激光测距(非常详细)
- 格式:ppt
- 大小:1.57 MB
- 文档页数:71
激光测距相位激光测距相位法是一种常用的测量距离的技术方法,它利用激光器发射激光脉冲,通过测量激光的相位差来确定目标物体与测量仪器之间的距离。
该方法具有测量精度高、测量范围广、测量速度快等优点,被广泛应用于工业、建筑、医疗和科学等领域。
相位法是一种利用激光的光波特性进行测距的方法。
它的基本原理是利用激光脉冲的相位差来计算目标物体与测量仪器之间的距离。
激光脉冲发射时首先经过一个光调制器,光调制器可以控制激光的频率和相位,然后被目标物体反射回来,最后由一个接收器接收。
接收器接收到的激光脉冲经过信号处理后,测量出激光脉冲的相位差,进而计算出目标物体的距离。
在测量中,激光脉冲发射后,经过一段时间后,激光脉冲被目标物体反射回接收器。
激光脉冲的相位差就是指发射时刻和接收时刻的相位差。
可以通过测量激光脉冲的到达时间差或测量激光脉冲的相位差来计算出目标物体与测量仪器之间的距离。
在计算激光脉冲的相位差时需要考虑到激光的传播速度。
激光在真空中的传播速度为光速,而在大气中的传播速度则受到大气折射率的影响。
因此,在测量中需要将激光传播的时间与激光的相位差进行转化,从而得到准确的距离值。
激光测距相位法具有许多优点。
首先,它具有测量精度高的特点。
由于激光的相位差可以精确地测量,在近距离的测量中,可以达到亚毫米级别的测量精度。
其次,激光测距相位法的测量范围广。
激光的传播速度非常快,而且激光脉冲的相位差可以进行很大的可调范围,因此可以实现从几毫米到几百米甚至几千米的距离测量。
此外,激光测距相位法还具有测量速度快的特点。
激光脉冲的传播速度很快,在实际应用中可以实现实时测距,适用于需要快速测量的场合。
激光测距相位法被广泛应用于许多领域。
在工业领域,激光测距相位法可以用于测量物体的尺寸、位置和形状,为生产加工提供重要的参数。
例如,在汽车制造中,可以利用激光测距相位法测量车身外形的尺寸,以确保其符合设计要求。
在建筑领域,激光测距相位法可以用于测量建筑物的高度、宽度和倾斜度等参数,为建筑设计和施工提供参考。
激光测距的方法
相位差测量法是利用相位差来计算目标与激光源之间的距离。
该方法需要同时发射两束激光,一束用于照射目标,另一束则用于参考。
两束激光的波长和频率相同,但相位不同。
当两束激光照射到目标上时,反射回来的激光经过叠加后,会形成一条合成光束。
由于两束激光的相位差不同,合成光束的相位也会发生变化。
通过测量合成光束相位的变化量,可以计算出目标距离。
时间差测量法是利用激光束发射和反射的时间差来计算目标距离。
该方法需要精确地测量激光从发射到反射再回到接收器的时间。
使用光电探测器来检测激光的到达和离开时间,可以精确地测量激光的时间差。
通过将时间差乘以光速,可以计算出目标距离。
频率调制法是利用激光光束的频率调制来测量目标距离。
该方法需要将激光源的频率调制为一定的频率变化。
当激光照射到目标上时,反射回来的激光会带有目标的运动信息,导致反射光的频率发生变化。
通过测量反射光的频率变化量,可以计算出目标距离。
这些方法各有优缺点,不同的应用场景需要选择不同的激光测距方法。
- 1 -。
激光测距仪激光测距仪是一种用激光束来测量距离的工具,它使用光的速度来计算距离。
激光测距仪可以精确测量任何距离,从几厘米到几百米不等,精度高、速度快、使用方便。
工作原理激光测距仪通过激光器发出一束激光,然后通过一个光电二极管来接收反射光。
光电二极管将接收到的信号转化为电信号,然后通过一个微处理器进行计算,最终输出所需的距离。
应用领域激光测距仪广泛应用于建筑、造船、机械制造、航空等领域,几乎所有需要测量长度或距离的场合都可以使用激光测距仪。
例如:•建筑:用于测量房屋的面积、高度和长度,特别是在施工期间进行精确定位。
•造船:用于测量船舶的长度、高度、宽度、厚度和几何形状,以确保造船的正确性。
•机械制造:用于测量机器部分的尺寸和位置,以确保机器精度。
•航空:用于飞机的导航和测量目标的距离。
操作方法激光测距仪的使用非常简单,只需要按下按钮即可发射激光,并在屏幕上显示测量结果。
但在使用激光测距仪时需要注意以下几点:1.确保测量范围内没有遮挡物,否则可能会导致测量结果不准确。
2.在使用激光测距仪前,需要将其校准。
一般来说,只需要按照说明书上的步骤进行校准即可。
3.在测量时需要保持稳定,以确保激光的光束不偏离目标点。
如果手持激光测距仪进行测量,则需要尽量保持静止状态,以避免手部抖动。
型号分类目前市场上的激光测距仪可以分为以下几类:1.手持式激光测距仪:最常见的激光测距仪,易于携带,非常适用于户外测量。
2.台式激光测距仪:通常用于较大的测量范围,尤其是在建筑和制造领域。
3.精密激光测距仪:通常用于测量高精度工业部件的距离、长度、测量峰值、真实位置等测量位置的要求比较苛刻的场合。
结论激光测距仪是一款高精度、高效率、易于使用的工具,它在建筑、造船、机械制造等多个领域都有着广泛的应用。
