性屈曲为经典的特征值屈曲,根据线弹性前屈曲载荷-位移关系,则有P0=Keu0,式中:Ke为弹性刚度矩阵;u0施加载荷P0的位移;σ0与u0对应的应力。
假设前屈曲位移很小,在任意状态下,P、u以及σ增量平衡方程为ΔP=(Ke+Kσ(σ))ΔuKσ(σ)为某应力状态下计算的初始应力矩阵。
假设前屈曲行为是一个外加载荷P0的线性函数,P=λP0,u=λu0,σ=λσ0,则可得,Ks(s)=lKs(s0)因此,整个前屈曲范围内的增量平衡方程变为DΔP=(Ke+λKσ(σ))Δu在不稳定性开始时(屈曲载荷Pcr),在P0=0的情况下,结构会出现一个变形∆u。
纤维增强复合材料的力学性能测试研究纤维增强复合材料已经成为目前工业界和科研界的一个研究热点。
其优秀的性能使得其在各个领域都有着广泛的应用。
为了更好地研究其性能,人们不断地对其力学性能进行测试研究。
本文将从纤维增强复合材料的特点、力学性能测试方法和测试结果三个方面展开,全面地介绍纤维增强复合材料的力学性能测试研究。
一、纤维增强复合材料的特点纤维增强复合材料是由高分子基体和增强纤维构成的复合材料。
其性能主要来源于增强纤维,而基体则起着黏合增强纤维的作用。
纤维增强复合材料的特点主要表现在以下几个方面:(1)轻质高强度:纤维增强复合材料的密度很低,其强度却很高,可以替代传统的金属材料。
(2)优异的耐腐蚀性:基体大多采用聚合物材料,其具有极好的耐腐蚀性,可以避免因腐蚀而导致的结构损坏。
(3)设计自由度高:制作纤维增强复合材料时可以按照需要进行不同纤维的叠加,从而设计出不同形状的复合材料,提高了材料的设计自由度。
(4)吸声性能好:由于纤维增强复合材料的基体大多是聚合物材料,所以其具有吸声性能,可以用于隔音和降低噪音的领域。
二、力学性能测试方法纤维增强复合材料的力学性能测试方法主要有以下几种:拉伸测试、弯曲测试、剪切测试和压缩测试。
(1)拉伸测试:是一种测试复合材料拉伸强度和模量的实验方法。
在拉伸试验时,试样沿着其纤维方向受力,拉伸速度一般是0.1mm/min。
拉伸试验可以获得复合材料的拉伸强度、拉伸模量、破坏伸长率等参数。
(2)弯曲测试:是一种测定复合材料弯曲强度和模量的方法。
在弯曲试验时,试样固定在两个支撑点之间,施加负载造成试样产生变形,同时对应的测量其载荷、位移。
弯曲试验可以获得复合材料的弯曲强度、弯曲模量等参数。
(3)剪切测试:是一种测试复合材料剪切强度和剪切模量的方法。
在剪切试验时,试样面上的力沿着试样平面方向产生,滑移面上有与此相等而反方向的力出现。
剪切试验可以获得复合材料的剪切强度和剪切模量等参数。
林业工程学报,2023,8(1):46-52JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.202205030收稿日期:2022-05-24㊀㊀㊀㊀修回日期:2022-10-07基金项目:福建省科技厅国家科技项目备案类(2022L3006);福建省科技厅自然科学基金面上项目(2020J01579);福建省林业科技项目(闽林科(2020)29号)㊂作者简介:盛叶,女,副教授,研究方向为绿色建筑和组合结构㊂E⁃mail:qzrse@163.com重组竹抗拉力学性能分析盛叶,黄庚浪,叶小凡,杜瑞(福建农林大学交通与土木工程学院,福州350002)摘㊀要:重组竹是一种新型竹基复合材料,其力学性能优于落叶松等木材,易加工成梁㊁柱等结构构件㊂为评价重组竹在静态加载下的顺纹㊁横纹抗拉力学性能,对40个顺纹抗拉试件和40个横纹抗拉试件进行了单轴拉伸力学性能试验,研究了重组竹材料抗拉破坏形态㊁应力⁃应变关系曲线㊁弹性模量及抗拉强度的平均值,采用威布尔分布㊁正态分布和对数正态分布模型分别对试验结果进行了分布拟合分析,并进一步采用参数法和非参数法分别提取了重组竹抗拉强度的标准值㊂结果表明:重组竹顺纹抗拉破坏缘于纤维束断裂失效,重组竹横纹抗拉破坏缘于纤维束间胶体失效,呈脆性断裂破坏形态;重组竹顺纹抗拉应力⁃应变曲线呈线性关系,重组竹横纹抗拉应力⁃应变曲线表现出典型的线性与非线性2个阶段;重组竹顺纹抗拉弹性模量㊁抗拉极限强度平均值分别为9529.81和97.88MPa,横纹抗拉弹性模量㊁抗拉极限强度平均值分别为1864.29和5.21MPa;对数正态分布拟合重组竹顺纹抗拉弹性模量㊁顺纹抗拉极限强度及横纹抗拉弹性模量的概率分布优度最好,正态分布拟合重组竹横纹抗拉极限强度的概率分布优度最好;重组竹顺纹抗拉强度标准值取67.59MPa(对数正态分布拟合下75%置信度PTL),横纹抗拉强度标准值取3.73MPa(正态分布拟合下75%置信度PTL);重组竹顺纹抗拉强度标准值约为横纹抗拉强度标准值的18倍,工程中应尽量避免横纹抗拉㊂关键词:重组竹;抗拉;应力⁃应变关系;标准值中图分类号:TU531.3㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:2096-1359(2023)01-0046-07AnalysisonmechanicalpropertiesofbambooscrimberundertensionstressSHENGYe,HUANGGenglang,YEXiaofan,DURui(CollegeofTransportationandCivilEngineering,FujianAgricultureandForestryUniversity,Fuzhou350002,China)Abstract:Bambooscrimberisanewtypeofbamboo⁃basedcompositematerial.Itsmechanicalpropertiesarebetterthanthoseofwoodsuchaslarch,anditiseasytobeprocessedintostructuralcomponentssuchasbeamsandcol⁃umns.Inordertoevaluatethetensilemechanicalpropertiesofthebambooscrimberalongandacrossthegrainunderstaticloading,theuniaxialtensilemechanicalpropertiesof40specimensunderlongitudinaltensileand40specimensundertransversetensileweretestedusingtheSANSuniversalmechanicaltestingmachine.Thefailuremodes,stress⁃straincurves,averageelasticmodulusandstrengthofthebambooscrimberundertensilewerestudiedandtheWeibulldistribution,normaldistributionandlognormaldistributionmodelswereusedtofitthetestresults.Thecharacteristicvaluesofstrengthofbambooscrimberundertensilewerefurtherexploredbytheparametricmethodandnon⁃paramet⁃ricmethod.Theresultsindicatedthatthefailureofspecimensunderlongitudinaltensileofthebambooscrimberwasduetothefailureofthefiberbundles.Thefailureofspecimensundertransversetensileofthebambooscrimberwasduetothefailureofcolloidbetweenthefiberbundles.Thestress⁃straincurvesofbambooscrimberunderlongitudinaltensileshowedalinearrelationship,andthestress⁃straincurvesofbambooscrimberundertransversetensileshowedtwotypicallinearandnonlinearstages.Theaveragevalueofelasticmodulusandultimatestrengthunderthelongitudi⁃naltensileofbambooscrimberwere9529.81and97.88MPa,respectively,andtheaveragevalueofelasticmodulusandultimatestrengthundertransverseofbambooscrimberwere1864.29and5.21MPa,respectively.Thelognormaldistributionfittingoftheelasticmodulusandultimatestrengthofbambooscrimberunderlongitudinaltensileandtheelasticmodulusofbambooscrimberundertransversetensilewasthebest.Thenormaldistributionfittingofultimatestrengthofbambooscrimberundertransversetensilewasthebest.Thecharacteristicvalueofstrengthunderthelongi⁃tudinaltensilewas67.59MPa(75%confidencelevelPTLunderlognormaltensiledistributionfitting),andthecha⁃racteristicvalueofstrengthundertransversetensilewas3.73MPa(75%confidencelevelPTLundernormaldistribu⁃㊀第1期盛叶,等:重组竹抗拉力学性能分析tionfitting).Thecharacteristicvalueofstrengthunderthelongitudinaltensilewasabout18timesthatofthestrengthunderthetransversetensile,andthetransversetensileofbambooscrimbershouldbeavoidedintheengineeringprac⁃ticeasfaraspossible.Keywords:bambooscrimber;tensile;stress⁃strainrelationship;characteristicvalues㊀㊀随着中国天然林的全面禁伐,木材资源日渐匮乏,而中国竹类资源相对丰富,成材周期远小于木材,以重组竹为代表的新型竹质工程材代替木材日益受到人们青睐,并已成功应用于建筑结构中,成为重要的绿色建筑材料[1-3]㊂重组竹具有良好的抗拉力学性能,自重小,弹塑性好,强重比高于木材和混凝土,易加工成梁㊁柱等结构构件[4-6]㊂作为梁构件时,重组竹下侧纤维纵向抗拉㊂作为梁柱节点时,销连接重组竹节点的承载能力会受到重组竹横纹抗拉强度的制约[7],成为结构中受力薄弱的部位㊂因此,重组竹纵㊁横向抗拉性能的研究对于其应用推广具有重要意义㊂Li等[8]㊁Huang等[9]和Wu等[10]分别研究了重组竹顺纹㊁横纹抗拉破坏形态及应力⁃应变关系曲线;Huang等[9]和Wu等[10]分别采用二次函数一体化模型㊁一次函数一体化模型对重组竹横纹抗拉应力⁃应变曲线进行拟合;Liu等[11]㊁张俊珍等[12]㊁盛宝璐等[13]和魏洋等[14]研究了重组竹顺纹抗拉破坏形态及应力⁃应变关系曲线,并采用一次函数一体化模型对重组竹顺纹抗拉应力⁃应变曲线进行拟合;束必清等[15]研究了重组竹顺纹抗拉强度标准值及强度设计值㊂以上研究主要针对重组竹顺纹抗拉的破坏形态及应力⁃应变关系曲线,而对重组竹横纹抗拉力学性能展开对比研究较少,相关规范尚未完善,针对重组竹抗拉力学性能尚需做很多研究工作㊂笔者通过40个重组竹顺纹试件和40个重组竹横纹试件的单轴抗拉试验,研究了重组竹抗拉破坏过程㊁破坏模式,分析重组竹试件的破坏机理;建立重组竹材料抗拉应力⁃应变关系模型,提出适于工程应用的简化本构公式;通过抗拉弹性模量和抗拉强度在正态分布㊁对数正态分布和威布尔分布3种分布模型中的拟合效果分析,进一步提取了重组竹抗拉强度的标准值㊂1㊀材料与方法1.1㊀试件制备试验原材料为浙江安吉的4 6年生毛竹,采用模压冷压工艺压制重组竹㊂具体生产过程:首先将竹条疏解1次成竹束;其次将竹束在酚醛树脂浸胶池中浸渍25min,浸胶量7%,并干燥至含水率8%;之后将竹束纵向放入110mmˑ110mmˑ2000mm尺寸的模具中,在压机上高压预成型,单位压力3.0MPa;最后将模具锁定并送入温度为200ħ的加热通道固化10h㊂参照JG/T199 2007‘建筑用竹材物理力学性能试验方法“测得重组竹试件的平均密度为1.15g/cm3,平均含水率为11.33%㊂根据ASTMD143-14 Standardtestmethodsforsmallclearspec⁃imensoftimber 设计加工重组竹顺纹抗拉和横纹抗拉试件,重组竹试件设计尺寸如图1所示㊂图1㊀试件设计尺寸Fig.1㊀Designsizeofspecimens1.2㊀测试方法参照ASTMD143-14进行重组竹抗拉测试并绘制其应力⁃应变曲线㊂抗拉试验在SANS万能力学试验机上进行,安放试件时要保证试件垂直,以确保试件处于轴心抗拉状态,使用DH3816N静态应变采集箱采集应变,采集频率为1Hz,试验装置如图2所示㊂采用位移控制加载制度对抗拉试件进行正式加载,加载速度为1mm/min,直至试件破坏,总加载持续时间控制为6 10min㊂根据式(1) (3)计算试件抗拉极限强度σtu㊁抗拉弹性模量Et和泊松比υij㊂σtu=Ftubt(1)Et=ΔFtbtΔεti(2)74林业工程学报第8卷υij=-ΔεtjΔεti(3)式中:Ftu为抗拉极限荷载,N;ΔFt为抗拉弹性阶段的荷载增量,N;Δεti㊁Δεtj为抗拉弹性阶段2个相互垂直方向的应变增量;b㊁t为试件有效区域的宽度与厚度,mm㊂图2㊀试验装置Fig.2㊀Testsetup2㊀结果与分析2.1㊀破坏形态重组竹顺纹抗拉试件的主要破坏形态如图3所示㊂当竹束分布均匀㊁试件中轴线与拉力作用线重合时,在抗拉过程中,竹束均匀受力,试件断裂面平齐,表现为平口破坏;当竹束分布不均匀,或者试件中轴线与拉力作用线不重合时,试件发生偏心抗拉,两侧竹束不均匀受力,试件破坏面与拉力作用线有一定倾斜角,表现为斜口破坏㊂重组竹顺纹抗拉破坏缘于纤维束断裂失效,呈脆性断裂破坏形态㊂图3㊀顺纹抗拉试件破坏形态Fig.3㊀Failurepatternsofspecimensunderlongitudinaltensile重组竹横纹抗拉试件的主要破坏形态如图4所示㊂加载初期,试件没有出现明显的裂缝;随着荷载的增大,试件最小截面处沿着竹纤维束方向出现细小裂缝;继续加载,裂缝逐渐变大并沿着水平方向延伸,最后贯穿整个截面,试件被拉断㊂重组竹横纹抗拉破坏缘于纤维束间胶体失效,呈脆性断裂破坏形态㊂图4㊀横纹抗拉试件破坏形态Fig.4㊀Failurepatternsofspecimensundertransversetensile2.2㊀抗拉性能分析在重组竹试件顺纹抗拉试验过程中,根据试验现象和试验数据发现,抗拉应力⁃应变曲线呈线性关系,断裂无征兆,试件属于脆性破坏㊂有效的35个重组竹顺纹抗拉试件极限抗拉试验结果统计值见表1㊂重组竹顺纹抗拉弹性模量均值为9529.81MPa,极限强度均值为97.88MPa,极限应变均值为0.0100%,泊松比均值为0.462㊂在重组竹试件横纹抗拉试验过程中,根据试验现象和试验数据发现,各个重组竹横纹抗拉试件试验结果与数据差异较大,抗拉应力⁃应变曲线呈典型的线性与非线性2个阶段,试件迅速破坏㊂有效的35个重组竹横纹抗拉试件极限抗拉试验结果见表2㊂重组竹横纹抗拉只有一种破坏形态,考虑到重组竹加工工艺(如温度㊁压力等)与材料(如竹节表1㊀顺纹抗拉试件试验结果统计值Table1㊀Statisticalvaluesoflongitudinaltensiletestresults统计指标顺纹抗拉弹性模量Et/MPa极限强度σtu/MPa极限应变εtu/%泊松比vt平均值9529.8197.880.01000.462标准差1310.7518.490.00180.062变异系数0.1380.1890.1720.135CI下限9270.4594.220.009940.450CI上限9789.16101.530.01060.474表2㊀横纹抗拉试件试验结果统计数值Table2㊀Statisticalvaluesoftransversetensiletestresults统计指标横纹抗拉弹性模量Etʅ/MPa比例极限应变εteʅ/%比例极限强度σteʅ/MPa极限应变εtuʅ/%极限强度σtuʅ/MPa泊松比vtʅ平均值1864.290.001723.040.004485.210.127标准差437.050.000570.740.001300.800.039变异系数0.230.328260.240.289140.150.305CI下限1777.810.001612.890.004235.050.119CI上限1950.770.001843.180.004745.370.13484㊀第1期盛叶,等:重组竹抗拉力学性能分析缺陷㊁纤维束密度等)等原因,试验数据离散性较大㊂重组竹横纹抗拉弹性模量均值为1864.29MPa,极限强度均值为5.21MPa,极限应变均值为0.00448%,泊松比均值为0.127㊂2.3㊀应力⁃应变关系2.3.1㊀重组竹顺纹抗拉应力⁃应变关系试验得到的重组竹试件顺纹抗拉应力⁃应变曲线如图5a所示,以顺纹抗拉试件的破坏过程㊁应力⁃应变曲线走势与参数值分析为基础,可以得出顺纹抗拉试件属于脆性破坏,应力⁃应变曲线关系可用线性模型表示:σt=Etε,㊀0ɤε<εtu(4)式中:σt为抗拉应力;ε为抗拉应变;εtu为顺纹抗拉极限应变㊂图5㊀抗拉应力⁃应变关系模型(平均值)Fig.5㊀Stress⁃strainrelationshipmodelundertension(averagevalue)2.3.2㊀重组竹横纹抗拉应力⁃应变关系试验得到的重组竹试件横纹抗拉应力⁃应变曲线如图5b所示,以横纹抗拉试件的破坏过程㊁应力⁃应变曲线走势与参数值分析为基础,可以得出横纹抗拉破坏过程分为线性与非线性2个阶段,线性阶段㊁非线性阶段应力⁃应变曲线关系分别用一次函数模型和三次函数模型表示:σ(ε)=Etʅε,0ɤε<εtʅλ1ε+λ2ε2+λ3ε3,εtʅɤε<εtuʅ{(5)λ1=2Etʅεtuʅ-Etʅεtʅ2(εtuʅ-εtʅ)(6)λ2=-Etʅ(5εtuʅ+εtʅ)2(εtuʅ-εtʅ)(7)λ3=Etʅ10εcuʅ(εtuʅ-εtʅ)(8)式中:εtuʅ为抗拉极限应变;σ(ε)为抗拉应力;λ1㊁λ2㊁λ3为待定系数㊂2.4㊀力学参数标准值2.4.1㊀分布模型拟合对于结构材的样本数据统计,通常采用威布尔分布模型㊁正态分布模型㊁对数正态分布模型进行分布拟合[16]㊂重组竹顺纹抗拉试件弹性模量和极限强度试验值分别用3种分布模型进行拟合的情况对比如图6所示㊂由图6可以看出,顺纹抗拉试件弹性模量和极限强度试验值服从偏态分布㊂在3种分布模型中,对数正态分布与弹性模量和极限强度试验数据直方图匹配效果最好㊂图6㊀顺纹抗拉试件弹性模量和极限强度分布Fig.6㊀Distributionofelasticmodulusandultimatestrengthofspecimensunderlongitudinaltensile94林业工程学报第8卷㊀㊀重组竹顺纹抗拉试件弹性模量和极限强度试验值拟合优度检验对比见表3,由表3可以得出:正态分布㊁对数正态分布㊁威布尔分布均可作为顺纹抗拉试件弹性模量和极限强度试验值的总体假设分布形式㊂根据P值判断3种分布的拟合优度效果为对数正态分布>正态分布>威布尔分布㊂表3㊀顺纹抗拉试验值拟合优度检验比较(5%水平)Table3㊀Comparisonofgoodnessoffittestoftestvaluesunderlongitudinaltensile(5%level)分布抗拉弹性模量抗拉极限强度优度检验统计P结论优度检验统计P结论K⁃S检验0.0621H0K⁃S检验0.08761H0正态K⁃S修正0.058>0.15H0K⁃S修正0.0876>0.15H0A⁃D检验0.1520.956H0A⁃D检验0.24600.738H0K⁃S检验0.0661H0K⁃S检验0.08271H0对数正态K⁃S修正0.049>0.15H0K⁃S修正0.0643>0.15H0A⁃D检验0.1460.964H0A⁃D检验0.19900.875H0威布尔K⁃S修正0.084>0.1H0K⁃S修正0.1160>0.1H0A⁃D检验0.329ȡ0.25H0A⁃D检验0.46600.243H0㊀注:H0代表不能排除原假设分布㊂下同㊂㊀㊀重组竹横纹抗拉试件弹性模量和极限强度试验值分别用3种分布模型进行拟合的情况对比见图7,由图7可以看出,横纹抗拉试件弹性模量和极限强度试验值服从偏态分布㊂在3种分布模型中,对数正态分布与弹性模量试验数据直方图匹配效果最好,正态分布与极限强度试验数据直方图匹配效果最好㊂图7㊀横纹抗拉试件弹性模量和极限强度分布Fig.7㊀Distributionofelasticmodulusandultimatestrengthofspecimensundertransversetensile㊀㊀重组竹横纹抗拉试件弹性模量和极限强度试验值拟合优度检验对比见表4,由表4可以得出,正态分布㊁对数正态分布㊁威布尔分布均可作为横纹抗拉试件弹性模量和极限强度试验值的总体假设分布形式㊂弹性模量根据P值判断3种分布的拟合优度效果为对数正态分布>正态分布>威布尔分布;极限强度根据P值判断3种分布的拟合优度效果为正态分布>威布尔分布>对数正态分布㊂表4㊀横纹抗拉试验值拟合优度检验比较(5%水平)Table4㊀Comparisonofgoodnessoffittestoftestvaluesundertransversetensile(5%level)分布抗拉弹性模量抗拉极限强度优度检验统计P结论优度检验统计P结论K⁃S检验0.09321H0K⁃S检验0.1070.834H0正态K⁃S修正0.0740>0.15H0K⁃S修正0.079>0.15H0A⁃D检验0.03270.508H0A⁃D检验0.3710.405H0K⁃S检验0.09690.974H0K⁃S检验0.1380.485H0对数正态K⁃S修正0.0683>0.15H0K⁃S修正0.109>0.15H0A⁃D检验0.03230.513H0A⁃D检验0.6590.078H0威布尔K⁃S修正0.0944>0.1H0K⁃S修正0.086>0.1H0A⁃D检验0.3730ȡ0.25H0A⁃D检验0.332ȡ0.25H005㊀第1期盛叶,等:重组竹抗拉力学性能分析2.4.2㊀强度标准值提取美国木结构设计相关标准的木材强度和弹性模量标准值依据木材无疵小试样的标准试验方法(ASTMD143-14)确定㊂根据ASTMD2915-17Standardpracticeforsamplinganddata⁃analysisforstructuralwoodandwood⁃basedproducts 采用参数法(正态分布㊁对数正态分布㊁威布尔分布)得出75%置信度(样本在总体中被抽取的概率)下,5%分位值的样本强度容差下限,并将此下限值作为强度标准值Fk㊂累积分布函数分位值(5%)与参数法容差下限(PTL,75%置信度下㊁5%分位值)计算过程如下㊂总体服从正态分布累积分布函数P分位值:φ(x-mσ)=P(9)φ(x)=12πʏx-ɕe-t22dt(10)总体服从正态分布PTL:Fk=m-Kσ(11)总体服从对数正态分布累积分布函数分位值:φ(x-mlnFσlnF)=P(12)总体服从对数正态分布PTL:Fk=emlnF-KσlnF(13)总体服从威布尔分布累积分布函数分位值:F(x)=1-e-(xa)b(14)总体服从威布尔分布PTL(K>2):Fk=m-Kσ(15)式中:m=a;σ=b㊂若Kɤ2,采用下式估算PTL值:Fk=a[-ln(1-0.05)]1b(16)式中:φ(x)为累积分布函数;P为累积分布函数分位值;K为特征系数;m为试件强度的平均值;mlnF为对数正态分布试件强度的平均值;σ为试件强度的标准差;σlnF为对数正态分布试件强度的标准差;a为威布尔分布尺度参数;b为威布尔分布形状参数㊂非参数法容差下限计算过程如下㊂通过插值法计算累积分布的5%分位值(NPE,公式中记为NPE):NPE=0.05(n+1)-(j-1)[]xj-x(j-1)[]+x(j-1)(17)式中:n为样本试件数;j为大于等于i的最小正整数,i/(n+1)ȡ0.05㊂采用上述方法,对重组竹抗拉强度标准值的统计结果分别见表5㊂顺纹抗拉强度标准值在对数正态分布时拟合优度最好,为偏于安全,取75%置信度PTL对应的数值(67.59MPa)为顺纹抗拉强度标准值;横纹抗拉强度标准值在正态分布时拟合优度