2016-2017年河北省石家庄市赵县八年级(下)数学期末试卷带解析
- 格式:doc
- 大小:388.50 KB
- 文档页数:19
2015-2016学年河北省石家庄市赵县八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下列分式中,最简分式有()A.2个B.3个C.4个D.5个2.在下列各项中,可以用平方差公式计算的是()A.(2a+3b)(3a﹣2b)B.(a+b)(﹣a﹣b)C.(﹣m+n)(m﹣n) D.(a+b)(b﹣a)3.1.252012×()2014的值是()A.B.C.1 D.﹣14.已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3 B.﹣2,﹣1 C.4,﹣3 D.2,15.若分式的值为0,则x的值为()A.2或﹣1 B.0 C.2 D.﹣16.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,等于()则S阴影A.2cm2 B.1cm2 C.cm2D.cm27.已知a,b,c是△ABC的三条边,则代数式(a﹣c)2﹣b2的值是()A.正数 B.0 C.负数 D.无法确定8.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.129.在△ABC中,AD、CE分别是△ABC的高,且AD=2,CE=4,则AB:BC=()A.3:4 B.4:3 C.1:2 D.2:110.关于x的方程=2+无解,则k的值为()A.±3 B.3 C.﹣3 D.无法确定二、填空题(每小题3分,共30分)11.在△ABC中,∠B=58°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.12.点P(﹣2,3)向右平移2个单位长度后到达P2,则点P2关于x轴的对称点的坐标为.13.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB的中点E处,则△BEC的周长为.14.等腰三角形的边长为5cm,另一边为6cm,则等腰三角形的周长为.15.已知a+b=7,ab=4,则a2+b2=.16.已知:如图在△ABC中,AD是它的角平分线,AB:AC=5:3,则S△ABD:S△ACD=.17.一个正六边形和两个等边三角形的位置如图所示,∠3=70°,则∠1+∠2=.18.分解因式:x2+3x(x﹣3)﹣9=.19.已知(x2+mx+n)(x2﹣3x+2)的展开式不含x3和x2的项,那么m=,n=.20.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE 折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.三、解答题(共6小题,满分60分)21.计算题:(1)(x﹣y+)(x+y﹣)(2)解方程:﹣1=(3)先化简再求值:(﹣)÷,其中x是不等式组的整数解.22.作图题(不写作法,保留作图痕迹):如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等.23.如图所示,已知∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,求证:M是BC的中点.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?25.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.26.在图1到图4中,已知△ABC的面积为m.(1)如图1,延长△ABC的边BC到点D使CD=BC,连接DA,若△ACD的面积为S1,则S1=.(用含m的式子表示)(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=.(用含a的代数式表示)(3)如图3,在图2的基础上延长AB到点F,使BF=AB,连接FD于E,得到△DEF,若阴影部分的面积为S3,则S3=.(用含a的代数式表示)(4)可以发现将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF,如图3,此时,我们称△ABC向外扩展了一次.可以发现扩展一次后得到的△DEF的面积是原来△ABC面积的倍.(5)应用上面的结论解答下面问题:去年在面积为15平方面的△ABC空地上栽种了各种花卉,今年准备扩大种植规模,把△ABC 内外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH,如图4,求这两次扩展的区域(即阴影部分)面积共为多少平方米?2015-2016学年河北省石家庄市赵县八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列分式中,最简分式有()A.2个B.3个C.4个D.5个【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:,,,这四个是最简分式.而==.最简分式有4个,故选C.【点评】判断一个分式是最简分式,主要看分式的分子和分母是不是有公因式.2.在下列各项中,可以用平方差公式计算的是()A.(2a+3b)(3a﹣2b)B.(a+b)(﹣a﹣b)C.(﹣m+n)(m﹣n) D.(a+b)(b﹣a)【考点】平方差公式.【分析】利用平方差公式的结构特征判断即可得到结果.【解答】解:A、(2a+3b)(3a﹣2b),不符合平方差公式的结构特征,故错误;B、(a+b)(﹣a﹣b),不符合平方差公式的结构特征,故错误;C、(﹣m+n)(m﹣n),不符合平方差公式的结构特征,故错误;D、,符合平方差公式的结构特征,故正确;故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.1.252012×()2014的值是()A.B.C.1 D.﹣1【考点】幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【解答】解:原式=1.252012×()2012×()2=(1.25×)2012×()2=.故选:B.【点评】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.4.已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3 B.﹣2,﹣1 C.4,﹣3 D.2,1【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:由点A(m+3,2)与点B(1,n﹣1)关于x轴对称,得m+3=1,n﹣1=﹣2,解得m=﹣2,n=﹣1,故选:B.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.若分式的值为0,则x的值为()A.2或﹣1 B.0 C.2 D.﹣1【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x﹣2=0且x+1≠0,解得x=2.故选:C.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.6.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,等于()则S阴影A.2cm2 B.1cm2 C.cm2D.cm2【考点】三角形的面积.【分析】根据三角形的面积公式,知:等底等高的两个三角形的面积相等.=S△BCE=S△ABC=1cm2.【解答】解:S阴影故选:B.【点评】本题考查的是三角形的面积,充分运用三角形的面积公式以及三角形的中线的性质.7.已知a,b,c是△ABC的三条边,则代数式(a﹣c)2﹣b2的值是()A.正数 B.0 C.负数 D.无法确定【考点】因式分解的应用;三角形三边关系.【分析】运用平方差公式因式分解把(a﹣c)2﹣b2转化为(a﹣c+b)(a﹣c﹣b),借助三角形的三边关系问题即可解决.【解答】解:(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b),∵△ABC的三条边分别是a、b、c,∴a+b﹣c>0,a﹣c﹣b<0,∴(a﹣c)2﹣b2的值的为负.故选:C.【点评】此题考查因式分解的实际运用,三角形的三边关系,掌握平方差公式是解决问题的关键.8.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【考点】完全平方式.【专题】计算题;整式.【分析】原式利用完全平方公式的结构特征求出m的值即可.【解答】解:∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.在△ABC中,AD、CE分别是△ABC的高,且AD=2,CE=4,则AB:BC=()A.3:4 B.4:3 C.1:2 D.2:1【考点】三角形的面积.【分析】利用△ABC的面积公式列出方程求解即可.【解答】解:∵AD、CE分别是△ABC的高,∴S△ABC=AB•CE=BC•AD,∵AD=2,CE=4,∴AB:BC=AD:CE=2:4=.故选C.【点评】本题考查了三角形的面积,利用同一个三角形的面积的两种表示列出方程是解题的关键.10.关于x的方程=2+无解,则k的值为()A.±3 B.3 C.﹣3 D.无法确定【考点】分式方程的解.【专题】一次方程(组)及应用;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x﹣3=0,求出x的值代入整式方程求出k的值即可.【解答】解:去分母得:x=2(x﹣3)+k,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:k=3,故选B.【点评】此题考查了分式方程的解,分式方程无解即为最简公分母为0.二、填空题(每小题3分,共30分)11.在△ABC中,∠B=58°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= 61°.【考点】三角形内角和定理.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2)=119°;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2),∵∠B=58°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=119°∴∠AEC=180°﹣(∠DAC+∠ACF)=61°.故答案是:61°.【点评】本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.12.点P(﹣2,3)向右平移2个单位长度后到达P2,则点P2关于x轴的对称点的坐标为(0,﹣3).【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点P2(﹣2+2,3),再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:∵点P(﹣2,3)向右平移2个单位长度后到达P2,∴点P2(﹣2+2,3),即(0,3),∴点P2关于x轴的对称点的坐标为(0,﹣3),故答案为:(0,﹣3).【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.13.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB的中点E处,则△BEC的周长为12.【考点】轴对称的性质.【分析】由轴对称的性质可知:BC=CE=4,由点E是AB的中点可知BE==4,从而可求得答案.【解答】解:∵点B与点E关于DC对称,∴BC=CE=4.∵E是AB的中点,∴BE=AB=4.∴△BEC的周长12.故答案为:12.【点评】本题主要考查的是轴对称的性质,由轴对称图形的性质得到BC=CE=4是解题的关键.14.等腰三角形的边长为5cm,另一边为6cm,则等腰三角形的周长为16cm或17cm.【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况:①当腰长为5cm,底边为6cm时,②当腰长6cm,底边为5cm时,求出即可.【解答】解:①当腰长为5cm,底边长为6cm时,三边长是5cm、5cm、6cm,此时符合三角形的三边关系定理,即等腰三角形的周长是5cm+5cm+6cm=16cm;②当腰长为6cm,底边长为5cm时,三边长是6cm、6cm、5cm,此时符合三角形的三边关系定理,即等腰三角形的周长是6cm+6cm+5cm=17cm;故答案为:16cm或17cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系定理的应用,注意此题要分为两种情况讨论.15.已知a+b=7,ab=4,则a2+b2=41.【考点】完全平方公式.【专题】计算题;整式.【分析】把a+b=7两边平方,利用完全平方公式化简,将ab的值代入计算即可求出所求式子的值.【解答】解:把a+b=7两边平方得:(a+b)2=a2+b2+2ab=49,将ab=4代入得:a2+b2=41,故答案为:41【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.16.已知:如图在△ABC中,AD是它的角平分线,AB:AC=5:3,则S△ABD:S△ACD= 5:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的边AC上的高相等,根据三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=5:3,故答案为:5:3.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.17.一个正六边形和两个等边三角形的位置如图所示,∠3=70°,则∠1+∠2=50°.【考点】三角形内角和定理;等边三角形的性质;多边形内角与外角.【分析】先根据正六边形及正三角形的性质用∠1表示出∠BAC,用∠2表示出∠ACB,用∠3表示出∠ABC,再由三角形内角和定理即可得出结论.【解答】解:∵图中是一个正六边形和两个等边三角形,∴∠BAC=180°﹣∠1﹣120°=60°﹣∠1,∠ACB=180°﹣∠2﹣60°=120°﹣∠2,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∵∠3=70°,∴∠ABC=180°﹣60°﹣∠3=120°﹣70°=50°.∵∠BAC+∠ACB+∠ABC=180°,即60°﹣∠1+120°﹣∠2+50°=180°,∴∠1+∠2=50°.故答案为:50°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.18.分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).【考点】因式分解-十字相乘法等.【专题】因式分解.【分析】首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.【解答】解:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.19.已知(x2+mx+n)(x2﹣3x+2)的展开式不含x3和x2的项,那么m=3,n=7.【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为(x2+mx+n)(x2﹣3x+2)=x4﹣(3﹣m)x3+(2+n﹣3m)x2+(2m﹣3n)x+2n,再令x3和x2项系数为0,计算即可.【解答】解:(x2+mx+n)(x2﹣3x+2)=x4﹣(3﹣m)x3+(2+n﹣3m)x2+(2m﹣3n)x+2n,∵(x2+mx+n)(x2﹣3x+2)的展开式中不含x3和x2项,则有,解得.故答案为:3,7.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.20.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE 折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为3cm.【考点】翻折变换(折叠问题);轴对称的性质.【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=3cm.故答案为:3.【点评】折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.三、解答题(共6小题,满分60分)21.计算题:(1)(x﹣y+)(x+y﹣)(2)解方程:﹣1=(3)先化简再求值:(﹣)÷,其中x是不等式组的整数解.【考点】分式的化简求值;分式的混合运算;解分式方程;一元一次不等式组的整数解.【分析】(1)首先把括号内的分式进行通分相加,然后进行乘法计算即可;(2)首先去分母化成整式方程,然后解方程即可求解;(3)解不等式组求得x的值,然后把括号内的分式通分相加,把除法转化为乘法即可化简,然后代入数值计算即可.【解答】解:(1)原式=•=•=(x+y)(x﹣y)=x2﹣y2;(2)去分母,得x(x+2)﹣(x﹣1)(x+2)=3,即x2+2x﹣(x2+x﹣2)=3,整理得2x﹣x+2=3,移项、合并同类项,得:x=1;(3)不等式组,解①得x>﹣4,解②得x<﹣2.则不等式组的解集是﹣4<x<﹣2.则x=﹣3.原式=【】•=•=•=.当x=﹣3时,原式=.【点评】本题考查了分式的混合运算,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.22.作图题(不写作法,保留作图痕迹):如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】利用角平分线的作法以及线段垂直平分线的作法进而求出其交点即可.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题关键.23.如图所示,已知∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,求证:M是BC的中点.【考点】角平分线的性质.【专题】证明题.【分析】首先过M作MN⊥AD,再根据角平分线的性质可得MN=MC,MN=MB,进而得到MB=MC.【解答】解:过M作MN⊥AD,∵DM平分∠ADC,∴MN=MC,∵AM平分∠DAB,∴MN=MB,∴MB=MC,∴M是BC的中点.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【考点】分式方程的应用.【专题】应用题.【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×=180000(元).答:该工程的费用为180000元.【点评】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.25.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.【解答】解:(1)猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为∠BAC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.(2)猜想:AB+AC=CD.证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD(SAS).∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B∴∠FED=2∠B,∠FED=∠B+∠EDB,∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.【点评】此题考查了全等三角形的判定与性质以及等腰三角形的判定定理.此题难度适中,解题的关键是注意数形结合思想的应用.26.在图1到图4中,已知△ABC的面积为m.(1)如图1,延长△ABC的边BC到点D使CD=BC,连接DA,若△ACD的面积为S1,则S1=m.(用含m的式子表示)(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=2m.(用含a的代数式表示)(3)如图3,在图2的基础上延长AB到点F,使BF=AB,连接FD于E,得到△DEF,若阴影部分的面积为S3,则S3=6m.(用含a的代数式表示)(4)可以发现将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF,如图3,此时,我们称△ABC向外扩展了一次.可以发现扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.(5)应用上面的结论解答下面问题:去年在面积为15平方面的△ABC空地上栽种了各种花卉,今年准备扩大种植规模,把△ABC 内外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH,如图4,求这两次扩展的区域(即阴影部分)面积共为多少平方米?【考点】面积及等积变换.【分析】(1)利用三角形的面积公式,等底同高的三角形面积相等,本题得以解决.(2)利用三角形的面积公式,等底同高的三角形面积相等,本题得以解决.(3)利用三角形的面积公式,等底同高的三角形面积相等,本题得以解决.(4)利用三角形的面积公式,等底同高的三角形面积相等,本题得以解决.(5)根据第四问的经验,得出扩展一次面积变为原来的7倍,得出两次扩展面积,本题得以解决.【解答】解:(1)∵CD=BC,∴△ABC和△ACD的面积相等(等底同高),故得出结论S1=m.(2)连接AD,,∵AE=CA,∴△DEC的面积S2为△ACD的面积S1的2倍,故得出结论S2=2m.(3)结合(1)(2)得出阴影部分的面积为△DEC面积的3倍,故得出结论则S3=6m.+S△ABC(4)S△DEF=S阴影=S3+S△ABC=6m+m=7m=7S△ABC故得出结论扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.(5)根据(4)结论可得两次扩展的区域(即阴影部分)面积共为(7×7﹣1)×15=720(平方米),答:求这两次扩展的区域(即阴影部分)面积共为720平方米.【点评】本题考查了学生对面积公式的应用,同时考查到了学生的读题能力,利用类推的方法得出结论.解题的关键是找到扩展后的三角形的面积是原来的7倍.知识像烛光,能照亮一个人,也能照亮无数的人。
2022-2023学年河北省石家庄市赵县八年级(下)期末数学试卷一、选择题(本大题共16小题,共42.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各图象中,y不是x函数的是( )A. B.C. D.2. 下列二次根式,不能与2合并的是( )B. 8C. 12D. −18A. 123. 二次根式x−1中字母x的取值范围是( )A. x<1B. x≥1C. x≤0D. x≥04. 一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A. 8,9B. 8,8C. 8.5,8D. 8.5,95. 下列计算或化简正确的是( )A. (2+5)2=9B. 2=5−35+3C. a2+b2=a+bD. (2−π)2=2−π6. 若一次函数y=(m−1)x−m的图象经过第二、三、四象限,则m的取值范围是( )A. m<0B. m<1C. 0<m<1D. m>17. 如图,在平行四边形ABCD中,BC=8cm,CD=6cm,∠D=40°,BE平分∠ABC,下列结论错误的是( )A. AE=6cmB. ED=2cmC. ∠BED=150°D. ∠C=140°8. 已知四边形ABCD是平行四边形,下列结论中错误的有( )①当AB=DC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A. 1个B. 2个C. 3个D. 4个9.如图,一架3m长的梯子AB斜靠在一竖直的墙上,M为AB中点,当梯子的上端沿墙壁下滑时,OM的长度将( )A. 变大B. 变小C. 不变D. 先变大后变小10.如图,挂在弹簧秤上的长方体铁块浸没在水中,提着弹簧秤匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧秤的读数F(kg)与时间t(s)的函数图象大致是( )A.B.C.D.11.如图,要在平行四边形ABCD内作一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形;乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.对于甲、乙两人的作法,可判断( )A. 甲正确,乙错误B. 甲错误,乙正确C. 甲、乙均正确D. 甲、乙均错误12. 下列各组数中以a,b,c为边的三角形是直角三角形的是( )A. a=2,b=3,c=4B. a=1,b=1,c=2C. a=6,b=8,c=11D. a=1,b=4,c=513. 已知,ab>0,化简二次根式a−b的正确结果是( )a2A. bB. −bC. −bD. −−b14. 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )A. 6B. 8C. 10D. 1215.如图,直线l1:y=x+n与直线l2:y=kx+m交于点P,下列结论错误的是( )A. k<0,m>0B. 关于x的方程x+n=kx+m的解为x=3C. 关于x的不等式(k−1)x<n−m的解集为x<3D. 直线l1上有两点(x1,y1),(x2,y2),若x1<x2时,则y1<y216.如图,∠MON=90°,长方形ABCD的顶点B、C分别在边OM、ON上,当B在边OM上运动时,C随之在边ON上运动,若CD=5,BC=24,运动过程中,点D到点O的最大距离为( )A. 24B. 25C. 3 13+12D. 26二、填空题(本大题共3小题,共9.0分)17. 计算:(− 6)2= ______ .18. 函数y =−x +5(−1≤x ≤6)的图象与x 轴的交点坐标是______ ;函数的最大值是______ .19. 为庆祝建党90周年,美化社区环境,某小区要修建一块艺术草坪.如图,该草坪依次由部分互相重叠的一些全等的菱形组成,且所有菱形的较长的对角线在同一条直线上,前一个菱形对角线的交点是后一个菱形的一个顶点,如菱形ABCD 、EFGH 、CIJK ……,要求每个菱形的两条对角线长分别为4m 和6m .(1)菱形ABCD 的面积为______ m 2;(2)若使这块草坪的总面积是39m 2,则需要______ 个这样的菱形;(3)若有n 个这样的菱形(n ≥2,且n 为整数),则这块草坪的总面积是______ m 2.三、解答题(本大题共7小题,共69.0分。
3 2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析一、选择题(本大题共 16 小题,共 42.0 分)1.下列根式中是最简二次根式的是( )A. √ 2B. √3C. √9D. √122. 三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85, 其中能够构成直角三角形的有( )A. 1 个B. 2 个C. 3 个D. 4 个3.下列哪个点在一次函数1 y =2x +1的图象上( )A. (2,1)B. (2,0)C. (-2,1)D. (-2,0)4.一次函数 y =5x +3 的图象经过的象限是( ) A. 一、二、三 B. 二、三、四C. 一、二、四D. 一、三、四√3 5.下列计算正确的是( )A. √5-√3=√2B. 3√5×2 √3=6√15 C. (2√2)2=16D . 3=16.不能判定一个四边形是平行四边形的条件是( ) A. 两组对边分别平行 B. 一组对边平行另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等 7. 已知 A 样本的数据如下:72,73,76,76,77,78,78,B 样本的数据恰好是 A 样本数据每个都加 2,则 A ,B 两个样本的下列统计量对应相同的是( ) A. 平均数B. 方差C. 中位数D. 众数8. 若√x − 2y + 9与|x -y -3|互为相反数,则 x +y 的值为( ) A. 3B. 9C. 12D. 279.矩形具有而菱形不具有的性质是( ) A. 对角线互相平分 B. 对角线互相垂直 C. 对角线相等D. 对角线平分一组对角10.一支蜡烛长 20 厘米,点燃后每小时燃烧 5 厘米,燃烧时剩下的高度 h (厘米)与燃烧时间 t (时)的函数关系的图象是()A. B.C. D.11.如图,平行四边形ABCD 中,对角线AC、BD 交于点O,点E 是BC 的中点.若OE=3cm,则AB 的长为()A. 3cmB. 6cmC. 9cmD. 12cm12.直角三角形斜边上的高与中线分别为5cm 和6cm,则它的面积为()cm2.A. 30B. 60C. 45D. 1513.函数y=ax+b 与y=bx+a 的图象在同一坐标系内的大致位置正确的是()A. B.C. D.D. 9°14.已知:如图,在矩形 ABCD 中,E 、F 、G 、H 分别为边 AB 、BC 、CD 、DA 的中点.若 AB =2,AD =4,则图中阴影部分的面积为( )A. 8B. 6C. 4D. 315.如图,矩形 ABCD 中,DE ⊥AC 于 E ,且∠ADE :∠EDC =3:2, 则∠BDE 的度数为( ) A. 36°B. 18°C. 27°16.如图中的图象(折线 ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离 s (千米)和行驶时间 t (小时)之间的函数关系,根据图中提供的信息,给出下列说法: ①汽车共行驶了 120 千米; ②汽车在行驶途中停留了 0.5 小时;80③汽车在整个行驶过程中的平均速度为 3 千米/时; ④汽车自出发后 3 小时至 4.5 小时之间行驶的速度在逐渐减少. 其中正确的说法共有()√x+1 A. 1个 B. 2 个 C. 3 个 D. 4 个二、填空题(本大题共 4 小题,共12.0 分)17.函数y=1 中自变量x 的取值范围是.18.如图,矩形ABCD 的对角线AC=8cm,∠AOD=120°,则AB 的长为cm.19.已知点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,则a 与b 的大小关系是.20.已知:如图,正方形ABC D中,对角线AC 和BD相交于点O.E、F 分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF 的长为cm.3x 2−y2三、计算题(本大题共 2 小题,共 22.0 分)21.计算(1)√27-√12+√45;(2)√27×√1 -(√5+√3)(√5-√3).22. 已知 x =√3+1,y =√3-1,求x 2 −2xy +y 2的值.四、解答题(本大题共 4 小题,共 44.0 分)23.如图,四边形 ABC D 是菱形,对角线 AC =8cm ,BD =6cm , DH ⊥AB 于 H ,求:DH 的长.24.已知一次函数y=kx+b 的图象经过点(-1,-5),且与正比例函数于点(2,a),求(1)a 的值;(2)k,b 的值;(3)这两个函数图象与x 轴所围成的三角形的面积.1y=2x的图象相交25.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10 次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?26.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B 两仓库.已知甲库有粮食100 吨,乙库有粮食80 吨,而A 库的容量为70 吨,B 库的容量为110 吨.从甲、乙两库到A、B 两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送 1 千米所需人民币)(1)若甲库运往 A 库粮食x 吨,请写出将粮食运往A、B 两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B 两库多少吨粮食时,总运费最省,最省的总运费是多少?答案和解析1.【答案】B【解析】解:A、= ,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,故此选项错误;D、=2 ,故此选项错误;故选:B.直接利用最简二次根式的定义分析得出答案.此题主要考查了最简二次根式,正确把握定义是解题关键.2.【答案】C【解析】解:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;③、82+152=289=172,∴能构成直角三角形,故本小题正确;④、132+842=6973≠852,∴不能构成直角三角形,故本小题错误.故选:C.根据勾股定理的逆定理对四个答案进行逐一判断即可.本题考查的是勾股定理的逆定理,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.3.【答案】D【解析】解:A、把(2,1)代入得,×2+1=2≠1,故本题选项错误;B、把(2,0)代入得,×2+1=2≠0,故本选项错误;C、把(-2,1)代入得,×(-2)+1=0≠1,故本选项错误;D、把(-2,0)代入得,×(-2)+1=0,故本选项正确.故选:D.将四个点分别代入函数的解析式进行验证即可.此题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此一次函数的解析式.比较简单.4.【答案】A【解析】解:∵一次函数y=5x+3 中,k=5>0,b=3>0,∴该直线从左往右上升,与y 轴交于正半轴,∴图象经过的象限是:一、二、三.