高中数学精品课件无理不等式的解法
- 格式:ppt
- 大小:249.50 KB
- 文档页数:13
绝对值不等式和无理不等式知识精要:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。
2、a x >与a x <型的不等式的解法。
当0>a 时,不等式>x 的解集是{}a x a x x -<>或,不等式a x <的解集是{}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈不等式a x <的解集是∅;3.c b ax >+与c b ax <+型的不等式的解法。
把b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或,不等式c b ax <+的解集是{}c b ax c x <+<-;当0<c 时,不等式c b ax >+的解集是{}R x x ∈不等式c bx a <+的解集是∅;一.基本解法与思想无理不等式解法:例1. 解无理不等式:(1)1-x >2; (2)1-x >2x -4; (3) 1+x <2x +1.分析:(1)因2>0,故原不等式可化为不等式组:⎩⎨⎧>-≥-4101x x .(2)因右边2x 符号不定,故须分两种情况讨论,(3)与(2)类似,也须讨论.解答: (1)化原不等式为:5514101>⇒⎩⎨⎧>≥⇒⎩⎨⎧>-≥-x x x x x .(2)化原不等式为:⎩⎨⎧<-≥-⎪⎩⎪⎨⎧->-≥-≥-04201)42()1(042012x x x x x x 或 817171218171722101717422+≤≤⇒<≤+<≤⇒⎩⎨⎧<≥⎩⎨⎧<+-≥⇒x x x x x x x x 或或. (3)化原不等式为两个不等式组:0034211)12(10120122>⇒⎪⎪⎩⎪⎪⎨⎧>+-≥-≥⇒⎪⎩⎪⎨⎧+<+≥+≥+x x x x x x x x x . 【解后归纳】 将无理不等式转化为有理不等式组,基本思路是分类讨论,要注意解集的交、并运算.对于那些复杂的无理不等式,一般情况下读者不要去研究它,避免消耗太多精力. 绝对值不等式:解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
无理不等式的解法河南省三门峡市卢氏一高高三数学组(472200)赵建文 Emial:zhaojw1968@ 无理不等式是一类常用的重要不等式,解无理不等式是不等式性质的一个重要应用,但课本上没有系统将无理不等式的解法,为了同学们更好的掌握无理不等式的解法,本文以高中阶段常遇到的二次根式型无理不等式为例,将无理不等式的解法作以介绍,供同学们学习时参考.一、乘方法例1 解下列不等式(22x -,(3)2x +分析:本题是二次根式不等式问题,用乘方法.解析:(1)原不等式等价于22321210x x x x ⎧-->-+⎨-+≥⎩,解得x <2-, ∴原不等式的解集为{x |x <2-}.(2)原不等式等价于2234(2)20x x x x ⎧+-≥-⎨-≥⎩或234020x x x ⎧+-≥⎨-<⎩,解得x ≤4-或x ≥2, ∴原不等式的解集为{x |x ≤4-或x ≥2}.(3)原不等式等价于22040(2)4x x x x⎧+≥⎪-≥⎨⎪+≥-⎩,解得0≤x ≤4,∴原不等式的解集为{x |0≤x ≤4}.点评:解无理不等式的实质就是将其化为有理不等式,化为有理不等式的关键就是去根号,去根号的策略之一是乘方,使用乘方法解无理不等式时,若要在不等式两边乘偶次方的时应注意:(1)不等式的偶次乘方是有条件的,即两边都必须为非负,故在乘方前必须考虑不等式两边必须非负这一条件,若含根式的为小的一端,则大的一端必须为非负;若含根式为大的一端,则需要分类讨论,当小的一端为非负时,才能乘方,当小的一端为负值时,是根式有意义和小的一端为负数的未知数的取值范围就是不等的解,此时不必乘方.(2)根号下部分必须有意义,即必须为非负值,故常将无理不等式化为有理不等式组解.对常见二次根式不等式,常见类型为下面三类,按如下同解变形原理求解:(1)>⇔()0()()g x f x g x ≥⎧⎨>⎩,(2)>()g x ⇔2()0()[()]g x f x g x ≥⎧⎨>⎩或()0()0f x g x ≥⎧⎨<⎩,(3)()f x⇔2()0()0[()]()f x g x f x g x ⎧>⎪≥⎨⎪>⎩.二、图像法例22x -.分析:本题是二次根式不等式,可用图像法.解析:在同一坐标系中作出y=和y =2x -的图像,由图像知4-≤x <1x 时原不等2x -得1x =5,∴原不等式的解集为{x |4-≤x <5}.点评:对无理不等式,若两边式子简单且对应的函数图像易作出,则可以用图像法,在同一坐标系中作出两边对应的函数图像,通过观察图像找出不等式的解集,在找区间端点时,可通过解对应的方程解得.本题也可以用乘方法,但计算量较大,图像法直观明了,简化计算.三、补集法例3>3x -.>()g x()g x解集的补集,而≤()g x 解法简单,故可用补集法.有意义的解集为全集I,则I=[3,)-+∞≤3x -的解集为A3x -等价于230303(3)x x x x ⎧+≥⎪-≥⎨⎪+≤-⎩,解得A={x |x ≥6}, ∴原不等式的解集为{x |3-≤x <6}.点评:()g x 问题,()g x 解集关x()g x 解法简单,故可用补集法.四、换元法例44x -..t ,则t ≥0,4x -=26t -,原不等式可化为206t t t ≥⎧⎨>-⎩,解得0≤t <3,即03,解得2-≤x <7,∴原不等式的解集为{x |2-≤x <7}.点评:对易化为关于某根式的不等式问题,可用换元法,设这个根式为t ,将原不等式化为关于t 的不等式组问题,先解出t 的范围,即根式的取值范围,再用乘方法解出x 的取值范围,注意新变量t 的取值范围不能忘记.。