最好,为偏于安全,取75%置信度PTL对应的数值(3.73MPa)为横纹抗拉强度标准值㊂顺纹抗拉强度标准值约为横纹抗拉强度标准值的18倍,工程中应尽量避免横纹抗拉㊂表5㊀参数法㊁非参数法统计强度标准值Table5㊀Statisticalcharacteristicvaluesofstrengthbyparametermethodandnon⁃parametricmethod单位:MPa样本试件参数法正态分布5%分位值正态分布75%置信度PTL对数正态分布5%分位值对数正态分布75%置信度PTL威布尔分布75%置信度PTL非参数5%NPE顺纹抗拉试件67.4763.7070.2867.5962.5764.91横纹抗拉试件3.903.733.963.833.683.68㊀注:参数法中采用各假设分布的累积分布函数提取5%分位值,采用计算公式计算容差下限PTL;采用极大似然法估计威布尔分布参数时,假设威布尔分布渐进正态来估计容差下限PTL的前提是kȡ2[17],否则PTL估计不可靠,故选择威布尔累积分布函数的5%分位值计算公式代替计算㊂3㊀结㊀论1)重组竹顺纹抗拉试件破坏形态主要有平口破坏和斜口破坏,抗拉弹性模量㊁抗拉极限强度平均值分别为9529.81和97.88MPa,抗拉应力⁃应变曲线呈线性关系;重组竹横纹抗拉弹性模量㊁抗拉极限强度平均值分别为1864.29和5.21MPa,抗拉应力⁃应变曲线可分为线性阶段和非线性阶段,非线性段曲线可以用三次函数模型表示㊂2)对数正态分布拟合顺纹抗拉弹性模量㊁顺纹抗拉极限强度㊁横纹抗拉弹性模量时总体分布满足误差精度要求,且在3种分布中拟合优度最高;正态分布拟合横纹抗拉试件极限强度时,在3种分布中拟合优度最好㊂3)参照美国木结构设计相关规范中关于木结构标准值的计算方法,采用参数法和非参数法分别提取了重组竹抗拉强度的标准值;顺纹抗拉强度标准值取67.59MPa(对数正态分布拟合下75%置信度PTL),横纹抗拉强度标准值取3.73MPa(正态分布拟合下75%置信度PTL);顺纹抗拉强度标准15林业工程学报第8卷值约为横纹抗拉强度标准值的18倍,工程中应尽量避免横纹抗拉㊂参考文献(References):[1]苏光荣,李贤军,胡嘉裕,等.重组竹尺寸稳定性及力学特性[J].中南林业科技大学学报,2022,42(2):159-168.DOI:10.14067/j.cnki.1673-923x.2022.02.017.SUGR,LIXJ,HUJY,etal.Dimensionalstabilityandme⁃chanicalpropertiesofbambooscrimber[J].JournalofCentralSouthUniversityofForestry&Technology,2022,42(2):159-168.[2]刘娇,周爱萍,盛宝璐,等.温度对重组竹短期受压蠕变性能的影响[J].林业工程学报,2021,6(2):64-69.DOI:10.13360/j.issn.2096-1359.202006003.LIUJ,ZHOUAP,SHENGBL,etal.Effectoftemperatureonshort⁃termcompressioncreeppropertyofbambooscrimber[J].JournalofForestryEngineering,2021,6(2):64-69.[3]伍希志,史金桥,李贤军,等.碳纤维增强聚合物⁃重组竹复合材的弯曲力学性能[J].林业工程学报,2020,5(3):41-47.DOI:10.13360/j.issn.2096-1359.201906049.WUXZ,SHIJQ,LIXJ,etal.Flexuralmechanicalpropertiesofcarbonfiberreinforcedpolymer⁃bambooscrimbercomposite[J].JournalofForestryEngineering,2020,5(3):41-47.[4]CHENJP,GUAGLIANOM,SHIMH,etal.AcomprehensiveoverviewofbambooscrimberanditsnewdevelopmentinChina[J].EuropeanJournalofWoodandWoodProducts,2021,79(2):363-379.DOI:10.1007/s00107-020-01622-w.[5]HUANGYX,JIYH,YUWJ.Developmentofbambooscrim⁃ber:aliteraturereview[J].JournalofWoodScience,2019,65(1):1-10.DOI:10.1186/s10086-019-1806-4.[6]冷予冰,许清风,陈玲珠.工程竹在建筑结构中的应用研究进展[J].建筑结构,2018,48(10):89-97.DOI:10.19701/j.jzjg.2018.10.018.LENGYB,XUQF,CHENLZ.Researchprogressofapplica⁃tionofengineeredbambooinbuildingstructures[J].BuildingStructure,2018,48(10):89-97.[7]LENGYB,WANGZL,XUM.Experimentalstudyandanalysisonrotationalbehaviorofbambooscrimberbeam⁃to⁃columnboltedconnections[J].JournalofStructuralEngineering,2021,147(9):04021122.DOI:10.1061/(asce)st.1943-541x.0003099.[8]LIHT,ZHANGHZ,QIUZY,etal.Mechanicalpropertiesandstressstrainrelationshipmodelsforbambooscrimber[J].JournalofRenewableMaterials,2020,8(1):13-27.DOI:10.32604/jrm.2020.09341.[9]HUANGDS,BIANYL,ZHOUAP,etal.Experimentalstudyonstress⁃strainrelationshipsandfailuremechanismsofparallelstrandbamboomadefromphyllostachys[J].ConstructionandBuildingMaterials,2015,77:130-138.DOI:10.1016/j.con⁃buildmat.2014.12.012.[10]WUMT,MEILD,GUON,etal.Mechanicalpropertiesandfailuremechanismsofengineeringbambooscrimber[J].Con⁃structionandBuildingMaterials,2022,344:128082.DOI:10.1016/j.conbuildmat.2022.128082.[11]LIUW,LIUMX,HUANGJK,etal.Constitutiverelationmo⁃delsofbambooscrimberunderuniaxialloadingalongthefibredi⁃rection[J].EuropeanJournalofWoodandWoodProducts,2021,79(4):811-820.DOI:10.1007/s00107-021-01680-8.[12]张俊珍,任海青,钟永,等.重组竹抗压与抗拉力学性能的分析[J].南京林业大学学报(自然科学版),2012,36(4):107-111.DOI:10.3969/j.issn.1000-2006.2012.04.022.ZHANGJZ,RENHQ,ZHONGY,etal.Analysisofcompres⁃siveandtensilemechanicalpropertiesofrecombinantbamboo[J].JournalofNanjingForestryUniversity(NaturalSciencesEdition),2012,36(4):107-111.[13]盛宝璐,周爱萍,黄东升,等.重组竹的顺纹拉压强度与本构关系[J].