解:(方法一)设方程x2+x+a=0的两个根分别为x1,x2,则由题意可知
= 1-4 > 0,
1 2 = < 0,
解得a<0,所以实数a的取值范围是(-∞,0).
(方法二)令f(x)=x2+x+a,依题意知,函数f(x)有两个零点,且一个零点大于0,
一个零点小于0,
= 1-4 > 0,
所以函数f(x)的大致图象如图所示:
> 0,
(0) = -1 > 0,
则实数 a 应满足 = 4( + 1)2 -4(-1) > 0,
+1
> 0,
解得a>1,所以当a>0时,例3中的方程有两个大于零的不等实数根,此时a的
取值范围为a>1.
解决此类问题可设出方程对应的函数,根据函数的零点所在的区间分析区
下面对a进行分类讨论:
当a<0时,原方程无实数解;
当a=1时,原方程实数解的个数为3;
当0<a<1时,原方程实数解的个数为4;
当a>1或a=0时,原方程实数解的个数为2.
判断函数零点个数的三种方法
(1)利用方程的根转化为解方程,有几个不同的实数根就有几个零点.
(2)利用函数的图象.画出y=f(x)的图象,判断它与x轴交点的个数,从而判断
.
4.若函数f(x)=ax-b(b≠0)的零点是3,则函数g(x)=bx2+3ax的零点
是
.
解析:∵3是f(x)=ax-b的零点,
∴3a-b=0,即b=3a.
∴g(x)=bx2+3ax=3ax2+3ax=3ax(x+1),