故选:A.直接利用一次函数y=5x+3 的性质得出其经过的象限.此题主要考查了一次函数的性质,解题时注意:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0 时,直线与y 轴交于正半轴;当b<0 时,直线与y 轴交于负半轴.5.【答案】B【解析】解:A、不能化简,所以此选项错误;B、3 ×=6,所以此选项正确;C、(2)2=4×2=8 ,所以此选项错误;D、= = ,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.6.【答案】B【解析】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A 不符合题意;B、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故 B 符合题意;C、一组对边平行且相等,可判定该四边形是平行四边形,故 C 不符合题意;D、两组对边分别相等,可判定该四边形是平行四边形,故D 不符合题意故选:B.根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.【答案】B【解析】解:设样本 A 中的数据为x i,则样本 B 中的数据为y i=x i+2,则样本数据B 中的众数和平均数以及中位数和A 中的众数,平均数,中位数相差2,只有方差没有发生变化;故选:B.根据样本A,B 中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论.此题主要考查统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.8.【答案】D【解析】解:∵与|x-y-3|互为相反数,∴+|x-y-3|=0,∴,②-①得,y=12,把y=12 代入②得,x-12-3=0,解得x=15,∴x+y=12+15=27.故选:D.根据互为相反数的和等于0 列式,再根据非负数的性质列出关于x、y 的二元一次方程组,求解得到x、y 的值,然后代入进行计算即可得解.本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0 时,必须满足其中的每一项都等于0.9.【答案】C【解析】解:A、对角线互相平分是菱形矩形都具有的性质,故A 选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B 选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C 选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D 选项错误;故选:C.根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.10.【答案】D【解析】解:设蜡烛点燃后剩下h 厘米时,燃烧了t 小时,则h 与t 的关系是为h=20-5t,是一次函数图象,即t 越大,h 越小,符合此条件的只有D.故选:D.随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.【答案】B【解析】解:∵四边形ABCD 是平行四边形,∴OA=OC;又∵点 E 是BC 的中点,∴BE=CE,∴AB=2OE=2×3=6 (cm)故选:B.因为四边形ABCD 是平行四边形,所以OA=OC;又因为点E 是BC 的中点,所以OE 是△ABC 的中位线,由OE=3cm,即可求得AB=6cm.此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.12.【答案】A【解析】解:解:∵直角三角形的斜边上的中线为6cm,∴斜边为2×6=12 (cm),∵直角三角形斜边上的高为5cm,∴此直角三角形的面积为×12×5=30 (cm2),故选:A.据直角三角形斜边上中线性质求出斜边长,再根据直角三角形的面积公式求出面积即可.本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上中线等于斜边的一半.13.【答案】C【解析】解:分四种情况:①当a>0,b>0 时,y=ax+b 的图象经过第一、二、三象限,y=bx+a 的图象经过第一、二、三象限,无选项符合;②当a>0,b<0 时,y=ax+b 的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C 选项符合;③当a<0,b>0 时,y=ax+b 的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C 选项符合;④当a<0,b<0 时,y=ax+b 的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:C.根据a、b 的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.一次函数y=kx+b 的图象有四种情况:①当k>0,b>0,函数y=kx+b 的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b 的图象经过第一、三、四象限;③当k<0,b>0 时,函数y=kx+b 的图象经过第一、二、四象限;④当k<0,b<0 时,函数y=kx+b 的图象经过第二、三、四象限.14.【答案】C【解析】解:连接AC,BD,FH,EG,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴AH= AD,BF= BC,∵四边形ABCD 是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB 是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD 是矩形,∴AC=BD,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴HG∥AC,HG= AC,EF∥AC,EF= AC,EH= BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH 是平行四边形,∴平行四边形EFGH 是菱形,∴FH⊥EG,∴阴影部分EFGH 的面积是×HF×EG= ×2×4=4 ,故选:C.连接AC,BD,FH,EG,得出平行四边形ABFH,推出HF=AB=2,同理EG=AD=4,求出四边形EFGH 是菱形,根据菱形的面积等于×GH×HF ,代入求出即可.本题考查了矩形的性质,菱形的判定和性质,平行四边形的判定等知识点,关键是求出四边形EFGH 是菱形.15.【答案】B【解析】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选:B.本题首先根据∠ADE:∠EDC=3:2 可推出∠ADE 以及∠EDC 的度数,然后求出△ODC 各角的度数便可求出∠BDE.本题考查的是三角形内角和定理以及矩形的性质,难度一般.16.【答案】A【解析】解:由图象可知,汽车走到距离出发点120 千米的地方后又返回出发点,所以汽车共行驶了240 千米,①错;从 1.5 时开始到 2 时结束,时间在增多,而路程没有变化,说明此时在停留,停留了2-1.5=0.5 小时,②对;汽车用4.5 小时走了240 千米,平均速度为:240÷4.5=千米/时,③错.汽车自出发后3 小时至4.5 小时,图象是直线形式,说明是在匀速前进,④错.故选:A.根据图象上的特殊点的实际意义即可作出判断.本题考查由图象理解对应函数关系及其实际意义,注意总路程应包括往返路程,平均速度=总路程÷总时间.17.【答案】x>-1【解析】解:由题意得,x+1>0,解得x>-1.故答案为:x>-1.根据被开方数大于等于0,分母不等于0 列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18.【答案】4【解析】解:∵∠AOD=120°,∴∠AOB=60°,∵四边形ABCD 是矩形,∴AC=BD,AO=OC= cm,BO=OD,∴AO=BO=4cm,∴△ABO 是等边三角形,∴AB=AO=4cm,故答案为:4根据矩形的性质求出AO=BO=4cm,求出△AOB 是等边三角形,即可求出AB.本题考查了矩形的性质和等边三角形的性质和判定,能根据矩形的性质求出AO=BO 是解此题的关键.19.【答案】a>b【解析】解:∵点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案为:a>b.分别把点A(-1,a),B(2,b)代入函数y=-3x+4,求出a、b 的值,并比较出其大小即可.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.【答案】5【解析】解:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=45°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到EF==5cm.故答案为5.3 连接 EF ,根据条件可以证明△OED ≌△OFC ,则 OE=OF ,CF=DE=3Ccm ,则AE=DF=4,根据勾股定理得到 EF==5cm .根据已知条件以及正方形的性质求证出两个全等三角形是解决本题的关键. 21.【答案】解:(1)√27-√12+√45=3√3 − 2√3 + 3√5=√3 + 3√5;(2)√27×√1-(√5+√3)(√5-√3)=√9 − (5 − 3)=3-2=1.【解析】(1) 根据二次根式的加减法可以解答本题;(2) 根据二次根式的乘法、平方差公式可以解答本题.= 22. = 本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法. 【答案】解:原式 (x−y )2 (x +y )(x−y )当 x =√3+1,y =√3-1 时, 原式=√3+1−√3+1=2 √3.x−y=x +y ,√3+1+√3−1 2√3 3【解析】先将分子、分母因式分解,再约分即可化简原式,继而将x 、y 的值代入计算可得.2 22 本题主要考查二次根式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及二次根式的混合运算.23. 【答案】解:∵四边形 ABCD 是菱形,AC =8cm ,BD =6cm ,∴AC ⊥BD ,OA =1AC =4cm,OB =1BD =3cm ,∴Rt △AOB 中,AB =√AO 2 + BO 2 =√32 + 42=5, ∵DH ⊥AB ,∵菱形 ABCD 的面积 1•BD =AB •DH ,S =2AC∴1×6×8=5 DH ,5 2 ∴DH =24. 【解析】先根据菱形对角线互相垂直平分得:OA= AC=4cm ,OB= BD=3cm ,根据勾股定理求得AB=5cm ,由菱形面积公式的两种求法列式可以求得高 DH 的长.本题考查了菱形的性质,熟练掌握菱形以下几个性质:①菱形的对角线互相 垂直平分,②菱形面积=两条对角线积的一半,③菱形面积=底边×高;本题利用了面积法求菱形的高线的长.24. 【答案】解:(1)由题知,把(2,a )代入 y =1 x , 解得 a =1;(2) 由题意知,把点(-1,-5)及点(2,a )代入一次函数解析式得:-k +b =-5,2k +b =a , 又由(1)知a =1,解方程组得:k =2,b =-3;(3) 由(2)知一次函数解析式为:y =2x -3,30)直线y=2x-3 与x轴交点坐标为(,233.∴所求三角形面积1=2×1×2=4【解析】(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a 的值.(2)把点(-1,-5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b 的值.(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x 轴的交点即可.本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,注意直线上任意一点的坐标都满足函数关系式y=kx+b.25.【答案】8;7.5【解析】解:(1)甲的平均数=故答案为:8;7.5;(2);…==8,乙的中位数是7.5;,= ,∵,∴乙运动员的射击成绩更稳定.(1)根据平均数和中位数的定义解答即可;(2)计算方差,并根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答.此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳70 − x ≥ 0 定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小, 即波动越小,数据越稳定.26.【答案】解:(1)依题意有:若甲库运往 A 库粮食 x 吨,则甲库运到 B 库(100-x ) 吨,乙库运往 A 库(70-x )吨,乙库运到 B 库(10+x )吨.x ≥ 0则{100 − x ≥ 0,解得:0≤x ≤70. 10 + x ≥y =12×20 x +10×25 (100-x )+12×15 (70-x )+8×20×[110 -(100-x )]=-30x +39200其中 0≤x ≤70(2)上述一次函数中 k =-30<0∴y 随 x 的增大而减小∴当 x =70 吨时,总运费最省最省的总运费为:-30×70+39200=37100 (元)答:从甲库运往 A 库 70 吨粮食,往 B 库运送 30 吨粮食,从乙库运往 A 库 0 吨粮食,从乙库运往 B 库 80 吨粮食时,总运费最省为 37100 元.【解析】弄清调动方向,再依据路程和运费列出 y (元)与 x (吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.。
2017-2018学年河北省石家庄市长安区八年级下学期期末数学试卷一、选择题(本大题共16个小题,每小题2分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.在该校各年级中随机选取50名学生2.(2分)若点P(m,m+3)在第二象限,则m的值可能是()A.1B.0C.﹣1.5D.﹣33.(2分)下列关于变量x,y的关系,其中y不是x的函数的是()A.B.C.D.4.(2分)如图,小明为了体验四边形的不稳定性先用四根木条钉成一个矩形框架ABCD,又将一根橡皮筋拉直并连接在B,D两点之间,然后保持BC不动,将CD在BC上方绕点C顺时针旋转,观察所得四边形的变化,下列判断错误的()A.BD的长度增大B.四边形ABCD的周长不变C.四边形ABCD的面积不变D.四边形ABCD由矩形变为平行四边形5.(2分)在平面直角坐标系中,一次函数y=1﹣x的图象是()A.B.C.D.6.(2分)如图,▱ABCD,BE平分∠ABC交AD于点E,∠AEB=25°,则∠C=()A.50°B.60°C.120°D.130°7.(2分)将点B(5,﹣1)向上平移3个单位长度得到点A(a+1,1﹣b),则()A.a=5,b=2B.a=4,b=﹣1C.a=4,b=5D.a=7,b=2 8.(2分)如图,是某班长绘制的5月份本班学生家庭用水量的统计图,由图可知该班学生家网5月份用水量所占比例最大的吨位是()A.4吨B.5吨C.6吨D.7吨9.(2分)若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A.减小2B.增加2C.减小4D.增加410.(2分)如图,在平面直角坐标系中,直线m⊥n,若x轴∥m,y轴∥n,点A的标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点可能为()A.O1B.O2C.O3D.O411.(2分)用一根长48cm的细铁丝围成一个等腰三角形,设三角形底边长为ycm,腰长为xcm,则y与x的函数关系式及x的取值范围是()A.y=48﹣2x(0<x<24)B.y=48﹣2x(12<x<24)C.y=24﹣x(0<x<48)D.y=24﹣0.5x(0<x<24)12.(2分)如图,小明家相对于学校的位置下列描述最准确的是()A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处13.(2分)若函数y=kx(k≠0)的图象过(2,﹣3),则关于此函数的叙述不正确的是()A.y随x的增大而增大B.k=﹣C.函数图象经过原点D.函数图象过二、四象限14.(2分)某公司生产一种品牌的产品,近年的产销情况如图所示,直线l1和l2分别表示产量与年份、销量与年份的函数关系,则下列说法:①该产品产量与销售量均呈直线上升的趋势,应该按原计划继续生产;②该产品已经出现供大于求的趋势价格将趋跌;③该产品库存积压越来越大,应该压缩生产或设法促销;④该产品近年的产量一直大于销量,因此一直处于亏损状态.其中错误的是()A.①②B.①④C.