南京林业大学学报(自然科学版),2015,39(5):123-128.DOI:10.3969/j.issn.1000-2006.2015.05.020.SHENGBL,ZHOUAP,HUANGDS,etal.Uniaxialstrengthandconstitutivelawofparallelstrandbamboo[J].JournalofNanjingForestryUniversity(NaturalSciencesEdition),2015,39(5):123-128.[14]魏洋,纪雪微,端茂军,等.重组竹轴向应力⁃应变关系模型[J].复合材料学报,2018,35(3):572-579.DOI:10.13801/j.cnki.fhclxb.20170608.002.WEIY,JIXW,DUANMJ,etal.Modelforaxialstress⁃strainrelationshipofbambooscrimber[J].ActaMateriaeCompositaeSinica,2018,35(3):572-579.[15]束必清,张文娟,陶玉鹏,等.重组竹力学性能及设计强度取值研究[J].西北林学院学报,2022,37(2):216-222.DOI:10.3969/j.issn.10001-7461.2022.02.30.SHUBQ,ZHANGWJ,TAOYP,etal.Mechanicalpropertiesandstrengthdesignvalueofbambooscrimber[J].JournalofNorthwestForestryUniversity,2022,37(2):216-222.[16]上官蔚蔚.重组竹物理力学性质基础研究[D].北京:中国林业科学研究院,2015.SHANGGUANWW.Researchonphysicalandmechanicalpro⁃pertiesofbambooscrimber[D].Beijing:ChineseAcademyofForestry,2015.[17]赵秀.兴安落叶松规格材强度性质的基础研究[D].北京:中国林业科学研究院,2010.ZHAOX.Studyonthestrengthpropertiesoflarchdimensionlum⁃ber[D].Beijing:ChineseAcademyofForestry,2010.(责任编辑㊀莫弦丰)25。
绿色环保建材“竹钢”科技名词定义中文名称:高性能竹基纤维复合材料(竹钢)英文名称:wooden bamboo定义:高性能竹基纤维复合材料,主要是指以竹基纤维帘为基本构成单元按顺纹理方向经热(冷)压胶合而成的板材。
依托中国林科院专利技术,由洪雅竹元科技有限公司制造的高性能竹基纤维复合材料,商标名称为“竹钢”,为世界首创的竹制品,是完全由中国人自主开发的新材料。
简介“竹钢”是以我国南方地区大量生长的竹材资源为原料,通过纤维化竹束帘制备技术、酚醛树脂均匀导入技术、连续式网带干燥技术、大幅面板坯铺装技术、成型固化技术等多项技术集成,实现竹基纤维复合材料的高性能和可调控,最终制造成高性能多用途竹基纤维复合材料。
竹钢剖面该产品技术节省了传统的剖蔑工序,是我国在竹材加工应用领域的一项重大突破,属于竹材工业化利用的第五代技术,竹材的利用率从目前的20%~50%,可以提高到95%以上。
产品的力学性能指标,如抗弯强度可以达到350MPa以上,抗拉强度达360MPa以上,抗压强度达到140MPa以上,弹性模量达到30GPa以上,其强重比超过玻璃钢纤维复合材料,可以应用于风电叶片材料的制造。
高性能竹基纤维复合材料具有广谱可设计性,既可以用于制造高强度风电叶片材料、船舶甲板、集装箱底板以及建筑结构等工程材料,又可以用作室内装饰装潢材料、高耐候性室外材料、家具材料,具有广阔的应用前景。
材料特点“竹钢”采用纯天然慈竹经酚醛树脂热压胶合而成,具有高强度、低碳环保、高耐候性、阻燃、净化空气、使用寿命长等特点,是“以竹代木、以竹代钢”的最佳产品;是一种将竹材重新组织并加以强化成型的竹质新材料,对增加竹农的收入、促进农民就业和发展竹产区经济具有十分重要的意义。
1 绿色环保随着全球气候变暖,森林愈发显得弥足珍贵,竹钢的出现,更加有效地保护了人类的生存环境。
同面积的竹林可比树林多释放35%的氧气,也可以这样说:竹产业不仅仅是低碳产业,而更应该是负碳产业。
复合材料力学性能复合材料是由两种或两种以上的不同材料按照一定规律组合而成的材料。
与传统材料相比,复合材料具有独特的力学性能,以下将分别从强度、刚度、韧性、疲劳性能以及抗冲击性能等方面详细介绍复合材料的力学性能。
首先是复合材料的强度。
由于复合材料采用了不同种类的材料组合,在强度上具有明显的优势。
根据不同材料的组合方式和比例,复合材料可以获得高于单一材料的强度水平。
此外,由于复合材料具有随机分布的纤维增强体,使得复合材料具有较好的抗层状剪切破坏能力,提高了材料的整体强度。
其次是复合材料的刚度。
复合材料在刚性方面比传统材料更优越。
这是因为纤维增强体具有高弹性模量和高刚度特性,并且材料中纤维的方向性可以调整,所以在应力作用下,纤维能够承受更多的外力而不易产生位移。
因此,在力学应用中,复合材料能够提供更高的刚度和更小的变形。
再次是复合材料的韧性。
韧性是指材料在受到外力作用下产生破坏之前能够吸收的能量。
与传统材料相比,复合材料具有更好的韧性。
这是因为在复合材料中纤维的分布可以有效地防止裂纹扩展,同时由于纤维的存在可以将应力分散到整个材料中,从而提高韧性。
此外,复合材料也可以通过调整纤维增强体的类型和量来改善韧性。
复合材料的疲劳性能也是其重要的力学性能之一、在疲劳应力作用下,材料会出现裂纹的扩展,从而导致材料失效。
复合材料由于具有纤维增强体和基体的分离结构,在疲劳载荷下,纤维增强体能够吸收部分载荷,减缓增长速率,提高疲劳寿命。
此外,纤维增强体还能够增加复合材料的纵向和横向强度,降低应力集中,从而提高疲劳性能。
此外,复合材料的抗冲击性能也值得关注。
复合材料由于纤维增强体的存在,使得其在受冲击或振动载荷下具有更好的表现。
纤维增强体能够吸收冲击能量,减缓冲击载荷的传递,从而降低材料的损伤程度和失效概率。
综上所述,复合材料具有一系列优异的力学性能,如强度、刚度、韧性、疲劳性能和抗冲击性能等。
这得益于其具有多种材料的组合优势以及纤维增强体的特殊结构。
基金项目:国际竹藤中心基本科研业务费专项资助(1632021002)ꎻ林业和草原科技成果国家级推广项目(2020133151)ꎮ第一作者:陈季荷ꎬ硕士研究生ꎬ主要研究竹纤维复合材料ꎮE-mail:188****6928@163 comꎮ通信作者:程海涛ꎬ博士ꎬ研究员ꎬ主要研究竹纤维复合材料加工与应用ꎮE-mail:htcheng@icbr ac cnꎮ竹纤维增强聚合物基复合材料性能及应用陈季荷㊀顾少华㊀李明鹏㊀李文婷㊀程海涛∗(国际竹藤中心竹藤科学与技术重点实验室北京100102)摘㊀要:植物纤维来源丰富ꎬ能耗低ꎬ被认为是最具前景的绿色可再生资源ꎮ竹纤维具有成本低㊁密度小㊁比强度高等特点ꎬ与其他材料组成的复合材料是一种资源节约型和环境友好型材料ꎮ文章概述了竹纤维的结构组成与力学性能ꎬ综述了竹纤维增强聚合物基复合材料(BFRP)的研究与应用现状ꎬ在此基础上提出了BFRP今后的研究重点ꎬ包括竹纤维化学组成㊁界面性能及生产工艺等ꎬ以期为发挥其优良特性㊁扩大其应用领域提供参考ꎮ关键词:竹纤维ꎻ聚合物ꎻ复合材料ꎻ性能ꎻ应用DOI:10.12168/sjzttx.2022.04.004开放科学(资源服务)标识码(OSID):㊀PropertiesandApplicationsofBambooFiberReinforcedPolymerMatrixCompositesChenJiheꎬGuShaohuaꎬLiMingpengꎬLiWentingꎬChengHaitao∗(KeyLaboratoryofBambooandRattanScienceandTechnologyꎬInternationalCenterforBambooandRattanꎬBeijing100102ꎬChina)Abstract:Plantfiberisconsideredtobethemostpromisinggreenandrenewableresourceduetoitsrichsourcesandlowenergyconsumption.Bamboofiberhasthecharacteristicsoflowcostꎬlowdensityandhighspecificstrength.Thecompositematerialcomposedofbamboofiberandothermaterialsisaresource ̄savingandenvironmental ̄friendlymaterial.Thispapersummarizesthestructuralcompositionandmechanicalpropertiesofbamboofiberꎬsummarizestheresearchandapplicationofbamboofiberreinforcedpolymermatrixcomposites(BFRP)ꎬandputsforwardthefuturefieldsofBFRPresearchꎬincludingbamboofiberchemicalcompositionꎬinterfacepropertiesandproductiontechnologyꎬinordertoprovideareferenceforgivingfullplaytoitsexcellentcharacteristicsandexpandingitsapplication.Keywords:bamboofiberꎬpolymerꎬcompositematerialꎬperformanceꎬapplication㊀㊀纤维增强聚合物基复合材料是由聚合物基体和纤维增强体结合而成ꎮ目前ꎬ玻璃纤维是聚合物中的主要增强纤维ꎬ大约95%的纤维复合材料使用玻璃纤维作为增强材料[1]ꎮ玻璃纤维属于高能耗材料ꎬ其复合材料虽然表现出优异的机械性能ꎬ但是也由于其回收利用困难且不可降解而引起环境污染和资源浪费ꎮ在 碳达峰㊁碳中和 目标背景下ꎬ实现绿色发展ꎬ需要实现从材料提取和选用㊁产品设计㊁加工制造㊁使用过程直至回收再生的整个生命周期的绿色化和生态化ꎮ因此ꎬ人们对植物纤维替代玻璃纤维的需求日益增长ꎮ据预测ꎬ全球天然纤维复合材料市场规模将从2016年的4 46亿美元增加到2024年的10 89亿美元[2]ꎮ竹纤维增强聚合物基复合材料(BFRP)因具有高比强度和比模量㊁低密度㊁可81降解等特点ꎬ将成为具有广阔发展前景的复合材料ꎮBFRP具备竹纤维和聚合物双重特性ꎬ是环境友好型材料和高新技术材料ꎬ在复合材料领域扮演着越来越重要的角色[3-5]ꎬ目前在交通㊁建筑㊁体育等领域得到初步应用ꎮ因此ꎬ发挥其特有功能特性ꎬ提高附加值ꎬ开拓新的应用领域ꎬ是BFRP研究的热点及突破点ꎮ本文将介绍竹纤维的结构与化学成分ꎬ以及竹纤维增强聚合物基复合材料的性能ꎬ重点概述BFRP的应用现状ꎬ以期为扩大竹纤维增强聚合物基复合材料的应用与进一步发展提供参考ꎮ1㊀竹纤维竹纤维是竹材经化学或机械加工制得的包含单个纤维细胞和多纤维细胞集合体的束状㊁丝状或絮状单元[6]ꎬ被誉为 绿色纤维 和 21世纪健康纤维 ꎮ竹纤维分为竹原纤维和竹浆粘胶纤维ꎮ竹原纤维具有的裂纹㊁凹槽与空隙类似毛细管ꎬ可起到瞬间吸收和蒸发水分的作用ꎬ被比喻为 会呼吸的纤维 ꎮ相对于竹原纤维ꎬ竹浆粘胶纤维伸长率更大㊁韧性和刚性更佳ꎬ具有较好的吸湿和散湿性能ꎬ手感舒适ꎬ抗菌性能良好[7-10]ꎮ竹纤维的结构形态与化学成分决定了其复合材料的力学性能ꎮ竹纤维结构形态包括初生细胞壁和3层次生细胞壁(图1)ꎬ初生细胞壁的主要成分为果胶ꎬ次生细胞壁主要由纤维素构成ꎬ以结晶微纤丝以及无定形微纤丝为主ꎬ是纤维的主要承力结构ꎮ竹纤维化学成分中纤维素㊁半纤维素以及木质素的含量占90%以上ꎬ另外还有果胶㊁灰分等其他物质ꎮ图1㊀竹纤维结构Fig 1㊀Structureofbamboofiber与其他木质纤维相比ꎬ竹纤维的纤维素含量较低ꎬ木质素和半纤维素的含量远高于苎麻㊁亚麻等其他木质纤维ꎮ竹纤维的纤维缠绕交织性强ꎬ纤维间结合强度大ꎬ其机械强度在植物纤维中相对较大[11-14]ꎮ竹纤维的拉伸强度和比强度分别可达600MPa和450MPaꎬ均优于其他一些植物纤维如亚麻㊁黄麻(表1)[15-16]ꎮ同时ꎬ因其质轻高强㊁绿色环保㊁低能耗等特点ꎬ可以替代玻璃纤维和聚合物纤维[17-18]ꎬ是一种绿色可持续的纤维增强材料ꎬ可应用于建筑等多种领域ꎬ从而减少碳排放[19-23]ꎮ表1㊀竹纤维与其他类型纤维力学性能比较Tab 1㊀Comparisonofmechanicalpropertiesbetweenbamboofiberandotherfibers纤维种类拉伸强度/MPa弹性模量/GPa比强度/[MPa/(g/cm3)断裂伸长率/%竹纤维540-63024~35320~580 黄麻393~80010~30302~5951 5~1 8亚麻345~103510~80230~6902 7~3 2苎麻220~93844~128267~6252 5~3 8剑麻400~7009~38141~6232 0~2 5E-玻璃纤维2000~350070~80800~14002~32㊀竹纤维增强聚合物基复合材料竹纤维增强聚合物基复合材料(BFRP)是竹纤维与热固性或热塑性树脂基体通过成型工艺制备而成的一种环保型复合材料(图2)ꎮ当前国内BFRP基体类型主要为热塑性聚合物(聚乙烯㊁91聚丙烯㊁聚氯乙烯等)和热固性聚合物(聚氨酯㊁环氧㊁酚醛㊁不饱和聚酯等)[24]ꎮ竹纤维作为增强材料可以有效提高聚合物复合材料的拉伸强度和冲击强度ꎮBFRP在密度㊁成本㊁能耗及环保性等方面明显优于玻璃纤维复合材料[25]ꎬ但是竹纤维表面比较粗糙㊁极性较强ꎬ导致复合材料界面结合力弱ꎮ因此ꎬ研究BFRP的界面性能成为该领域的热点ꎬ目前研究主要集中于竹纤维形态及含量㊁改性处理等方面ꎮ图2㊀BFRP的制备与应用Fig 2㊀PreparationandapplicationofBFRP㊀㊀竹纤维增强材料复合时采用的竹纤维形态主要是纤维态和粉态ꎮ竹纤维的粒径对竹塑复合效果影响显著ꎬ竹粉粒径决定竹纤维在基体中的分散程度ꎬ最终影响材料性能ꎬ研究发现竹粉粒径选用75~380μm时材料性能较好[26]ꎮ竹纤维增强复合材料的强度随着纤维含量的增加呈现先升后降的变化趋势ꎬ竹纤维的最佳体积分数约为40%[27]ꎮ竹纤维增强复合材料界面改性的研究主要集中于对竹纤维的改性处理ꎮYan等[28]研究了碱处理对竹织物增强环氧树脂界面形貌和力学性能的影响ꎬ发现竹织物/环氧复合材料经过碱处理后ꎬ其拉伸强度和弯曲强度较未处理时至少提高了18 7%和13 6%ꎬ且拉伸断口表面纤维/环氧界面粘着性能明显改善ꎮZhang等[29]研究发现ꎬ由于碱处理去除了纤维表面暴露羟基的杂质ꎬ其界面相机械联锁部分和氢键数量增加㊁附着力增强ꎬ使得纤维与基体间的界面剪切强度明显改善ꎮ可见ꎬ界面改性能明显提高BFRP的性能ꎬ从而提高其开发与利用价值ꎮ3㊀竹纤维增强聚合物基复合材料应用3 1㊀在汽车领域的应用目前ꎬ汽车工业日益向轻量㊁节能㊁环保方向发展ꎮ汽车轻量化实质是保证汽车性能和品质不受影响甚至有所提高的前提下ꎬ尽可能减小车体质量ꎬ进而达到降低能耗㊁减少对环境影响的目的ꎮ欧盟在«2000/53/EC指令»中提出ꎬ自2015年起报废汽车的回收利用率要达到95%ꎬ其中材料的再利用率不低于85%ꎮ2021年中国出台«汽车产品生产者责任延伸试点实施方案»ꎬ要求2023年汽车可回收利用率达到95%ꎮ竹纤维增强复合材料所具有的轻质高强㊁能耗低㊁耐腐蚀及良好的可设计性等优点ꎬ不仅可以在一定程度上改善和提高单一常规材料的力学性能㊁物理性能和化学性能ꎬ而且在工程结构上能解决常规材料无法解决的关键性问题ꎬ成为汽车实现轻量化的优选材料[30-33]ꎮ目前ꎬ在汽车中应用的基于天然纤维复合材料的零件已超过40种ꎬ国内外也已开发出多种车用竹纤维增强复合材料ꎮ2008年日本三菱汽车开创性通过热压成型技术将竹纤维与树脂混合制备了汽车零件ꎬ将BFRP引入汽车内饰材料应用领域[34]ꎮ2014年日本发条公司(NHKSpringCo ꎬLtd )利用竹纤维/聚丙烯复合材料制作出了汽车后座背板ꎬ相比于木质板材质量减轻10%ꎮ德国奔驰公司也将BFRP应用到汽车制造中ꎬ使汽车质量减轻了10%左右ꎬ应用BFRP的产品有车门内板㊁顶棚㊁行李箱㊁座椅背板及卡车和客车的内衬板等[35]ꎮ表2为目前不同汽车公司利用竹纤维复合材料制造的汽车内饰件ꎮ02表2㊀BFRP在汽车部件中的应用Tab 2㊀ApplicationofBFRPinautomobileparts制造商应用竹纤维复合材料的汽车部位噪声屏蔽底部前段保险杠梁仪表板车门其他奥迪ɿɿɿɿ宝马ɿɿɿ雪铁龙ɿɿɿ菲亚特ɿɿ福特ɿɿɿ梅赛德斯ɿɿɿɿɿ欧宝ɿ雷诺ɿ斯柯达ɿɿ沃尔沃ɿ大众ɿɿɿ㊀㊀在国内ꎬ国际竹藤中心的研究人员突破了竹纤维深度模压复合材料制造瓶颈ꎬ研发了汽车内衬用竹纤维复合材料多部件一体化制备技术ꎬ目前已在国内部分汽车公司进行试生产ꎮ与传统内衬件相比ꎬ竹纤维汽车内衬件密度由1 