隐枚举法(运筹学)
- 格式:ppt
- 大小:58.50 KB
- 文档页数:5
运筹学中国大学mooc课后章节答案期末考试题库2023年1.如果在运输问题或转运问题模型中,Cij都是从产地i到产地j的最小运输费用,则运输问题同转运问题都将得到相同的最优解参考答案:正确2.在求解整数规划问题时,不可能出现的是参考答案:无穷多最优解3.下列那种办法可以求解指派问题参考答案:匈牙利法4.0-1规划的隐枚举法是分支定界的特例。
参考答案:正确5.匈牙利法可以直接求解极大化的指派问题。
参考答案:错误6.整数规划中,通过增加线性约束条件将原规划可行域进行切割,切割后的可行域的整数解正好是原规划的最优解的方法是参考答案:割平面法7.整数问题的可行解一定是它松弛问题的可行解,反之则不一定成立。
参考答案:正确8.求指派问题的匈牙利方法要求系数矩阵中每个元素都是参考答案:非负的9.运输问题一定有最优解参考答案:正确10.产地个数为m,销地个数为n的平衡运输问题的对偶问题有【图片】个约束参考答案:正确11.在运输问题中,调整对象的确定应选择参考答案:检验数为负且绝对值最大12.在解决运筹学问题时,根据对问题内在机理的认识直接构造出模型的方法称为:参考答案:直接分析法13.当迭代到运输问题的最优解时,如果有某非基变量的检验数等于零,则说明该运输有()参考答案:多重最优解14.运筹学是一门在第一次世界大战期间发展起来的新兴科学参考答案:错误15.用割平面求纯整数规划时,要求包括松弛变量在内的全部变量都取整数。
参考答案:正确16.用分支定界法求一个极大化的整数规划时,当得到多于一个可行解时,通常可以任取一个作为下界值,在进行比较和剪枝。
参考答案:错误17.模型是对各种变量关系的描述,是解决问题的关键参考答案:正确18.运输问题的解有四种情况:分别为:唯一最优解、无穷多最优解、无界解、无可行解。
参考答案:错误19.人工变量一旦出基就不会再进基参考答案:正确20.用匈牙利法求解指派问题时,不可以进行的操作是参考答案:效益矩阵乘以一个常数21.X是线性规划的基本可行解则有参考答案:X中的基变量非负,非基变量为零22.整数规划的最优解中,决策变量满足什么条件参考答案:决策变量必须都是整数23.运筹学具有多学科交叉的特点参考答案:正确24.下例错误的结论是参考答案:检验数就是目标函数的系数25.若线性规划问题存在可行域,则可行域一定包含坐标的原点参考答案:错误26.线性规划具有唯一最优解是指参考答案:最优表中非基变量检验数全部非零27.标准指派问题(m人,m件事)的规划模型中,有()个决策变量。
习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。
⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。
⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。
⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x x x 3x 2x minz )b (32121321321 答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。
《运筹学》作业参考答案作业一一、是非题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
(√)2.线性规划问题的每一个基解对应可行解域的一个顶点。
(╳)3.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
(√)4.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
(√)5.单纯形法计算中,如果不按最小比值规划选出基变量,则在下一个解中至少有一个基变量的值为负。
(√)6.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。
(╳)7.若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。
(╳)8.对一个有n个变量,m个约束的标准型线性规划问题,其可行域的顶点数恰好为mnC个。
(╳)9.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
(√)10.求Max型的单纯形法的迭代过程是从一个可行解转换到目标函数值更大的另一个可行解。
(√)二、线性规划建模题:1.某公司一营业部每天需从A、B两仓库提货用于销售,需提取的商品有:甲商品不少于240件,乙商品不少于80台,丙商品不少于120吨。