②③D.③④15.(2分)数学课上探究“菱形的两条对角线互相垂直”时,甲乙两同学分别给出各自的证明:已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD则关于两人的证明过程,说法正确的是()A.甲、乙两人都对B.甲对,乙不对C.乙对,甲不对D.甲、乙两人都不对16.(2分)如图,等边△ABC中,A(1,0)B(2,0).将△ABC在x轴上按顺时针方向无滑动滚,翻滚1次后,C点落在点(3,0),则滚2018次后,△ABC的顶点中与点(2018,0)距离最近的是()A.点A B.点B C.点C D.不能确定二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.(3分)根据如图的程序计算,当输出的结果y=5.5时,则输入x=.18.(3分)如图,将一个n边形纸板,过相邻的两个顶点剪掉一个三角形,余下部分的角度和为:∠A1+∠A2+∠A3+…+∠A n﹣1+∠A n=2040°,若∠P=60°,则n的值为.19.(3分)学习委员调查本班学生一周内课外阅读情况,按照课外阅读时间进行统计结果如下表:阅读时间2小时以下2﹣4小时4小时以上人数/名1025a百分比b c30%则表中a的值是.20.(3分)一种大棚蔬菜处在0℃以下的气温条件下超过3.5小时,就会遭受冻害某日气象台发布了如下的降温预报:今日0时至次日5时气温将由3℃下降到﹣3℃;从次日5时至次日8时,气温又将由﹣3℃上升到5℃.若气温在上述两个时段内变化都是匀速的,那么0℃以下的气温条件将持续时,你认为是否有必要对大棚蔬菜采取防冻措施?(填“有”或“没有”)三、解答题(本大题共6个小题,共56分.解答应写出相应的文字说明或解题步骤)21.(8分)平面直角坐标系中,已知点A(﹣a,2a+3),B(1,a﹣2)(1)若点A在第一象限的角平分线上时,则a=;(2)若点B到x轴的距离是到y轴的距离的2倍,则B点坐标为;(3)若线段AB∥x轴,求点A,B的坐标及线段AB的长.22.(8分)如图1,在▱ABCD中,E,F分别为BC,AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)在(1)的基础上小明继续探究发现:如图2,连接BF,DE,分别交AE,CF 于点G,H,得到的新四边形EHFG也是平行四边形.请补全小明的证明思路由(1)知:四边形AFCE是平行四边形,可得AE∥CF,要证明四边形EHFG为平行四边形,只要再证由已知,BE=DF,又由,所以四边形BEDF为平行四边形,进而可证得四边形EHFG为平行四边形.23.(9分)为节约用水,某市2017年对相关单位用水收费标准进行了调整,各单位每月应交的水费y(元)与当月用水量x(吨)之间关系如图所示.(1)若2月份用水量为40吨,则该月应交水费元;(2)当x≥50时,求y与x的函数关系式;(3)政府为了节约用水,决定在2018年对每月用水量不超过150吨的单位给予一定的资金奖励,如果某单位要想获得奖励金,那么每月用于水费的支出最多为多少元?24.(10分)某商场今年前五个月销售总额共计600万元,如图1柱状图为该商场今年前五个月的月销售总额统计图(统计信息不全),折线图2表示该商场家电部各月销售额占商场当月销售额的百分比情况统计图.(1)请根据以上信息,将图1补充完整;(2)家电部5月份的销售额是万元,小亮同学观察折线图后认为,家电部5月份的销售总额比4月份减少了,你同意他的看法吗?请说明理由;(3)在该商场家电部下设A,B,C,D,E五个卖区,如图3饼状图示在5月份,家电部各卖区销售额占5月份家电部销售额的百分比情况统计图,则卖区销售额最高,该卖区占5月份商场销售总额的百分比是,根据各卖区的销售信息,请你为商场的家电部提一条合理化建议.25.(10分)请根据学习函数的经验,对函数y=|x|+1的图象与性质进行探究.(1)在函数y=|x|+1中,自变量x的取值范围是.(2)下表是x与y的对应值:X…﹣3﹣2﹣10123……432123m…Y=|x|=1①m=;②若A(n,10),B(9,10)为该函数图象上不同的两点,则n=;(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为;③结合函数图象,写出该函数除②外的一条性质;(4)如图,若直线l:y1=2x﹣1与函数y=|x|+1的图象有交点,请求出交点坐标,并直接写出当y1≥y时x的取值范围.26.(11分)如图1,在平面直角坐标系中,分别以△OAB的边OB,AB为边向外作正方形ABCD和正方形OBEF,作BB1⊥x轴于点B1,作FF1垂直于x轴于点F1,(1)若A(4,0)B(1,4),则①由△≌△,得点F的坐标为;②求D点的坐标.(2)如图2,两正方形的中心分别是O1,O2,连接O1O2及FD,若A(4,0),B (m,n),且m>0,n>0(B点不在FD上),猜想O1O2与FD的关系,并给于证明;(3)如图3,取线段FD的中点M,若B(1,4),A(a,0),且满足2≤a≤8时,点M所经过的路径的长为.2017-2018学年河北省石家庄市长安区八年级下学期期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,每小题2分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【考点】V1:调查收集数据的过程与方法.【解答】解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.故选:D.【点评】此题主要考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.2.【考点】D1:点的坐标.【解答】解:∵点P(m,m+3)在第二象限,可得:,解得:﹣3<m<0,所以m的值可能是﹣1.5,故选:C.【点评】此题考查点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.【考点】E2:函数的概念.【解答】解:A、B、C当x取值时,y有唯一的值对应,故选:D.【点评】此题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.【考点】K4:三角形的稳定性;L1:多边形;L6:平行四边形的判定;R2:旋转的性质.【解答】解:∵将CD在BC上方绕点C顺时针旋转,∴BD的长度增大,CD的长度不变,∵四边形ABCD的周长=2(BC+CD),且BC,CD的长度不变∴四边形ABCD的周长不变∵四边形ABCD的面积=×BC×(点D到BC的距离),且BC不变,点D到BC的距离在旋转的过程中随点D的位置的变化而变化,∴四边形ABCD的面积是变化的∵旋转中,AB=CD,AD=BC∴四边形ABCD是平行四边形故选:C.【点评】本题考查了旋转的性质,平行四边形的判定等知识,熟练运用旋转的性质是本题的关键.5.【考点】F3:一次函数的图象.【解答】解:一次函数y=﹣x+1,其中k=﹣1,b=1,其图象为:,故选:A.【点评】此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.6.【考点】L5:平行四边形的性质.【解答】解:∵BE平分∠ABC,∴∠ABC=2∠EBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠CBE=∠AEB=25°,∠ABC+∠C=180°,∴∠ABC=2∠CBE=50°,∴∠C=180°﹣50°=130°;故选:D.【点评】此题考查了平行四边形的性质、平行线的性质、角平分线的定义的运用,熟练掌握平行四边形的性质是关键.7.【考点】Q3:坐标与图形变化﹣平移.【解答】解:由题意:,解得,故选:B.【点评】本题考查坐标与图形变化﹣平移,解题的关键是熟练掌握平移的坐标变化的规律,属于中考常考题型.8.【考点】VB:扇形统计图;W5:众数.【解答】解:由图知4吨和6吨对应的圆心角度数为90°,7吨对应的圆心角度数为60°,则5吨对应的圆心角度数为360°﹣(90°+90°+60°)=120°,故选:B.【点评】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.9.【考点】F5:一次函数的性质.【解答】解:∵当x的值减小1,y的值就减小2,∴y﹣2=k(x﹣1)+b=kx﹣k+b,即y=kx﹣k+b+2.又∵y=kx+b,∴﹣k+b+2=b,即﹣k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,∴当x的值增加2时,y的值增加4.故选:D.【点评】本题考查的是一次函数的性质,先根据题意得出k的值是解答此题的关键.10.【考点】D5:坐标与图形性质.【解答】解:设过A、B的直线解析式为y=kx+b,∵点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),∴,解得:,∴直线AB为y=﹣x﹣2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知坐标轴位置,故将点A沿着x轴正方向平移4个单位,再沿y轴负方向平移2个单位,即可到达原点位置,则原点为点O1.故选:A.【点评】本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b决定了直线与y轴的交点位置.11.【考点】FH:一次函数的应用;K6:三角形三边关系;KI:等腰三角形的判定.【解答】解:∵三角形底边长为ycm,腰长为xcm,周长为48cm,∴2x+y=48 即y=48﹣2x由三角形三边关系可得:12<x<24故选:B.【点评】本题考察三角形三边的关系,为基础题型.12.【考点】D3:坐标确定位置.【解答】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.【点评】此题主要考查了方向角,关键是掌握方向角的描述方法.13.【考点】F6:正比例函数的性质;F8:一次函数图象上点的坐标特征.【解答】解:把点(2,﹣3)代入y=kx(k≠0)得:2k=﹣3,解得:k=﹣,函数的解析式为:y=﹣x,A.k=﹣<0,y随着x的增大而减小,即A项不正确,B.k=﹣,即B项正确,C.该函数是正比例函数,图象经过原点,即C项正确,D.函数图象过二、四象限,即D项正确,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正比例函数的性质,正确掌握代入法和正比例函数的性质是解题的关键.14.【考点】FH:一次函数的应用.【解答】解:由图象可得,该产品产量与销售量均呈直线上升的趋势,该产品库存积压越来越大,应该压缩生产或设法促销,故①错误,③正确,该产品已经出现供大于求的趋势价格将趋跌,故②正确,由图象不能得到销售价格,故不能判断是否亏损,故④错误,故选:B.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.【考点】L8:菱形的性质.【解答】解:甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.故选:A.【点评】本题考查菱形的性质,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【考点】D2:规律型:点的坐标.【解答】解:∵滚动第1次,落在x轴上的点C(3.0),即:C(1+2,0),滚动第2次,落在x轴上的点A(4.0),即:A(2+2,0),滚动第3次,落在x轴上的点B(5.0),即:B(3+2,0),滚动第4次,落在x轴上的点C(6.0),即:C(4+2,0),滚动第5次,落在x轴上的点A(7.0),即:A(5+2,0),∴滚动n次,落在x轴上的点,(n+2,0),∴(2018﹣2)÷3=672,∴经过(2018,0)的点是等边三角形ABC顶点中的C,故选:C.【点评】此题是等边三角形的性质,主要考查了从滚动中找出规律,根据规律确定坐标对应点是解本题的关键.二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.【考点】1G:有理数的混合运算;33:代数式求值.【解答】解:y=5.5时,x+5=5.5,解得x=0.5,﹣x+5=5.5,解得x=﹣0.5(舍去).故答案为:0.5.【点评】本题考查的是求函数值.当已知函数解析式时,求函数值就是求代数式的值.18.【考点】L3:多边形内角与外角.【解答】解:(2040°+180°﹣60°)=(n﹣2)×180°所以n=14,故答案为14.【点评】本题考查了多边形的内角和定理,关键是确定n边形的内角和.19.【考点】V A:统计表.【解答】解:∵b+c=1﹣30%=70%,∴被调查的总人数为(10+25)÷70%=50(人),则a=50×30%=15(人),故答案为:15.【点评】本题主要考查统计表,解题的关键是掌握各分组的百分比之和为1,并根据小组人数及其对应百分比求得总人数.20.【考点】1B:有理数的加减混合运算.【解答】解:∵0时至次日5时气温变化速度为=℃/h,∴0℃下降到﹣3℃所需时间为:(0﹣3)÷=h,∵次日5时至次日8时气温变化速度为=℃/h,∴气温又将由﹣3℃上升到0℃所需要的时间为:[0﹣(﹣3)]÷=∴0℃以下的气温条件将持续时间为:+=h>3.5,故需要对大棚蔬菜采取防冻措施.故答案为:,有.【点评】本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则以及根据题意列出算式,本题属于中等题题型三、解答题(本大题共6个小题,共56分.解答应写出相应的文字说明或解题步骤)21.【考点】D5:坐标与图形性质.【解答】解:(1)∵点A在第一象限的角平分线上,∴﹣a=2a+3,解得:a=﹣1,故答案为:﹣1;(2)∵点B到x轴的距离是到y轴的距离的2倍,∴a﹣2=2,解得:a=4,∴点B的坐标为(1,2),故答案为:(1,2);(3)∵线段AB∥x轴,∴2a+3=a﹣2,解得:a=﹣5,∴点A(5,﹣7),B(1,﹣7),则AC=5﹣1=4.【点评】本题主要考查坐标与图形的性质,重点在于理解点到坐标轴的距离与点坐标之间的关系,关系清晰,则本题很容易求解.22.【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【解答】(1)证明:∵四边形ABCD是平行四边形;∴AD=BC,AD∥BC,∴AF∥CE,∵BE=DF,∴AF=CE,∴四边形AECF是平行四边形;(2)解:由(1)知:四边形AFCE是平行四边形,可得AE∥CF,∵BE=DF,BE∥DF,∴四边形BEDF为平行四边形,∴BF∥DE,∴四边形EHFG为平行四边形.故答案为:四边形BEDF为平行四边形,BE∥DF.【点评】本题考查了平行四边形的判定与性质;熟记一组对边平行且相等的四边形是平行四边形是解题关键.23.【考点】FH:一次函数的应用.【解答】解:(1)由图可知,当x≤50时,每吨的价格为:200÷50=4元/吨,则2月份用水量为40吨,则该月应交水费:40×4=160(元),故答案为:160;(2)当x≥50时,设y与x的函数关系式y=kx+b,,得,即当x≥50时,y与x的函数关系式是y=6x﹣100;(3)将x=150代入y=6x﹣100,得y=6×150﹣100=800,答:每月用于水费的支出最多为800元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.【考点】VB:扇形统计图;VD:折线统计图.【解答】解:(1)5月份的销售额=600﹣180﹣90﹣115﹣95=120(万元),统计图如图所示:(2)5月份家电销售额120×30%=36(万元),四月份家电的销售额=95×32%=30.4(万元),家电部5月份的销售总额比4月份多了,不同意他的看法.故答案为36.(3)B卖区销售额最高,=8.4%.D卖区销售额最差,应该加强管理.故答案为:B,8.4%.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【考点】F5:一次函数的性质;FF:两条直线相交或平行问题.【解答】解:(1)全体实数;(2)4和﹣9;(3)①图象如右图所示.②1,③函数关于y轴对称;(4)由两函数解析式组成方程组得:,解得:,∴两个函数图象有公共交点,其交点坐标为(2,3),由函数图象可知:当y1≥y时x的取值范围是x≥2.【点评】本题考查了原函数图象和性质,又学习新函数的创新题,综合二元一次方程组求交点坐标和两函数值大小比较求自变量的范围,来研究两函数关系.26.【考点】LO:四边形综合题.【解答】解:(1)①如图1中,∵FF1⊥x轴,BB1⊥x轴,四边形EBOF是正方形,∴∠OFF1=∠OB1B=∠BOF=90°,∴∠FOF1+∠BOB1=90°,∠BOB1+∠OBB1=90°,∴∠FOF1=∠OBB1,∵OF=OB,∴△OFF1≌△BOB1(AAS),∴FF1=OB1=1,OF1=BB1=4,∴F(﹣4,1),故答案为OFF1,BOB1,(﹣4,1).②作DH⊥OA于H.∵A(4,0)B(1,4),∴OA=4,BB1=4,OB1=1,AB1=3,同法可证△ABB1≌△DAH(AAS),∴AH=BB1=4,DH=AB1=3,∴OH=8,∴D(8,3),故答案为(8,3).(2)结论:O1O2∥DF,O1O2=DF.理由:如图2中,连接BF,BD.∵O1,O2是两正方形的中心,∴点O1在线段BF上,点O2在线段BD上,∵BO1=O1F,BO2=O2D,∴O1O2∥DF,O1O2=DF.(3)如图3中,作DH⊥OA于H.同法可证:△ABB1≌△DAH,可得D(a+4,a﹣1),∵F(﹣4,1),FM=DM,∴M(,),∵点A的运动轨迹是线段,∴点M的运动轨迹也是线段,当a=2时,M(1,1),当a=8时,M(4,4),∴点M的运动路径的长==3.故答案为3.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会探究规律寻找点的运动轨迹,属于中考压轴题..答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上。