尽管不同的应用场合需要不同的型号和规格的激光测距仪,但其功能和操作都是在相同的基础上,只需要根据实际需求进行选择。
激光测距原理激光测距原理激光测距是一种常用的测量技术,它利用激光束的特性来实现对目标物体距离的精确测量。
激光测距技术广泛应用于工业、建筑、地理勘测等领域,其原理简单且测量精度高,因此备受青睐。
激光测距的原理是通过发射激光束,并利用激光束在空间中的传播速度和反射回来的时间来计算目标物体与测量仪之间的距离。
具体而言,激光测距仪会发射一束高度聚焦的激光束,该激光束会沿着一条直线传播到目标物体上,并被目标物体表面的物体反射。
然后,激光测距仪会接收到反射回来的激光束,并测量从发射到接收的时间间隔。
在测量过程中,激光测距仪会利用光电元件来接收反射回来的激光束。
当激光束射到目标物体上时,一部分光会被目标物体吸收,另一部分光会被目标物体反射回来。
激光测距仪会通过光电元件将反射回来的光转换为电信号,并测量从发射到接收的时间间隔。
由于光在真空中的传播速度是已知的,因此可以利用测量的时间间隔和光速来计算目标物体与测量仪之间的距离。
激光测距的精度主要取决于测量仪的时间测量能力和光速的精确度。
通常情况下,激光测距仪的时间测量精度可以达到纳秒级别,而光速的精确度已经被广泛认可。
因此,激光测距技术可以实现高精度的距离测量,其测量误差可以控制在几毫米以内。
除了距离测量,激光测距技术还可以用于测量其他物理量,如速度和位移。
在测量速度时,激光测距仪会连续测量目标物体与测量仪之间的距离,并根据距离的变化率来计算目标物体的速度。
而在测量位移时,激光测距仪会测量目标物体与测量仪之间的距离变化,并根据距离的变化量来计算目标物体的位移。
总结一下,激光测距利用激光束的传播速度和反射回来的时间来计算目标物体与测量仪之间的距离。
它是一种高精度、非接触式的测量技术,广泛应用于各个领域。
激光测距仪可以通过测量时间间隔和光速来实现距离、速度和位移的测量,具有精度高、稳定性好等优点。
随着技术的不断进步,激光测距技术将在更多领域发挥重要作用。
激光测距技术苗德青 0910022011 测仪091超声波具有指向性强,能量消耗缓慢,传播距离较远等优点,所以,在利用传感器技术和自动控制技术相结合的测距方案中,超声波测距是目前应用最普遍的一种,它广泛应用于防盗、倒车雷达、水位测量、建筑施工工地以及一些工业现场。
激光测距仪,是利用激光对目标离的距离进行准确测定的仪器。
激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。
激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。
【关键词】超声波单片机测距AbstractLaser distance measuring instrument, laser is used to target distance of accurate measurement instrument. Laser range finder at work to emit a very fine laser, received by a photoelectric element reflecting the laser beam, a laser beam emitted from the timer determination to the receiving time, calculated from the observer to the target distance. Laser range finder, light weight, small volume, simple operation fast and accurately, the error is only other optical range finder 1/5 to hundreds of. The ultrasonic wave has strong directivity, slow energy consumption, communication distance etc., so, in the use of sensor technology and automatic control technology combined with the measurement scheme, the ultrasonic ranging is currently the most commonly used one kind, it is widely used in anti-theft, reversing radar, level measurement, construction sites and some industrial field【Key Words】Ultrasonic wave One-chip computer Range finding1.1课题概述科学改革日新月异的时代,技术应用也应该与时俱进。