已知:从A仓库每部汽车每天能运回营业部甲商品4件,乙商品2台,丙商品6吨,运费200元/每部;从B仓库每部汽车每天能运回营业部甲商品7件,乙商品2台,丙商品2吨,运费160元/每部。
问:为满足销售量需要,营业部每天应发往A、B两仓库各多少部汽车,并使总运费最少?解:设营业部每天应发往A、B两仓库各x1,x2部汽车,则有:12 121212min200160 47240 2280 621200(1,2)jW x xx xx xx xx j=++≥⎧⎪+≥⎪⎨+≥⎪⎪≥=⎩2.现有一家公司准备制定一个广告宣传计划来宣传开发的新产品,以使尽可能多的未来顾客特别是女顾客得知。
判断题Wxx一、线性规划1. 若线性规划存在最优解则一定存在基本最优解V(若存在唯一最优解,则最优解为最优基本可行解(一个角顶),若存在多重最优解(由多个角顶的凸组合来表示)2. 若线性规划为无界解则其可行域无界V(可行域封闭有界则必然存在最优解)3. 可行解一定是基本解x(基本概念)4. 基本解可能是可行解V(基本概念)5. 线性规划的可行域无界则具有无界解X(有可能最优解,若函数的梯度方向朝向圭寸闭的方向,则有最优解)6. 最优解不一定是基本最优解V(在多重最优解里,最优解也可以是基本最优解的凸组合)7. X j的检验数表示变量X j增加一个单位时目标函数值的改变量V(检验数的含义,检验函数的变化率)8. 可行解集有界非空时,则在极点上至少有一点达到最优值V(可行解集有界非空时,有可行解,有最优解,则至少有一个基本最优解)9. 若线性规划有三个基本最优解X1)、屮、疋,贝y X= 乂1)+(1- a*3)及X= a i X?1)+ o/2)+ 03疋均为最优解,其中■-丨:二」二;I Vi(一般凸组合为X= a X1〉+ a X2)+ a X3),若a3=0,则有X=«X(1)+(1- ”炉)10. 任何线性规划总可用大M单纯形法求解V(人工变量作用就是一个中介作业,通过它来找到初始基本可行解)11. 凡能用大M法求解也一定可用两阶段法求解V(大M法和两阶段法没有本质区别)12. 两阶段法中第一阶段问题必有最优解V(第一阶段中,线性规划的可行域是封闭有界的,必然有最优解)13. 两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解(只能说有可行解,也有可能是无界解)14. 任何变量一旦出基就不会再进基X15. 人工变量一旦出基就不会再进基V(这个是算法的一个思想,目标函数已经决定了)16. 普通单纯形法比值规则失效说明问题无界V17. 将检验数表示为匸C B E-1A- C的形式,则求极大值问题时基可行解是最优解的充要条件是入色V(各种情况下最优性判断条件)18. 当最优解中存在为零的基变量时,则线性规划具有多重最优解x (退化解的概念,多重最优解和非基变量的检验数有关)19. 当最优解中存在为零的非基变量时,则线性规划具唯一最优解x20. 可行解集不一定是凸集xV且仅当入为,j = 1,2,…,nV22. 若线性规划存在基本解则也一定存在基本解可行解 X 23. 线性规划的基本可行解只有有限多个 V24. 在基本可行解中基变量一定不为零XmaxZ =3x 1 x 2 -4x 3 12x ! 5x 2 x 350* N - % + 10x 3 K 1025 为 Z0,x 2 3 0, x 3 ±0 是一个线性规划数学模型X对偶规划1.任何线性规划都存在一个对应的对偶线性规划V2. 原问题(极大值)第i 个约束是约束,则对偶变量y i >03. 互为对偶问题,或者同时都有最优解,或者同时都无最优解4. 对偶问题有可行解,则原问题也有可行解 X5. 原问题有多重解,对偶问题也有多重解 X在 以 下 6〜10 中 ,设 XI 匚二M — 1匚 II 的可行解6. 则有 cX < Yb X7. CX *是w 的下界X8. 当X 、Y 为最优解时,cX=Y *b ; V9. 当 cX=Yb 时,有 Y *X s +Y s X=0 成立V10. X *为最优解且B 是最优基时,则 Y *=C B BT 是最优解V11. 对偶问题有可行解,原问题无可行解,则对偶问题具有无界解 V12. 原问题无最优解,则对偶问题无可行解 X 13. 对偶问题不可行,原问题无界解 X14. 原问题与对偶问题都可行,则都有最优解 V 15. 原问题具有无界解,则对偶问题不可行V16. 若某种资源影子价格为零,则该资源一定有剩余 X17. 原问题可行对偶问题不可行时,可用对偶单纯形法计算 X 18. 对偶单纯法换基时是先确定出基变量,再确定进基变量 V19. 对偶单纯法是直接解对偶问题的一种方法X20. 对偶单纯形法比值失效说明原问题具有无界解 X21.将检验数表示为 的形式,则求极小值问题时,基可行解为最优解当21.