2016-2017学年河北省石家庄市新华区八年级(上)期末数学试卷一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣22.下列四个图案中,是轴对称图形的是()A.B. C.D.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=24.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等5.下列属于最简二次根式的是()A.B. C. D.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或178.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45° B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A 对称,则点C所对应的实数是()A.B.2﹣C.2﹣2 D.﹣112.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个 B.8个 C.10个D.12个二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是.14.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是命题.(填“真”或“假”)15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为km.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]=.17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E 在AC上,且AE=2,当EF+CF取最小值时,∠ECF=°.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.20.解方程:2﹣=.21.当x=时,求(﹣)÷的值.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB=°.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上2016-2017学年河北省石家庄市新华区八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣2【考点】算术平方根.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵22=4,∴4的算术平方根是2,故选(B)2.下列四个图案中,是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=2【考点】分式有意义的条件.【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.4.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形,根据全等图形的性质以及全等三角形的性质进行判断即可.【解答】解:A.形状相同的两个图形不一定是全等图形,是相似形,故A错误;B.根据全等图形的性质,可得全等图形的面积相等,故B正确;C.对应角相等且对应边相等的两个三角形全等,故C错误;D.两个边长相等的等边三角形全等,故D错误,故选:B.5.下列属于最简二次根式的是()A.B. C. D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:21.39亿精确到0.01亿位,即精确到百万位.故选D.7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选C.8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45° B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°【考点】反证法.【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.故选D.9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=【考点】二次根式的乘除法.【分析】根据=(a≥0,b>0),=|a|,=(a≥0,b ≥0),分别进行计算即可.【解答】解:A、2=,故原题计算错误;B、=2,故原题计算错误;C、(﹣)2=2,故原题计算错误;D、=,故原题计算正确;故选:D.10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A 对称,则点C所对应的实数是()A.B.2﹣C.2﹣2 D.﹣1【考点】实数与数轴.【分析】根据点A、B表示的数求出AB,再根据对称可得AC=AB,然后根据数轴上左边的数比右边的小列式计算即可得解.【解答】解:∵点A,B所对应的实数分别是1和,∴AB=﹣1,∵点B与点C关于点A对称,∴AC=AB,∴点C所对应的实数是1﹣(﹣1)=1﹣+1=2﹣.故选B.12.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个 B.8个 C.10个D.12个【考点】等腰三角形的判定.【分析】首先由勾股定理可求得AB的长,然后分别从BA=BC,AB=AC,CA=CB 去分析求解即可求得答案.【解答】解:∵AB==2,如图所示:∴①若BA=BC,则符合要求的有:C1,C2共2个点;②若AB=AC,则符合要求的有:C3,C4共2个点;③若CA=CB,则符合要求的有:C5,C6,C7,C8,C9,C10共6个点.∴这样的C点有10个.故选:C.二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是0.2.【考点】立方根.【分析】根据立方根的概念即可求出答案【解答】解:0.23=0.008∴0.008的立方根是0.2故答案为:0.214.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.(填“真”或“假”)【考点】命题与定理.【分析】根据直角三角形全等的判定方法判断即可.【解答】解:一条边和一个锐角分别相等的两个直角三角形,边与角不一定是对应边和对应角,例如:两个直角三角形中相等的∠α的邻边与对边相等,两个三角形不全等,所以,这两个直角三角形不一定全等,所以,“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.故答案为:假.15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为 1.6km.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AB=1.6km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=1.6km.故答案为:1.6.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]=2.【考点】估算无理数的大小.【分析】直接利用的取值范围得出2<﹣1<3,进而得出答案.【解答】解:∵3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案为:2.17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为5.【考点】翻折变换(折叠问题).【分析】如图,求出AC的长度;证明EF=EB(设为λ),得到CE=8﹣λ;列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,∵四边形ABCD为矩形,∴∠D=90°,DC=AB=6;由勾股定理得:AC2=AD2+DC2,而AD=8,∴AC=10;由题意得:∠AFE=∠B=90°,AF=AB=6;EF=EB(设为λ),∴CF=10﹣6=4,CE=8﹣λ;由勾股定理得:(8﹣λ)2=λ2+42,解得:λ=3,∴CE=5,故答案为5.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF=30°.【考点】轴对称-最短路线问题;等边三角形的性质.【分析】如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.由EF+FC=FE′+FC,所以当C、E′、F共线时,EF+CF最小,由△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,推出AE′=E′B,∠ACB=60°,推出∠ACE′=∠BCE′=30°,即可解决问题.【解答】解:如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.∵EF+FC=FE′+FC,∴当C、E′、F共线时,EF+CF最小,∵△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,∴AE′=E′B,∠ACB=60°∴∠ACE′=∠BCE′=30°,∴此时∠ECF=30°,故答案为30.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.【考点】二次根式的加减法;分式的乘除法.【分析】根据二次根式的性质以及分式运算的性质即可求出答案.【解答】解:(1)原式=4+6﹣4=6,(2)原式=b(b﹣a)•=﹣ab2,20.解方程:2﹣=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣x=﹣3,解得:x=3,经检验x=3是增根,分式方程无解.21.当x=时,求(﹣)÷的值.【考点】分式的化简求值.【分析】先将(﹣)÷进行化简,然后将x=代入求解即可.【解答】解:(﹣)÷=×=﹣×=﹣.当x=时,原式=﹣=﹣6.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.【考点】线段垂直平分线的性质.【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,求出∠DCB=30°,根据直角三角形的性质求出BC的长,得到答案.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∴∠DCB=30°,∴BC=BD=2,∴AC=2BC=4.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB=65°.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE..【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)观察图形,结合已知条件,可知全等三角形为:△ACD与△CBE.根据AAS即可证明;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=90°﹣∠ECB=∠CBE.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.故答案为:AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.【考点】分式方程的应用.【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x 天,根据“甲先做15天的工作量+甲、乙合作30天的工作量=1”列分式方程求解可得;(2)把这项工程的总工作量设为1,先求出甲、乙两队合作一天的工作量,再求得甲、乙两队合作完成这项工程需要的时间,根据“合作每天的费用×合作时间”可得所需总费用,从而得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x天,根据题意,得: +30×(+)=1,解得:x=60,经检验x=60是原分式方程的解,当x=60时,x=90,答:甲队单独完成这项工程需90天,乙队单独完成这项工程需60天;(2)把这项工程的总工作量设为1,则甲、乙两队合作一天的工作量为(+)=,甲、乙两队合作完成这项工程需要的时间为1÷=36天,∴合作需要的施工费用为36×(6.5+8.5)=540(万元),∵540>500,540﹣500=40(万元),∴预算的施工费用不够用,需要追加40万元.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=60°,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【考点】三角形综合题.【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得出结论.【解答】解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.2017年2月21日。
2015-2016学年河北省石家庄市赵县八年级(上)期末数学试卷 一、选择题(每小题3分,共30分)1.下列分式中,最简分式有( )A.2个B.3个C.4个D.5个2.在下列各项中,可以用平方差公式计算的是( )A.(2a+3b)(3a﹣2b)B.(a+b)(﹣a﹣b)C.(﹣m+n)(m﹣n)D.(a+b)(b﹣a)3.1.252012×()2014的值是( )A.B.C.1 D.﹣14.已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=( ),n=( )A.﹣4,3 B.﹣2,﹣1 C.4,﹣3 D.2,15.若分式的值为0,则x的值为( )A.2或﹣1 B.0 C.2 D.﹣16.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于( )A.2cm2 B.1cm2 C.cm2D.cm27.已知a,b,c是△ABC的三条边,则代数式(a﹣c)2﹣b2的值是( )A.正数 B.0 C.负数 D.无法确定8.已知4y2+my+9是完全平方式,则m为( )A.6 B.±6 C.±12 D.129.在△ABC中,AD、CE分别是△ABC的高,且AD=2,CE=4,则AB:BC=( )A.3:4 B.4:3 C.1:2 D.2:110.关于x的方程=2+无解,则k的值为( )A.±3 B.3 C.﹣3 D.无法确定二、填空题(每小题3分,共30分)11.在△ABC中,∠B=58°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .12.点P(﹣2,3)向右平移2个单位长度后到达P2,则点P2关于x轴的对称点的坐标为 .13.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB的中点E处,则△BEC的周长为 .14.等腰三角形的边长为5cm,另一边为6cm,则等腰三角形的周长为 .15.已知a+b=7,ab=4,则a2+b2= .16.已知:如图在△ABC中,AD是它的角平分线,AB:AC=5:3,则S△ABD:S△ACD= .17.一个正六边形和两个等边三角形的位置如图所示,∠3=70°,则∠1+∠2= .18.分解因式:x2+3x(x﹣3)﹣9= .19.已知(x2+mx+n)(x2﹣3x+2)的展开式不含x3和x2的项,那么m= ,n= .20.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为 cm.三、解答题(共6小题,满分60分)21.计算题:(1)(x﹣y+)(x+y﹣)(2)解方程:﹣1=(3)先化简再求值:(﹣)÷,其中x是不等式组的整数解.22.作图题(不写作法,保留作图痕迹):如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等.23.