05g/cm3降为0 92g/cm3ꎬ质量减轻2 4%ꎬ可减少9 92%的燃油消耗ꎻ竹纤维汽车内衬件的挥发性化合物(VOC)和半挥发性化合物(SVOC)含量符合国际标准GMW15634 2014的要求ꎮ浙江农林大学[36]与多家科研机构和公司合作也开发了车用竹纤维非织造材料ꎬ其成分80%为粗竹纤维ꎬ已经试生产的产品有门内板㊁仪表盘㊁座椅背板等ꎮ相比于传统的非织造材料ꎬ采用粗竹纤维与一定比例的聚对苯二甲酸乙二醇酯(PET)生产的非织造材料用作隔热/音和阻尼材料效果更好ꎬ可以广泛用于生产汽车内饰材料ꎮ3 2㊀在其他领域的应用在航空材料领域ꎬ法国BAMCO公司正开发一种用竹纤维取代玻璃纤维的新型航空复合材料ꎬ用于替换飞机机舱和驾驶舱内的标准件和叶片元件ꎬ使其质量更轻ꎬ燃料消耗更低ꎬ同时亦能满足耐热性和机械性能(强度㊁冲击和振动阻尼)的要求ꎬ该材料将有助于减少飞机对环境的影响ꎮBFRP也可用于生产飞机的客舱家具㊁盖板和机身覆层板等ꎮ在风力发电领域ꎬBFRP因其具有生物可降解性而引起广泛关注ꎮ英国瑞尔科技有限公司发现ꎬ竹纤维复合材料具有较好的抗疲劳性能㊁压缩比及比模量ꎬ这些均为制造风力发电机叶片的关键参数ꎮ因此ꎬ竹材可以作为风力发电机叶片的主要材料来源[37]ꎮ浙江大庄实业集团有限公司同国内著名风电企业合作ꎬ已批量生产风电叶片用竹复合材料ꎻ河北省张北县成功安装竹复合材料叶片的风电机组ꎬ实现并网发电ꎮ当竹纤维/聚丙烯复合材料的密度为0 20g/cm3时ꎬ其保温性能与聚苯乙烯泡沫相当ꎬ且其具有可再生㊁可降解优势ꎬ作为结构保温板(SIPs)芯材应用前景广阔[38]ꎮ日本同志社大学的藤井透教授使用竹纤维开发出一种可降解的新型塑料ꎬ其中竹纤维的占比高达80%ꎬ该产品改善了竹纤维的防潮性能ꎬ可应用于生产浴室材料[39]ꎮ一家日本公司计划将BFRP作为生产无纺布的材料ꎬ通过利用竹纤维优异的抗菌性㊁吸湿性等特点ꎬ用于生产卫生纸㊁纸尿布㊁餐巾纸以及口罩(无纺布型)等产品ꎮ在国内ꎬ国际竹藤中心研究人员开发了连续竹纤维成套加工设备ꎬ攻克了连续竹纤维制备关键技术ꎬ可实现竹纤维全部(或部分)代替麻纤维㊁玻璃纤维和化学纤维等材料ꎻ同时以连续竹纤维为主ꎬ利用多维连续成型工艺可制备小径和变径管㊁管状网壳ꎬ用于生产电缆保护管㊁穿线管㊁风管等产品ꎬ可减轻产品自身质量㊁提升产品保温性能ꎬ以替代不可降解玻纤管材[40-42]ꎮ此外ꎬ还开发出了竹纤维复合材料建筑墙板及装饰板ꎬ目前已成功示范ꎮ在文化办公用品领域ꎬ利用可降解超低能耗的竹纤维复合材料研制了包括12档案盒㊁文件袋等系列文具产品ꎮ湖南中南神箭实业集团有限公司利用薄竹帘与树脂混合在高压㊁高温下制成高强度竹胶托板ꎬ与传统竹编器物相比ꎬ此材质耐磨性能较好㊁光泽感强ꎬ主要用于运输行业ꎬ能够保护车厢免受货物频繁移动带来的磨损[43]ꎮ此外ꎬ竹纤维复合材料还应用于乒乓球拍㊁球棒㊁冲浪板及滑雪板等体育器材中[44]ꎮ李健等[45]利用竹粉和聚酯粉末制造复杂零件的熔模铸造件发现ꎬBFRP能够在保证精度的情况下进行选择性激光烧结ꎬ且翘曲比较小ꎬ具备较好的精度传递性ꎮ张飞帆等[46]研究发现ꎬ由BFRP制备的管材性能良好ꎬ经济效益明显ꎬ在输水管道中有着广阔的应用前景ꎬ亦可以作为许多土建工程的主㊁次承力构件ꎮ栗洪彬[47]研究了BFRP在公路防撞护栏中的应用ꎬ发现竹纤维/环氧乙烯基复合材料为单向铺层结构且当竹片铺层为15层时ꎬ其性能优异ꎬ在主要性能上满足了公路防撞护栏对其原料Q-235B钢的标准要求ꎬ适宜在防撞护栏中应用ꎮ陈复明等[48]开发了竹束单板㊁复合板制造及集装箱房屋组装技术ꎬ该技术以竹束单板层积材㊁竹席胶合板㊁竹篾层积材等为框架和覆板ꎬ通过合理设计将其加工成标准构件ꎬ再通过金属连接件的合理连接形成可组装的板式房屋ꎬ可用作非永久性的景区房㊁野外施工住房㊁军队营房等ꎮ4㊀结束语BFRP作为新型复合材料ꎬ在全球倡导绿色可持续发展的背景下ꎬ其应用优势日益凸显ꎮ然而ꎬBFRP在扩大应用的同时ꎬ也存在着原材料供应链有待拓展㊁纤维与树脂匹配性能差㊁应用领域局限等问题ꎮ加大对BFRP基础研究的力度ꎬ提高其利用率ꎬ扩大应用领域ꎬ将是未来竹纤维复合材料发展的趋势ꎮ今后应加强以下方面的研究ꎮ1)研究竹纤维化学组成与力学性能之间的关系ꎮ进一步研究竹纤维的化学组成ꎬ以确定纤维素在竹纤维细胞中的存在状态以及不同纤维素的比例ꎬ更精确地建立竹纤维的化学组成与力学性能之间的关系ꎮ2)提高BFRP的界面性能ꎮ深入研究纤维形态和含量㊁界面改性剂等对复合材料界面性能的影响ꎬ进而解决竹纤维与聚合物共混复合过程中存在的一些问题ꎬ改善BFRP的界面性能ꎬ提高复合材料的承载能力ꎮ3)完善BFRP的生产工艺ꎮ通过引入先进的设备和成熟的生产工艺ꎬ使BFRP形成规模化㊁产业化㊁配套化㊁一体化的生产流程ꎬ推动BFRP多领域㊁大规模的应用ꎮ参考文献[1]㊀THOMASONJꎬJENKINSPꎬLIUY.Glassfibrestrength:areviewwithrelationtocompositerecycling[J].Fibersꎬ2016ꎬ4(2):18.DOI:10.3390/fib4020018.[2]刘克健ꎬ李武ꎬ仝建峰.植物纤维在绿色复合材料中的应用及发展[N].中国航空报ꎬ2016-05-19(S01).[3]PICKERINGKLꎬEFENDYMGꎬLEACTMꎬetal.Areviewofrecentdevelopmentsinnaturalfibrecompositesandtheirmechanicalperformance[J].CompositesPartA:AppliedScienceandManufacturingꎬ2016ꎬ83:98-112.[4]RAJKUMARSꎬTJONGJꎬNAYAKSKꎬetal.Permeabilityandmechanicalpropertycorrelationofbiobasedepoxyreinforcedwithunidirectionalsisalfibermatthroughvacuuminfusionmoldingtechnique[J].PolymerCompositesꎬ2017ꎬ38(10):2192-2200.[5]张雪姣ꎬ马晓年.植物纤维增强生物塑料的研究进展[J].林产工业ꎬ2018ꎬ45(2):3-7.[6]国家林业和草原局.竹纤维:GB/T41553-2022[S].北京:中国标准出版社ꎬ2022.[7]王春红ꎬ陈祯ꎬ李园平ꎬ等.竹原纤维的分级提取及其性能[J].纺织学报ꎬ2017ꎬ38(11):9-15.[8]FORTEA ̄VERDEJOMꎬBUMBARISEꎬBURGSTALLERCꎬetal.Plantfibre ̄reinforcedpolymers:wheredowestandintermsoftensileproperties?[J].InternationalMaterialsReviewsꎬ2017ꎬ62:441-464.[9]王戈ꎬ陈复明ꎬ程海涛ꎬ等.中国竹产业的特色优势与创新发展[J].世界竹藤通讯ꎬ2020ꎬ18(6):6-13ꎬ29.[10]陈礼辉ꎬ曹石林ꎬ黄六莲ꎬ等.竹纤维素的制备及其功能化材料研究进展[J].林业工程学报ꎬ2021ꎬ6(4):1-13.[11]MUKHTARIꎬLEMANZꎬISHAKMRꎬetal.Sugarpalmfiberanditscomposites:areviewofrecentdevelopments[J].BioResourcesꎬ2016ꎬ11(4):10756-10782.[12]胡建鹏ꎬ邢东ꎬ张燕.麻纤维增强聚乳酸可生物降解复合材料的研究进展[J].塑料ꎬ2020ꎬ49(5):108-111.[13]ZAKRIYAMꎬRAMAKRISHNANGꎬGOBINꎬetal.Jute ̄reinforcednon ̄wovencompositesasathermalinsulatorand22soundabsorber:Areview[J].JournalofReinforcedPlasticsandCompositesꎬ2017ꎬ36(3):206-213.[14]GAOXꎬZHUDJꎬFANSTꎬetal.Structuralandmechanicalpropertiesofbamboofiberbundleandfiber/bundlereinforcedcomposites:areview[J].JournalofMaterialsResearchandTechnologyꎻ2022ꎬ19:1162-1190.