在最优解不变的前提下, 基变量目标系数C i 的变化范围可由式Y *分 别 是22. 在最优基不变的前提下,常数 b r 的变化范围可由式其中八I 为最优基B 的逆矩阵.'123. 减少一约束,目标值不会比原来变差 V 24. 增加一个变量,目标值不会比原来变好 X25. 当b 在允许的最大范围内变化时,最优解不变 X三、整数规划1.整数规划的最优解是先求相应的线性规划的最优解然后取整得到 X2. 部分变量要求是整数的规划问题称为纯整数规划 X3. 求最大值问题的目标函数值是各分枝函数值的上界 V4. 求最小值问题的目标函数值是各分枝函数值的下界 V5. 变量取0或1的规划是整数规划 V6. 整数规划的可行解集合是离散型集合 V7. 0 — 1规划的变量有n 个,则有2n 个可行解X8. 6x 1+5x 2^10、15或20中的一个值,表达为一般线性约束条件是y i +y 2+y 3= 1 , 屮、y 、y s = 0 或 1V9. 高莫雷(R.E.Gomory )约束是将可行域中一部分非整数解切割掉10. 隐枚举法是将所有变量取0、1的组合逐个代入约束条件试算的方法寻找可行解X四、目标规划1.正偏差变量大于等于零,负偏差变量小于等于零 X2.系统约束中没有正负偏差变量 V3.目标约束含有正负偏差变量 V4. 一对正负偏差变量至少一个大于零 X5. 一对正负偏差变量至少一个等于零 V6.要求至少到达目标值的目标函数是 max Z =d + X7.要求不超过目标值的目标函数是 min Z =d - X8. 目标规划没有系统约束时,不一定存在满意解X9. 超出目标值的差值称为正偏差 V 10. 未到达目标的差值称为负偏差 V五、运输与指派问题1. 运输问题中用位势法求得的检验数不唯一 X2. 平衡运输问题一定有最优解V空iCj <nun ^ — |a<0确定min max <0确定,6 X 1+5X 2羽0y 1+15y 2+20y 3,V3. 不平衡运输问题不一定有最优解X4. 产地数为3,销地数为4的平衡运输问题有7个基变量X5. m+ n - 1个变量组构成一组基变量的充要条件是它们不包含闭回路V6. 运输问题的检验数就是其对偶变量 x7. 运输问题的检验数就是对偶问题的松驰变量8. 运输问题的位势就是其对偶变量 V9. 不包含任何闭回路的变量组必有孤立点 V 10. 含有孤立点的变量组一定不含闭回路x11. 用一个常数k 加到运价矩阵C 的某列的所有元素上,则最优解不变V12. 令虚设的产地或销地对应的运价为一任意大于零的常数 c (c>0), 则最优解不变 V 13. 若运输问题的供给量与需求量为整数,则一定可以得到整数最优解 V 14. 按最小元素法求得运输问题的初始方案 , 从任一非基格出发都存在唯一一个闭回路V15. 运输问题中运价表的每一个元素都分别乘于一个常数 16. 运输问题中运价表的每一个元素都分别加上一个常数 17.5 个产地 6个销地的平衡运输问题有 11 个变量 x 18.5 个产地 6个销地的平衡运输问题有 30 个变量 V19. 5 个产地 6 个销地的 销大于产 的运输问题有 11 个基变量 V六、网络模型 1 .容量不超过流量 x2. 最大流问题是找一条从起点到终点的路,使得通过这条路的流量最大 x3. 容量 C ij 是弧( i , j )的最大通过能力 V V发点到收点的增广链 VV发点到收点的路,使得可以增加这条路的流量 12.狄克斯屈拉算法是求最大流的一种标号算法x13. 破圈法是:任取一圈,去掉圈中最长边,直到无圈 V14. 避圈法(加边法)是:去掉图中所有边,从最短边开始添加,加边的过程中不能形成圈, 直到连通( n - 1 条边) V 15. 连通图一定有支撑树 V16. P 是一条增广链,则后向弧上满足流量 f >0 x 17. P 是一条增广链,则前向弧上满足流量 f ij < C x18. 可行流的流量等于每条弧上的流量之和 x19. 最大流量等于最大流 x 20. 最小截集等于最大流量 x 七、网络计划1. 网络计划中的总工期是网络图中的最短路的长度 x2. 紧前工序是前道工序V, 则最优解不变 V ,则最优解不变V20. 产地数为 3 销地数为 4 的平衡运输中,变量组 {x 11,x 13,x 22,x 33,x 34} 可作为一组基变量4. 流量 f ij 是弧( i , j )的实际通过量5. 可行流是最大流的充要条件是不存在6. 截量等于截集中弧的流量之和 x7. 任意可行流量不超过任意截量 V8. 任意可行流量不小于任意截量x9. 存在增广链说明还没有得到最大流量 10. 存在增广链说明已得到最大流 x 11. 找增广链的目的是:是否存在一条从V3. 后续工序是紧后工序x4. 虚工序不需要资源,是用来表达工序之间的衔接关系的虚设活动5. A完工后B才能开始,称A是B的紧后工序X6. 