如图所示,已知∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,求证:M是BC的中点.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?25.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB 上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.26.在图1到图4中,已知△ABC的面积为m.(1)如图1,延长△ABC的边BC到点D使CD=BC,连接DA,若△ACD的面积为S1,则S1= .(用含m的式子表示)(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2= .(用含a的代数式表示)(3)如图3,在图2的基础上延长AB到点F,使BF=AB,连接FD于E,得到△DEF,若阴影部分的面积为S3,则S3= .(用含a的代数式表示)(4)可以发现将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF,如图3,此时,我们称△ABC向外扩展了一次.可以发现扩展一次后得到的△DEF的面积是原来△ABC面积的 倍.(5)应用上面的结论解答下面问题:去年在面积为15平方面的△ABC空地上栽种了各种花卉,今年准备扩大种植规模,把△ABC 内外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH,如图4,求这两次扩展的区域(即阴影部分)面积共为多少平方米?2015-2016学年河北省石家庄市赵县八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列分式中,最简分式有( )A.2个B.3个C.4个D.5个【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:,,,这四个是最简分式.而==.最简分式有4个,故选C.【点评】判断一个分式是最简分式,主要看分式的分子和分母是不是有公因式.2.在下列各项中,可以用平方差公式计算的是( )A.(2a+3b)(3a﹣2b)B.(a+b)(﹣a﹣b)C.(﹣m+n)(m﹣n)D.(a+b)(b﹣a)【考点】平方差公式.【分析】利用平方差公式的结构特征判断即可得到结果.【解答】解:A、(2a+3b)(3a﹣2b),不符合平方差公式的结构特征,故错误;B、(a+b)(﹣a﹣b),不符合平方差公式的结构特征,故错误;C、(﹣m+n)(m﹣n),不符合平方差公式的结构特征,故错误;D、,符合平方差公式的结构特征,故正确;故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.1.252012×()2014的值是( )A.B.C.1 D.﹣1【考点】幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【解答】解:原式=1.252012×()2012×()2=(1.25×)2012×()2=.故选:B.【点评】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.4.已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=( ),n=( )A.﹣4,3 B.﹣2,﹣1 C.4,﹣3 D.2,1【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:由点A(m+3,2)与点B(1,n﹣1)关于x轴对称,得m+3=1,n﹣1=﹣2,解得m=﹣2,n=﹣1,故选:B.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.若分式的值为0,则x的值为( )A.2或﹣1 B.0 C.2 D.﹣1【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x﹣2=0且x+1≠0,解得x=2.故选:C.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.6.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于( )A.2cm2 B.1cm2 C.cm2D.cm2【考点】三角形的面积.【分析】根据三角形的面积公式,知:等底等高的两个三角形的面积相等.【解答】解:S阴影=S△BCE=S△ABC=1cm2.故选:B.【点评】本题考查的是三角形的面积,充分运用三角形的面积公式以及三角形的中线的性质.7.已知a,b,c是△ABC的三条边,则代数式(a﹣c)2﹣b2的值是( )A.正数 B.0 C.负数 D.无法确定【考点】因式分解的应用;三角形三边关系.【分析】运用平方差公式因式分解把(a﹣c)2﹣b2转化为(a﹣c+b)(a﹣c﹣b),借助三角形的三边关系问题即可解决.【解答】解:(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b),∵△ABC的三条边分别是a、b、c,∴a+b﹣c>0,a﹣c﹣b<0,∴(a﹣c)2﹣b2的值的为负.故选:C.【点评】此题考查因式分解的实际运用,三角形的三边关系,掌握平方差公式是解决问题的关键.8.已知4y2+my+9是完全平方式,则m为( )A.6 B.±6 C.±12 D.12【考点】完全平方式.【专题】计算题;整式.【分析】原式利用完全平方公式的结构特征求出m的值即可.【解答】解:∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.在△ABC中,AD、CE分别是△ABC的高,且AD=2,CE=4,则AB:BC=( )A.3:4 B.4:3 C.1:2 D.2:1【考点】三角形的面积.【分析】利用△ABC的面积公式列出方程求解即可.【解答】解:∵AD、CE分别是△ABC的高,∴S△ABC=AB•CE=BC•AD,∵AD=2,CE=4,∴AB:BC=AD:CE=2:4=.故选C.【点评】本题考查了三角形的面积,利用同一个三角形的面积的两种表示列出方程是解题的关键.10.关于x的方程=2+无解,则k的值为( )A.±3 B.3 C.﹣3 D.无法确定【考点】分式方程的解.【专题】一次方程(组)及应用;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x﹣3=0,求出x的值代入整式方程求出k的值即可.【解答】解:去分母得:x=2(x﹣3)+k,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:k=3,故选B.【点评】此题考查了分式方程的解,分式方程无解即为最简公分母为0.二、填空题(每小题3分,共30分)11.在△ABC中,∠B=58°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= 61° .【考点】三角形内角和定理.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2)=119°;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2),∵∠B=58°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=119°∴∠AEC=180°﹣(∠DAC+∠ACF)=61°.故答案是:61°.【点评】本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.12.点P(﹣2,3)向右平移2个单位长度后到达P2,则点P2关于x轴的对称点的坐标为 (0,﹣3) .【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点P2(﹣2+2,3),再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:∵点P(﹣2,3)向右平移2个单位长度后到达P2,∴点P2(﹣2+2,3),即(0,3),∴点P2关于x轴的对称点的坐标为(0,﹣3),故答案为:(0,﹣3).【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.13.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB的中点E处,则△BEC的周长为 12 .【考点】轴对称的性质.【分析】由轴对称的性质可知:BC=CE=4,由点E是AB的中点可知BE==4,从而可求得答案.【解答】解:∵点B与点E关于DC对称,∴BC=CE=4.∵E是AB的中点,∴BE=AB=4.∴△BEC的周长12.故答案为:12.【点评】本题主要考查的是轴对称的性质,由轴对称图形的性质得到BC=CE=4是解题的关键.14.等腰三角形的边长为5cm,另一边为6cm,则等腰三角形的周长为 16cm或17cm .【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况:①当腰长为5cm,底边为6cm时,②当腰长6cm,底边为5cm时,求出即可.【解答】解:①当腰长为5cm,底边长为6cm时,三边长是5cm、5cm、6cm,此时符合三角形的三边关系定理,即等腰三角形的周长是5cm+5cm+6cm=16cm;②当腰长为6cm,底边长为5cm时,三边长是6cm、6cm、5cm,此时符合三角形的三边关系定理,即等腰三角形的周长是6cm+6cm+5cm=17cm;故答案为:16cm或17cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系定理的应用,注意此题要分为两种情况讨论.15.已知a+b=7,ab=4,则a2+b2= 41 .【考点】完全平方公式.【专题】计算题;整式.【分析】把a+b=7两边平方,利用完全平方公式化简,将ab的值代入计算即可求出所求式子的值.【解答】解:把a+b=7两边平方得:(a+b)2=a2+b2+2ab=49,将ab=4代入得:a2+b2=41,故答案为:41【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.16.已知:如图在△ABC中,AD是它的角平分线,AB:AC=5:3,则S△ABD:S△ACD= 5:3 .【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的边AC上的高相等,根据三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=5:3,故答案为:5:3.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.17.一个正六边形和两个等边三角形的位置如图所示,∠3=70°,则∠1+∠2= 50° .【考点】三角形内角和定理;等边三角形的性质;多边形内角与外角.【分析】先根据正六边形及正三角形的性质用∠1表示出∠BAC,用∠2表示出∠ACB,用∠3表示出∠ABC,再由三角形内角和定理即可得出结论.【解答】解:∵图中是一个正六边形和两个等边三角形,∴∠BAC=180°﹣∠1﹣120°=60°﹣∠1,∠ACB=180°﹣∠2﹣60°=120°﹣∠2,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∵∠3=70°,∴∠ABC=180°﹣60°﹣∠3=120°﹣70°=50°.∵∠BAC+∠ACB+∠ABC=180°,即60°﹣∠1+120°﹣∠2+50°=180°,∴∠1+∠2=50°.故答案为:50°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 18.分解因式:x2+3x(x﹣3)﹣9= (x﹣3)(4x+3) .【考点】因式分解-十字相乘法等.【专题】因式分解.【分析】首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.【解答】解:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.19.已知(x2+mx+n)(x2﹣3x+2)的展开式不含x3和x2的项,那么m= 3 ,n= 7 .【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为(x2+mx+n)(x2﹣3x+2)=x4﹣(3﹣m)x3+(2+n﹣3m)x2+(2m﹣3n)x+2n,再令x3和x2项系数为0,计算即可.【解答】解:(x2+mx+n)(x2﹣3x+2)=x4﹣(3﹣m)x3+(2+n﹣3m)x2+(2m﹣3n)x+2n,∵(x2+mx+n)(x2﹣3x+2)的展开式中不含x3和x2项,则有,解得.故答案为:3,7.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.20.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE 折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为 3 cm.【考点】翻折变换(折叠问题);轴对称的性质.【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=3cm.故答案为:3.【点评】折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.三、解答题(共6小题,满分60分)21.计算题:(1)(x﹣y+)(x+y﹣)(2)解方程:﹣1=(3)先化简再求值:(﹣)÷,其中x是不等式组的整数解.【考点】分式的化简求值;分式的混合运算;解分式方程;一元一次不等式组的整数解.【分析】(1)首先把括号内的分式进行通分相加,然后进行乘法计算即可;(2)首先去分母化成整式方程,然后解方程即可求解;(3)解不等式组求得x的值,然后把括号内的分式通分相加,把除法转化为乘法即可化简,然后代入数值计算即可.【解答】解:(1)原式=•=•=(x+y)(x﹣y)=x2﹣y2;(2)去分母,得x(x+2)﹣(x﹣1)(x+2)=3,即x2+2x﹣(x2+x﹣2)=3,整理得2x﹣x+2=3,移项、合并同类项,得:x=1;(3)不等式组,解①得x>﹣4,解②得x<﹣2.则不等式组的解集是﹣4<x<﹣2.则x=﹣3.原式=【】•=•=•=.当x=﹣3时,原式=.【点评】本题考查了分式的混合运算,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.22.作图题(不写作法,保留作图痕迹):如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】利用角平分线的作法以及线段垂直平分线的作法进而求出其交点即可.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题关键.23.如图所示,已知∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,求证:M是BC的中点.【考点】角平分线的性质.【专题】证明题.【分析】首先过M作MN⊥AD,再根据角平分线的性质可得MN=MC,MN=MB,进而得到MB=MC.【解答】解:过M作MN⊥AD,∵DM平分∠ADC,∴MN=MC,∵AM平分∠DAB,∴MN=MB,∴MB=MC,∴M是BC的中点.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【考点】分式方程的应用.【专题】应用题.【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×=180000(元).答:该工程的费用为180000元.【点评】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.25.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB 上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.【解答】解:(1)猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为∠BAC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.(2)猜想:AB+AC=CD.证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD(SAS).∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B∴∠FED=2∠B,∠FED=∠B+∠EDB,∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.【点评】此题考查了全等三角形的判定与性质以及等腰三角形的判定定理.