[15]FARUKOꎬBLEDZKIAKꎬFINKHPꎬetal.Progressreportonnaturalfiberreinforcedcomposites[J].Macromolecular:MaterialsandEngineeringꎬ2014ꎬ299(1):9-26.[16]ISHAKMRꎬSAPUANSMꎬLEMANZꎬetal.Sugarpalm(Arengapinnata):itsfibresꎬpolymersandcomposites[J].CarbohydratePolymersꎬ2016ꎬ83:98-112.[17]GIRIJAPPAYGTꎬRANGAPPASMꎬPARAMESWARANPILLAIJꎬetal.Naturalfibersassustainableandrenewableresourcefordevelopmentofeco ̄friendlycomposites:acomprehensivereview[J].FrontiersinMaterialsꎬ2019ꎬ6:2296-8016.[18]李晖ꎬ朱一辛ꎬ杨志斌ꎬ等.我国竹材微观构造及竹纤维应用研究综述[J].林业工程学报ꎬ2013ꎬ27(3):1-4.[19]BIANFꎬZHONGZꎬZHANGXꎬetal.Bamboo:anuntappedplantresourceforthephytoremediationofheavymetalcontaminatedsoils[J].Chemosphereꎬ2019ꎬ246:125750.DOI:10.1016/j.chemosphere.2019.125750.[20]KHALILHꎬBHATIꎬJAWAIDMꎬetal.Bamboofibrereinforcedbiocomposites:areview[J].Materials&Designꎬ2012ꎬ42:353-68.[21]RAHMANMZ.Mechanicalanddampingperformancesofflaxfibrecomposites:areview[J].ComposPartC:OpenAccessꎬ2020ꎬ14(3):68-72.[22]RAMAGEMHꎬBURRIDGEHꎬBUSSE ̄WICHERMꎬetal.Thewoodfromthetrees:theuseoftimberinconstruction[J].RenewableandSustainableEnergyReviewsꎬ2017ꎬ68:333-359.[23]HONGCꎬLIHꎬXIONGZꎬetal.Reviewofconnectionsforengineeredbamboostructures[J].JournalofBuildingEngineeringꎬ2020ꎬ30:101324.DOI:10.1016/j.jobe.2020.101324.[24]KARIMMRAꎬTAHIRDꎬHAQEU.Naturalfibresaspromisingenvironmental ̄friendlyreinforcementsforpolymercomposites[J].PolymersandPolymerCompositesꎬ2021ꎬ29(4):277-300.[25]王戈ꎬ顾少华ꎬ张文福ꎬ等.植物纤维增强环氧树脂复合材料界面改性研究进展[J].中南林业科技大学学报ꎬ2020ꎬ40(7):144-152.[26]葛正浩ꎬ元庆凯ꎬ田普建ꎬ等.竹粉目数对竹塑复合材料性能的影响[J].塑料科技ꎬ2011ꎬ39(3):39-42.[27]WANGHꎬSHENGKCꎬCHENJꎬetal.MechanicalandthermalpropertiesofsodiumsilicatetreatedmosobambooparticlesreinforcedPVCcomposites[J].ScienceChinaTechnologicalSciencesꎬ2010ꎬ53(11):2932-2935.[28]YANLꎬCHOUWNꎬYUANX.Improvingthemechanicalpropertiesofnaturalfibrefabricreinforcedepoxycompositesbyalkalitreatment[J].JournalofReinforcedPlasticsandCompositesꎬ2012ꎬ31(6):425-437.[29]ZHANGKꎬWANGFXꎬLIANGWYꎬetal.Thermalandmechanicalpropertiesofbamboofiberreinforcedepoxycomposites[J].Polymersꎬ2018ꎬ10(6):608-626.[30]陈一哲ꎬ赵越ꎬ王辉.汽车领域纤维复合材料构件轻量化设计与工艺研究进展[J].材料工程ꎬ2020ꎬ48(12):36-43.[31]常燕ꎬ王兆增ꎬ安运成ꎬ等.车用天然纤维复合材料的研究进展及其应用[J].山东化工ꎬ2015ꎬ44(17):48-51.[32]顾増宾.树脂复合材料在汽车内饰中的应用[J].科技创新与应用ꎬ2013(31):34-34.[33]王翠翠ꎬ李明鹏ꎬ王戈ꎬ等.植物纤维/热塑性聚合物预浸料在汽车轻量化领域的应用进展[J].林业科学ꎬ2021ꎬ57(9):168-180.[34]MOHAMMEDLꎬANSARIMNMꎬPUAG.Areviewonnaturalfiberreinforcedpolymercompositeanditsapplications[J].InternationalJournalofPolymerScienceꎬ2015ꎬ243947:1-15.[35]AL ̄OQLAFMꎬSAPUANSM.Naturalfiberreinforcedpolymercompositesinindustrialapplications:feasibilityofdatepalmfibersforsustainableautomotiveindustry[J].JournalofCleanerProductionꎬ2014ꎬ66:347-354.[36]马伟.热塑性天然竹纤维复合材料的制备及其性能研究[D].浙江临安:浙江农林大学ꎬ2012.[37]KALAGIGRꎬPATILRꎬNAYAKN.Experimentalstudyonmechanicalpropertiesofnaturalfiberreinforcedpolymercompositematerialsforwindturbineblades[J].Materialstoday:PROCEEDINGSꎬ2018ꎬ5(1):2588-2596.[38]唐启恒ꎬ王云飞ꎬ郭文静.竹原纤维/聚丙烯复合材料密度对其保温和力学性能的影响[J].木材工业ꎬ2018ꎬ32(2):45-48.[39]周姝珏.竹原纤维增强复合材料界面调控及其对热机械性能的影响[D].重庆:西南大学ꎬ2019.[40]程海涛ꎬ张文福ꎬ顾少华ꎬ等.一种缠绕成型复合保温风管的制备方法:202010248409.0[P].2021-11-16.[41]程海涛ꎬ张文福ꎬ顾少华ꎬ等.一种多壁层耐候性植物纤维增强风管的制备方法:202010248551.5[P].2020-11-16.[42]王戈ꎬ陈复明ꎬ费本华ꎬ等.竹缠绕复合管创新技术在 一带一路 沿线推广与应用的可行性分析[J].世界林业研究ꎬ2020ꎬ33(1):105-109.[43]何洪城ꎬ陈超.植物纤维复合装饰板纤维含量对性能的影响研究[J].中南林业科技大学学报ꎬ2014ꎬ34(8):97-100.[44]朱小龙.竹粉/聚丙烯复合材料结构与性能的研究[D].成都:西南石油大学ꎬ2015.[45]李健ꎬ郭艳玲ꎬ赵德金.竹塑复合粉末激光烧结件在熔模铸造中的应用[J].科技导报ꎬ2016ꎬ34(19):96-100.[46]张飞帆ꎬ陈晓东.BFRP管材在节水灌溉工程中的应用研究[J].浙江水利水电专科学校学报ꎬ2010ꎬ22(1):7-11.[47]栗洪彬.竹增强复合材料公路防撞护栏的开发与研究[D].上海:东华大学ꎬ2014.[48]陈复明ꎬ王戈ꎬ程海涛ꎬ等.新型竹纤维复合材料的研发[J].东北林业大学学报ꎬ2016ꎬ44(2):80-85.32。