单时差为零的工序称为关键工序X7. 关键路线是由关键工序组成的一条从网络图的起点到终点的有向路V8. 关键路线一定存在V9. 关键路线存在且唯一一X10. 计划网络图允许有多个始点和终点X11. 事件i的最迟时间T L (i)是指以事件i为完工事件的工序最早可能结束时间12. 事件i的最早时间T E (i )是以事件i为开工事件的工序最早可能开工时间V13. 工序(i , j )的事件i与j的大小关系是i < j V14•间接成本与工程的完工期成正比V15. 直接成本与工程的完工期成正比X16. ■■ X17. ^ V18. V19. X20. ' • ' V1线性规划2对偶问题3整数规划4目标规划1="对“1="对”1="错“1="错”2="对“2="错" 2 ="错" 2 ="对“3 ="错" 3 ="对" 3 ="对" 3 ="对“4="对" 4="错" 4 ="对" 4 ="错“5="错" 5 ="错" 5 ="对" 5="对“6 ="对" 6="错“6="对“ 6 ="错“7="对“7 ="错" 7 ="错" 7="错“8="对“8="对“8="对“8 ="错“9 ="对" 9="对“9 ="对" 9 ="对“10="对”10 ="对“10="错10="对”1仁"对" 11 ="对“12 ="对" 12="错"13="错”13 ="错“14="错”14 ="对“15="对”15 ="对“16="对”16 ="错“17="对”17 ="错“18 ="错“18="对”19="错”19 ="错“20 ="错“20="错"2仁"对”2仁"对”V25 = “ 错“25= “ 错“5运输问题1 ="错"2 ="对"3 ="错"4 ="错" 5="对"6 ="错"7 ="对"8 ="对" 9="对“ 10="错”11 ="对"12 ="对"13 ="对"14 ="对“15 ="对"16 ="对"17 ="错“18 ="对"19 = " V"20 ="错“6网络模型1 ="错"2 ="错"3 ="对"4 ="对"5 ="对"6 ="错"7 ="对"8 ="错"9 ="对"10 ="错“11 ="对“12 ="错“13 ="对“14 ="对“15 ="对“16 ="错“17 ="错“18 ="错“19 ="错“7网络计划1 ="错"2 ="对"3 ="错"4 ="对" 5="错"6 ="错"7 ="对"8 ="对" 9="错“10 ="错“11 ="错“ 12="对” 12="对”14 ="对“15 ="错“16 ="错“17 ="对“18 ="对“19 ="错“20 ="对“Welcome !!! 欢迎您的下载, 资料仅供参考!。
原问题 其对偶问题为例1原问题 对偶问题min S = x1 + 2x2 + 3x3 max z = 2 y1 + 3y2 s.t. 2x1+3x2 + 5x3 ≥ 2 s.t. 2y1+3y2 ≤ 1 3x1+ x2 + 7x3 ≤ 3 3y1+ y2 ≤ 2 x1,x2 , x3 ≥ 0 5y1+7y2 ≤ 3 y1≥ 0, y2 ≤0min S = 2x1 + 3x2 - 5x3 max z = y1-2y2 +3y3 +4y4s.t. x1+ x2 - x3 ≥ 5 s.t. y1+ 2y3 + y4 ≤ 3 2x1 + x3 =4 2y1 +2y2 - 2y4 ≤ -2 x1,x2 , x3 ≥ 0 -y2+ y3 +3y4 = 1y2 ≤ 0 ,y3, y4 ≥ 0 ,y1 无非负约束⎩⎨⎧≥≤=0..X b AX t s CX MaxZ ⎩⎨⎧≥≥=0..Y C YA t s bYMinW ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,12416482..3221212121x x x x x x t s x x MaxZ ⎪⎩⎪⎨⎧≥≥+≥+++=0,,34224..121683213121321y y y y y y y t s y y yMinW ⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥++=0,70020103006825065..3502502121212121x x x x x x x x t s x x MinZ ⎪⎩⎪⎨⎧≥≤++≤++++=0,,30020662501085..700300250321321321321y y y y y y y y y t s y y yMaxW ⎪⎩⎪⎨⎧≥≥+≥++=0,124253..101521212121y y y y y y t s y yMinW ⎪⎩⎪⎨⎧≥≤+≤++=0,10251543..221212121x x x x x x t s x x MaxZ1、对称性定理:对偶问题的对偶是原问题。