此题难度适中,解题的关键是注意数形结合思想的应用.26.在图1到图4中,已知△ABC的面积为m.(1)如图1,延长△ABC的边BC到点D使CD=BC,连接DA,若△ACD的面积为S1,则S1= m .(用含m的式子表示)(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2= 2m .(用含a的代数式表示)(3)如图3,在图2的基础上延长AB到点F,使BF=AB,连接FD于E,得到△DEF,若阴影部分的面积为S3,则S3= 6m .(用含a的代数式表示)(4)可以发现将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF,如图3,此时,我们称△ABC向外扩展了一次.可以发现扩展一次后得到的△DEF的面积是原来△ABC面积的 7 倍.(5)应用上面的结论解答下面问题:去年在面积为15平方面的△ABC空地上栽种了各种花卉,今年准备扩大种植规模,把△ABC 内外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH,如图4,求这两次扩展的区域(即阴影部分)面积共为多少平方米?【考点】面积及等积变换.【分析】(1)利用三角形的面积公式,等底同高的三角形面积相等,本题得以解决.(2)利用三角形的面积公式,等底同高的三角形面积相等,本题得以解决.(3)利用三角形的面积公式,等底同高的三角形面积相等,本题得以解决.(4)利用三角形的面积公式,等底同高的三角形面积相等,本题得以解决.(5)根据第四问的经验,得出扩展一次面积变为原来的7倍,得出两次扩展面积,本题得以解决.【解答】解:(1)∵CD=BC,∴△ABC和△ACD的面积相等(等底同高),故得出结论S1=m.(2)连接AD,,∵AE=CA,∴△DEC的面积S2为△ACD的面积S1的2倍,故得出结论S2=2m.(3)结合(1)(2)得出阴影部分的面积为△DEC面积的3倍,故得出结论则S3=6m.(4)S△DEF=S阴影+S△ABC=S3+S△ABC=6m+m=7m=7S△ABC故得出结论扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.(5)根据(4)结论可得两次扩展的区域(即阴影部分)面积共为(7×7﹣1)×15=720(平方米),答:求这两次扩展的区域(即阴影部分)面积共为720平方米.【点评】本题考查了学生对面积公式的应用,同时考查到了学生的读题能力,利用类推的方法得出结论.解题的关键是找到扩展后的三角形的面积是原来的7倍.2016年3月7日第21页(共21页)。
河北省石家庄市长安区2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共16小题,共32.0分)1.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A. 选取一个班级的学生B. 选取50名男生C. 选取50名女生D. 在该校各年级中随机选取50名学生2.若点P(m,m+3)在第二象限,则m的值可能是()A. 1B. 0C.D.3.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.4.如图,小明为了体验四边形的不稳定性先用四根木条钉成一个矩形框架ABCD,又将一根橡皮筋拉直并连接在B,D两点之间,然后保持BC不动,将CD在BC上方绕点C顺时针旋转,观察所得四边形的变化,下列判断错误的()A. BD的长度增大B. 四边形ABCD的周长不变C. 四边形ABCD的面积不变D. 四边形ABCD由矩形变为平行四边形5.在平面直角坐标系中,一次函数y=1-x的图象是()A. B.C. D.6.如图,▱ABCD,BE平分∠ABC交AD于点E,∠AEB=25°,则∠C=()A. B. C. D.7.将点B(5,-1)向上平移3个单位长度得到点A(a+1,1-b),则()A. ,B. ,C. ,D. ,8.如图,是某班长绘制的5月份本班学生家庭用水量的统计图,由图可知该班学生家网5月份用水量所占比例最大的吨位是()A. 4吨B. 5吨C. 6吨D. 7吨9.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A. 减小2B. 增加2C. 减小4D. 增加410.如图,在平面直角坐标系中,直线m⊥n,若x轴∥m,y轴∥n,点A的标为(-4,2),点B的坐标为(2,-4),则坐标原点可能为()A.B.C.D.11.用一根长48cm的细铁丝围成一个等腰三角形,设三角形底边长为ycm,腰长为xcm,则y与x的函数关系式及x的取值范围是()A. B.C. D.12.如图,小明家相对于学校的位置下列描述最准确的是()A. 距离学校1200米处B. 北偏东方向上的1200米处C. 南偏西方向上的1200米处D. 南偏西方向上的1200米处13.若函数y=kx(k≠0)的图象过(2,-3),则关于此函数的叙述不正确的是()A. y随x的增大而增大B.C. 函数图象经过原点D. 函数图象过二、四象限14.某公司生产一种品牌的产品,近年的产销情况如图所示,直线l1和l2分别表示产量与年份、销量与年份的函数关系,则下列说法:①该产品产量与销售量均呈直线上升的趋势,应该按原计划继续生产;②该产品已经出现供大于求的趋势价格将趋跌;③该产品库存积压越来越大,应该压缩生产或设法促销;④该产品近年的产量一直大于销量,因此一直处于亏损状态.其中错误的是()A. B. C. D.15.数学课上探究“菱形的两条对角线互相垂直”时,甲乙两同学分别给出各自的证明:已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD则关于两人的证明过程,说法正确的是()A. 甲、乙两人都对B. 甲对,乙不对C. 乙对,甲不对D. 甲、乙两人都不对16.如图,等边△ABC中,A(1,0)B(2,0).将△ABC在x轴上按顺时针方向无滑动滚,翻滚1次后,C点落在点(3,0),则滚2018次后,△ABC的顶点中与点(2018,0)距离最近的是()A. 点AB. 点BC. 点CD. 不能确定二、填空题(本大题共4小题,共12.0分)17.根据如图的程序计算,当输出的结果y=5.5时,则输入x=______.18.如图,将一个n边形纸板,过相邻的两个顶点剪掉一个三角形,余下部分的角度和为:∠A1+∠A2+∠A3+…+∠A n-1+∠A n=2040°,若∠P=60°,则n的值为______.19.学习委员调查本班学生一周内课外阅读情况,按照课外阅读时间进行统计结果如下则表中的值是.20.一种大棚蔬菜处在0℃以下的气温条件下超过3.5小时,就会遭受冻害某日气象台发布了如下的降温预报:今日0时至次日5时气温将由3℃下降到-3℃;从次日5时至次日8时,气温又将由-3℃上升到5℃.若气温在上述两个时段内变化都是匀速的,那么0℃以下的气温条件将持续______时,你认为是否有必要对大棚蔬菜采取防冻措施?______(填“有”或“没有”)三、解答题(本大题共6小题,共56.0分)21.平面直角坐标系中,已知点A(-a,2a+3),B(1,a-2)(1)若点A在第一象限的角平分线上时,则a=______;(2)若点B到x轴的距离是到y轴的距离的2倍,则B点坐标为______;(3)若线段AB∥x轴,求点A,B的坐标及线段AB的长.22.如图1,在▱ABCD中,E,F分别为BC,AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)在(1)的基础上小明继续探究发现:如图2,连接BF,DE,分别交AE,CF于点G,H,得到的新四边形EHFG也是平行四边形.请补全小明的证明思路由(1)知:四边形AFCE是平行四边形,可得AE∥CF,要证明四边形EHFG为平行四边形,只要再证______由已知,BE=DF,又由______,所以四边形BEDF为平行四边形,进而可证得四边形EHFG为平行四边形.23.为节约用水,某市2017年对相关单位用水收费标准进行了调整,各单位每月应交的水费y(元)与当月用水量x(吨)之间关系如图所示.(1)若2月份用水量为40吨,则该月应交水费______元;(2)当x≥50时,求y与x的函数关系式;(3)政府为了节约用水,决定在2018年对每月用水量不超过150吨的单位给予一定的资金奖励,如果某单位要想获得奖励金,那么每月用于水费的支出最多为多少元?24.某商场今年前五个月销售总额共计600万元,如图1柱状图为该商场今年前五个月的月销售总额统计图(统计信息不全),折线图2表示该商场家电部各月销售额占商场当月销售额的百分比情况统计图.(1)请根据以上信息,将图1补充完整;(2)家电部5月份的销售额是______万元,小亮同学观察折线图后认为,家电部5月份的销售总额比4月份减少了,你同意他的看法吗?请说明理由;(3)在该商场家电部下设A,B,C,D,E五个卖区,如图3饼状图示在5月份,家电部各卖区销售额占5月份家电部销售额的百分比情况统计图,则______卖区销售额最高,该卖区占5月份商场销售总额的百分比是______,根据各卖区的销售信息,请你为商场的家电部提一条合理化建议.25.请根据学习函数的经验,对函数y=|x|+1的图象与性质进行探究.(1)在函数y=|x|+1中,自变量x的取值范围是______.(2)下表是x与y的对应值:①;②若A(n,10),B(9,10)为该函数图象上不同的两点,则n=______;(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为______;③结合函数图象,写出该函数除②外的一条性质;(4)如图,若直线l:y1=2x-1与函数y=|x|+1的图象有交点,请求出交点坐标,并直接写出当y1≥y时x的取值范围.26.如图1,在平面直角坐标系中,分别以△OAB的边OB,AB为边向外作正方形ABCD和正方形OBEF,作BB1⊥x轴于点B1,作FF1垂直于x轴于点F1,(1)若A(4,0)B(1,4),则①由△______≌△______,得点F的坐标为______;②求D点的坐标.(2)如图2,两正方形的中心分别是O1,O2,连接O1O2及FD,若A(4,0),B (m,n),且m>0,n>0(B点不在FD上),猜想O1O2与FD的关系,并给于证明;(3)如图3,取线段FD的中点M,若B(1,4),A(a,0),且满足2≤a≤8时,点M所经过的路径的长为______.答案和解析1.【答案】D【解析】解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.故选:D.根据调查数据要具有随机性,进而得出符合题意的答案.此题主要考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.2.【答案】C【解析】解:∵点P(m,m+3)在第二象限,可得:,解得:-3<m<0,所以m的值可能是-1.5,故选:C.点在第二象限的条件是:横坐标是负数,纵坐标是正数.此题考查点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.【答案】D【解析】解:A、B、C当x取值时,y有唯一的值对应,故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.此题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.【答案】C【解析】解:∵将CD在BC上方绕点C顺时针旋转,∴BD的长度增大,CD的长度不变,∵四边形ABCD的周长=2(BC+CD),且BC,CD的长度不变∴四边形ABCD的周长不变∵四边形ABCD的面积=×BC×(点D到BC的距离),且BC不变,点D到BC 的距离在旋转的过程中随点D的位置的变化而变化,∴四边形ABCD的面积是变化的∵旋转中,AB=CD,AD=BC∴四边形ABCD是平行四边形故选:C.由旋转的性质和平行四边形的性质可求解.本题考查了旋转的性质,平行四边形的判定等知识,熟练运用旋转的性质是本题的关键.5.【答案】A【解析】解:一次函数y=-x+1,其中k=-1,b=1,其图象为:,故选:A.观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.6.【答案】D【解析】解:∵BE平分∠ABC,∴∠ABC=2∠EBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠CBE=∠AEB=25°,∠ABC+∠C=180°,∴∠ABC=2∠CBE=50°,∴∠C=180°-50°=130°;故选:D.先根据角平分线的定义得到,∠ABC=2∠EBC,再根据平行四边形的性质得出AD∥BC,AB∥CD,即可得出∠CBE=∠AEB=25°,∠ABC+∠C=180°,得出∠ABC=2∠CBE=50°,即可得出∠C的度数.此题考查了平行四边形的性质、平行线的性质、角平分线的定义的运用,熟练掌握平行四边形的性质是关键.7.【答案】B【解析】解:由题意:,解得,故选:B.根据左减右加,上加下减的规律解决问题即可.本题考查坐标与图形变化-平移,解题的关键是熟练掌握平移的坐标变化的规律,属于中考常考题型.8.【答案】B【解析】解:由图知4吨和6吨对应的圆心角度数为90°,7吨对应的圆心角度数为60°,则5吨对应的圆心角度数为360°-(90°+90°+60°)=120°,故选:B.根据四个部分对应的圆心角度数和为360°求出5吨所对应的圆心角度数,从而得出答案.本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.9.【答案】D【解析】解:∵当x的值减小1,y的值就减小2,∴y-2=k(x-1)+b=kx-k+b,即y=kx-k+b+2.又∵y=kx+b,∴-k+b+2=b,即-k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,∴当x的值增加2时,y的值增加4.故选:D.先根据题意列出关于k的方程,求出k的值即可得出结论.本题考查的是一次函数的性质,先根据题意得出k的值是解答此题的关键.10.【答案】A【解析】解:设过A、B的直线解析式为y=kx+b,∵点A的坐标为(-4,2),点B的坐标为(2,-4),∴,解得:,∴直线AB为y=-x-2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知坐标轴位置,故将点A沿着x轴正方向平移4个单位,再沿y轴负方向平移2个单位,即可到达原点位置,则原点为点O1.故选:A.先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b决定了直线与y轴的交点位置.11.【答案】B【解析】解:∵三角形底边长为ycm,腰长为xcm,周长为48cm,∴2x+y=48 即y=48-2x由三角形三边关系可得:12<x<24故选:B.由三角形周长及三角形三边关系可求得.本题考察三角形三边的关系,为基础题型.12.【答案】C【解析】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.此题主要考查了方向角,关键是掌握方向角的描述方法.13.【答案】A【解析】解:把点(2,-3)代入y=kx(k≠0)得:2k=-3,解得:k=-,函数的解析式为:y=-x,A.k=-<0,y随着x的增大而减小,即A项不正确,B.k=-,即B项正确,C.该函数是正比例函数,图象经过原点,即C项正确,D.函数图象过二、四象限,即D项正确,故选:A.把点(2,-3)代入y=kx(k≠0)得到关于k的一元一次方程,解之,即可得到该函数的解析式,根据正比例函数的性质,依次分析各个选项,即可得到答案.本题考查了一次函数图象上点的坐标特征,正比例函数的性质,正确掌握代入法和正比例函数的性质是解题的关键.14.【答案】B【解析】解:由图象可得,该产品产量与销售量均呈直线上升的趋势,该产品库存积压越来越大,应该压缩生产或设法促销,故错误,正确,该产品已经出现供大于求的趋势价格将趋跌,故正确,由图象不能得到销售价格,故不能判断是否亏损,故错误,故选:B.根据函数图象和一次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】A【解析】解:甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.故选:A.甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.本题考查菱形的性质,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】C【解析】解:∵滚动第1次,落在x轴上的点C(3.0),即:C(1+2,0),滚动第2次,落在x轴上的点A(4.0),即:A(2+2,0),滚动第3次,落在x轴上的点B(5.0),即:B(3+2,0),滚动第4次,落在x轴上的点C(6.0),即:C(4+2,0),滚动第5次,落在x轴上的点A(7.0),即:A(5+2,0),∴滚动n次,落在x轴上的点,(n+2,0),∴(2018-2)÷3=672,∴经过(2018,0)的点是等边三角形ABC顶点中的C,故选:C.先找出点A,B,C落在x轴上横坐标的特点,找出规律,再确定出滚动次数进行计算.此题是等边三角形的性质,主要考查了从滚动中找出规律,根据规律确定坐标对应点是解本题的关键.17.【答案】0.5【解析】解:y=5.5时,x+5=5.5,解得x=0.5,-x+5=5.5,解得x=-0.5(舍去).故答案为:0.5.分别把y=5.5代入代数式,计算即可.本题考查的是求函数值.当已知函数解析式时,求函数值就是求代数式的值.18.【答案】14【解析】解:(2040°+180°-60°)=(n-2)×180°所以n=14,故答案为14.减去一个三角形,去掉180°,∠P=60°,所以原多边形内角和是2040°+120°=2160°,再根据内角和求解.本题考查了多边形的内角和定理,关键是确定n边形的内角和.19.【答案】15【解析】解:∵b+c=1-30%=70%,∴被调查的总人数为(10+25)÷70%=50(人),则a=50×30%=15(人),故答案为:15.先根据百分比之和为1求得b+c的值,再用第1、2组的人数和除以其所占百分比求得总人数,最后用总人数乘以第3组的百分比可得答案.本题主要考查统计表,解题的关键是掌握各分组的百分比之和为1,并根据小组人数及其对应百分比求得总人数.20.【答案】有【解析】解:∵0时至次日5时气温变化速度为=℃/h,∴0℃下降到-3℃所需时间为:(0-3)÷=h,∵次日5时至次日8时气温变化速度为=℃/h,∴气温又将由-3℃上升到0℃所需要的时间为:[0-(-3)]÷=∴0℃以下的气温条件将持续时间为:+=h>3.5,故需要对大棚蔬菜采取防冻措施.故答案为:,有.根据题意列算式即可求出答案.本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则以及根据题意列出算式,本题属于中等题题型21.【答案】-1 (1,2)【解析】解:(1)∵点A在第一象限的角平分线上,∴-a=2a+3,解得:a=-1,故答案为:-1;(2)∵点B到x轴的距离是到y轴的距离的2倍,∴a-2=2,解得:a=4,∴点B的坐标为(1,2),故答案为:(1,2);(3)∵线段AB∥x轴,∴2a+3=a-2,解得:a=-5,∴点A(5,-7),B(1,-7),则AC=5-1=4.(1)根据第一象限的角平分线上点的横纵坐标相等得出关于a的方程,解之可得;(2)根据点B到x轴的距离是到y轴的距离的2倍得出关于a的方程,解之可得;(3)由AB∥x轴知纵坐标相等求出a的值,从而得出a的值,再得出点A,B的坐标,从而求得AB的长度.本题主要考查坐标与图形的性质,重点在于理解点到坐标轴的距离与点坐标之间的关系,关系清晰,则本题很容易求解.22.【答案】四边形BEDF为平行四边形BE∥DF【解析】(1)证明:∵四边形ABCD是平行四边形;∴AD=BC,AD∥BC,∴AF∥CE,∵BE=DF,∴AF=CE,∴四边形AECF是平行四边形;(2)解:由(1)知:四边形AFCE是平行四边形,可得AE∥CF,∵BE=DF,BE∥DF,∴四边形BEDF为平行四边形,∴BF∥DE,∴四边形EHFG为平行四边形.故答案为:四边形BEDF为平行四边形,BE∥DF.(1)由平行四边形的性质得出AD=BC,AD∥BC,AF∥CE,求出AF=CE,即可得出结论;(2)由(1)知:四边形AFCE是平行四边形,可得AE∥CF,再证出四边形BEDF 为平行四边形,得出BF∥DE,即可得出结论.本题考查了平行四边形的判定与性质;熟记一组对边平行且相等的四边形是平行四边形是解题关键.23.【答案】160【解析】解:(1)由图可知,当x≤50时,每吨的价格为:200÷50=4元/吨,则2月份用水量为40吨,则该月应交水费:40×4=160(元),故答案为:160;(2)当x≥50时,设y与x的函数关系式y=kx+b,,得,即当x≥50时,y与x的函数关系式是y=6x-100;(3)将x=150代入y=6x-100,得y=6×150-100=800,答:每月用于水费的支出最多为800元.(1)根据函数图象中的数据可以求得x≤50时,每吨水的价格,从而可以求得2月份用水量为40吨应交的水费;(2)根据函数图象中的数据可以求得当x≥50时,y与x的函数关系式;(3)根据题意和(2)中的函数解析式可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】36 B8.4%【解析】解:(1)5月份的销售额=600-180-90-115-95=120(万元),统计图如图所示:(2)5月份家电销售额120×30%=36(万元),四月份家电的销售额=95×32%=30.4(万元),家电部5月份的销售总额比4月份多了,不同意他的看法.故答案为36.(3)B卖区销售额最高,=8.4%.D卖区销售额最差,应该加强管理.故答案为:B,8.4%.(1)根据总体等于个体之和即可解决问题.(2)分别求出4月份,5月份的家电销售额,即可判断.(3)利用扇形图3,即可判断.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【答案】全体实数 4 -9 1【解析】解:(1)全体实数;(2)4和-9;(3)图象如右图所示.1,函数关于y轴对称;(4)由两函数解析式组成方程组得:,解得:,∴两个函数图象有公共交点,其交点坐标为(2,3),由函数图象可知:当y1≥y时x的取值范围是x≥2.由图象和表格可知函数y=|x|+1的图象关于y轴对称,拐点坐标为(0,),本题考查了原函数图象和性质,又学习新函数的创新题,综合二元一次方程组求交点坐标和两函数值大小比较求自变量的范围,来研究两函数关系.26.【答案】OFF1BOB1(-4,1)3【解析】解:(1)如图1中,∵FF1⊥x轴,BB1⊥x轴,四边形EBOF是正方形,∴∠OFF1=∠OB1B=∠BOF=90°,∴∠FOF1+∠BOB1=90°,∠BOB1+∠OBB1=90°,∴∠FOF1=∠OBB1,∵OF=OB,∴△OFF1≌△BOB1(AAS),∴FF1=OB1=1,OF1=BB1=4,∴F(-4,1),故答案为OFF1,BOB1,(-4,1).作DH⊥OA于H.∵A(4,0)B(1,4),∴OA=4,BB1=4,OB1=1,AB1=3,同法可证△ABB1≌△DAH(AAS),∴AH=BB1=4,DH=AB1=3,∴OH=8,∴D(8,3),故答案为(8,3).(2)结论:O1O2∥DF,O1O2=DF.理由:如图2中,连接BF,BD.∵O1,O2是两正方形的中心,∴点O1在线段BF上,点O2在线段BD上,∵BO1=O1F,BO2=O2D,∴O1O2∥DF,O1O2=DF.(3)如图3中,作DH⊥OA于H.同法可证:△ABB1≌△DAH,可得D(a+4,a-1),∵F(-4,1),FM=DM,∴M(,),∵点A的运动轨迹是线段,∴点M的运动轨迹也是线段,当a=2时,M(1,1),当a=8时,M(4,4),∴点M的运动路径的长==3.故答案为3.(1)证明△OFF1≌△BOB1(AAS)即可解决问题.作DH⊥OA于H.理由全等三角形的性质解决问题即可.(2)结论:O1O2∥DF,O1O2=DF.如图2中,连接BF,BD.利用三角形的中位线定理解决问题即可.(3)如图3中,作DH⊥OA于H.利用a表示点M的坐标,判断出点M的运动轨迹是线段,求出线段的端点坐标即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会探究规律寻找点的运动轨迹,属于中考压轴题.。
2016-2017学年河北省石家庄市赵县八年级(下)期末数学试卷 一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)下列二次根式中,是最简二次根式的为( ) A. B. C. D.
2.(3分)若代数式有意义,则x的取值范围是( ) A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠2 3.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( ) A.3、4、5 B.6、8、10 C.、2、 D.5、12、13 4.(3分)直角三角形三边的长分别为3、4、x,则x可能取的值为( ) A.5 B. C.5或 D.不能确定 5.(3分)如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为( )
A.1.5 B.2 C.2.5 D.3 6.(3分)如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是( )
A.4 B.6 C.8 D.10 7.(3分)一次函数y=kx﹣1(常数k<0)的图象一定不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(3分)如图,以两条直线l1,l2的交点坐标为解的方程组是( ) A. B. C. D. 9.(3分)某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h随水流出的时间t变化的图象大致是( )
A. B. C. D. 10.(3分)直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为( )
A.x>1 B.x<1 C.x>﹣2 D.x<﹣2 11.(3分)如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是 ( ) A.a2+b2=(a+b)(a﹣b) B.a2﹣b2=(a+b)(a﹣b) C.(a+b)2=a2+2ab+b2 D.(a﹣b)2=a2﹣2ab+b2 12.(3分)如图,已知E,F,G,H分别为正方形ABCD各边上的动点,且始终保持AE=BF=CG=DH,点M,N,P,Q分别是EH、EF、FG、HG的中点.当AE从小于BE的变化过程中,若正方形ABCD的周长始终保持不变,则四边形MNPQ的面积变化情况是( )
A.一直增大 B.一直减小 C.先增大后减小 D.先减小后增大 二、填空题(本大题共8小题,每小题3分,共24分) 13.(3分)直线y=3x﹣1向右平移2个单位得到的直线的解析式为 . 14.(3分)下列二次根式,不能与合并的是 (填写序号即可). ①; ②; ③; ④; ⑤. 15.(3分)如图,一次函数y=(m﹣5)x+6﹣2m的图象与x轴,y轴相交于A,B两点,则m的取值范围 .
16.(3分)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为 cm. 17.(3分)最简二次根式与是同类二次根式,则b= . 18.(3分)若+(y+2)2=0,则(x+y)2014等于 . 19.(3分)8个数的平均数是12,4个数的平均数为18,则这12个数的平均数为 . 20.(3分)如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长 .
三、解答题(本大题共60分) 21.(8分)(1)÷﹣×+
(2)(4+﹣9)÷. 22.(8分)如图,在平行四边形ABCD中,AC是它的一条对角线,BE⊥AC于点E,DF⊥AC于点F,求证:四边形BEDF是平行四边形.
23.(10分)如图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时) (1)车速的众数是多少? (2)计算这些车辆的平均数度; (3)车速的中位数是多少? 24.(10分)点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S. (1)用含x的式子表示S,写出x的取值范围; (2)当点P的横坐标为5时,△OPA的面积为多少? (3)当S=12时,求点P的坐标; (4)△OPA的面积能大于24吗?为什么? 25.(12分)已知某市2016年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示. (1)当x≥50时,求y关于x的函数关系式; (2)若某企业2016年10月份的水费为620元,求该企业2016年10月份的用水量; (3)为鼓励企业节约用水,该市自2016年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2016年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2017年3月份的水费和污水处理费共600元,求这个企业该月的用水量.
26.(12分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向点C运动,P、Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s) (1)直接写出:QD= ,PC= ;(用含t的式子表示) (2)当t为何值时,四边形PQDC为平行四边形? (3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ是等腰三角形? 2016-2017学年河北省石家庄市赵县八年级(下)期末数
学试卷 参考答案与试题解析
一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)下列二次根式中,是最简二次根式的为( ) A. B. C. D.
【解答】解:是最简二次根式,故选项A正确, ,故选项B错误, ,故选项C错误,
,故选项D错误, 故选:A.
2.(3分)若代数式有意义,则x的取值范围是( ) A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠2 【解答】解:由分式及二次根式有意义的条件可得:x﹣1≥0,x﹣2≠0, 解得:x≥1,x≠2, 故选:D.
3.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( ) A.3、4、5 B.6、8、10 C.、2、 D.5、12、13 【解答】解:A、32+42=52,故是直角三角形,故A选项不符合题意; B、62+82=102,故是直角三角形,故B选项不符合题意; C、()2+22≠()2,故不是直角三角形,故C选项符合题意; D、52+122=132,故是直角三角形,故D选项不符合题意. 故选:C.
4.(3分)直角三角形三边的长分别为3、4、x,则x可能取的值为( ) A.5 B. C.5或 D.不能确定 【解答】解:当x为斜边时,x==5;
当4为斜边时,x==. ∴x的值为5或; 故选:C.
5.(3分)如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为( )
A.1.5 B.2 C.2.5 D.3 【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE, ∴∠B=∠ACD=∠ADE=90°, ∵AB=BC=CD=DE=1, ∴由勾股定理得:AC==;
AD==; AE==2. 故选:B.
6.(3分)如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是( )
A.4 B.6 C.8 D.10 【解答】解:根据勾股定理可得a2+b2=17, 四个直角三角形的面积是:ab×4=17﹣5=12, 即:ab=6. 故选:B.
7.(3分)一次函数y=kx﹣1(常数k<0)的图象一定不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【解答】解:∵一次函数y=kx﹣1(常数k<0),b=﹣1<0, ∴一次函数y=kx﹣1(常数k<0)的图象一定经过第二、三,四象限,不经过第﹣象限. 故选:A.
8.(3分)如图,以两条直线l1,l2的交点坐标为解的方程组是( )
A. B. C. D. 【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1; 直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1; 因此以两条直线l1,l2的交点坐标为解的方程组是:. 故选:C.
9.(3分)某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h随水流出的时间t变化的图象大致是( ) A. B. C. D. 【解答】解:啤酒瓶内水面高度h随水流出的时间t变化的规律是先慢后快的两段,因为是匀速,所以表现在图象上为直线. 故选:A.
10.(3分)直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为( )
A.x>1 B.x<1 C.x>﹣2 D.x<﹣2 【解答】解:由图可得:l1与直线l2在同一平面直角坐标系中的交点是(1,﹣2),且x<1时,直线l1的图象在直线l2的图象下方,故不等式k1x+b<k2x+c的解集为:x<1. 故选:B.
11.(3分)如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是( )
A.a2+b2=(a+b)(a﹣b) B.a2﹣b2=(a+b)(a﹣b)