激光测距的原理激光测距是一种利用激光技术进行距离测量的方法,它通过测量光脉冲的往返时间来确定目标物体与测距仪之间的距离。
激光测距技术在工业、建筑、地质勘测、军事等领域都有着广泛的应用,其原理简单而又精准,成为现代测距领域中的重要手段。
激光测距的原理基于光的传播速度恒定不变这一基本规律。
光在真空中的传播速度约为每秒30万公里,而在大气中的传播速度也非常接近这个数值。
因此,当激光束发射出去并被目标物体反射回来时,测距仪可以通过测量光脉冲的往返时间来计算目标物体与测距仪之间的距离。
在实际应用中,激光测距仪通常由激光发射器、接收器、时钟和数据处理器等部件组成。
首先,激光发射器向目标物体发射一束激光束,然后接收器接收到被目标物体反射回来的激光脉冲。
接收器会记录下激光脉冲的发射时间和接收时间,然后将这两个时间差转化为距离值。
最后,数据处理器会对接收到的距离数值进行处理和分析,得出最终的测距结果。
激光测距技术具有测量精度高、测距范围广、测量速度快等优点。
它可以在不同环境下进行测距,无论是室内还是户外、平坦地面还是复杂地形,都能够获得精确的测距结果。
而且,激光测距仪可以实现对多个目标物体的同时测距,大大提高了测量效率。
除此之外,激光测距技术还可以应用于三维测绘、地图制作、航空航天等领域。
在建筑工程中,激光测距技术可以用于测量建筑物的高度、距离等参数,为工程设计和施工提供精准的数据支持。
在地质勘测中,激光测距技术可以用于测量地形的高程、地貌的特征等,为地质勘探提供重要的信息。
总的来说,激光测距技术以其精准、快速、全面的测量能力,成为现代测距领域中的重要技术手段。
随着科技的不断发展,相信激光测距技术在未来会有更加广阔的应用前景,为各个领域的测量工作带来更多的便利和效率。
激光干涉法测量距离的原理
激光干涉法是一种使用激光光束测量距离的方法,其基本原理是利用光的干涉现象来确定被测距离的长度。
具体原理如下:
1. 光的干涉:
光是一种波动,当两束光波相遇时,它们会产生干涉现象。
干涉分为两种情况:构成干涉条纹的激光光束互相增强,即互相叠加形成明亮的条纹区;当两束光波相位相差半个波长时,它们互相抵消,形成暗区。
2. 激光干涉测量原理:
激光干涉法使用两束激光光束,其中一束作为参考光束,另一束照射到目标上形成反射光束。
将这两束光束重新叠加,当它们的光程差等于整数倍的波长时,会产生干涉条纹。
3. 光程差的计算:
光程差是指两束光束从发射点到接收点的光程长度差。
在激光干涉法中,可以通过改变一束光束的光程来测量被测目标的距离。
具体计算公式为:
光程差= 2 ×(被测距离+ 偏移量)
4. 干涉条纹的观测:
通过观察干涉条纹的数量和形态变化,可以确定被测距离的长度。
例如,当被测距离增加时,由于光程差的变化,会导致干涉条纹的移动或变宽,通过测量干涉
条纹的变化可以确定距离的变化。
激光干涉法测量距离的原理是利用光波的干涉现象来测量光程差的变化,进而确定被测目标的距离。
由于激光光束具有相干性和定向性,因此激光干涉法具有高精度和高分辨率的特点,被广泛应用于距离测量和位移测量等领域。
激光相位测距原理
激光相位测距是一种利用激光波束测量物体距离的技术。
其原理基于光的干涉现象,通过测量光波在物体表面反射后的相位变化来确定距离大小。
在激光相位测距系统中,激光器发射一束脉冲激光,该激光束照射到目标物体上并被反射回来。
接收器接收到反射光波后,光电二极管将光信号转换为电信号。
由于光波在往返过程中会受到干涉效应的影响,导致接收到的光信号具有不同的相位。
通过测量光信号的相位差,即可计算出光波的传播距离。
为了实现相位测量,激光相位测距系统通常采用两种方法:串行分析和并行分析。
串行分析方法中,激光脉冲经过光电二极管后,信号会被通过逐点扫描的方式进行采样。
然后,所有采样点的相位将被计算出来,并通过插值算法实现子波测量。
而在并行分析方法中,激光脉冲会经过一个多通道的光电二极管阵列,每个光电二极管将接收到的信号进行采样和处理。
通过对比不同通道之间的相位差异,可以实现更快速的相位测量。
总的来说,激光相位测距利用激光波束的干涉现象来测量物体的距离。
通过准确测量光信号的相位差,可以实现高精度的测距,并在许多领域中得到广泛应用。
激光测距仪原理
激光测距仪原理是利用激光束的发射和接收时间差来计算目标物体与测距仪的距离。
其基本原理如下:
1. 激光发射:测距仪内部装有激光器,通过电路控制激光器发射一束高能激光束。
激光束在发出时具有很小的发散角度,可保持激光束的较小直径,以获得更高的测距精度。
2. 激光照射:发出的激光束照射到目标物体上,并被目标物体表面反射。
目标物体可以是墙壁、地面、物体等。
3. 激光接收:测距仪内部装有光电元件,通常是光敏二极管(Photodiode)。
当被照射物体反射的激光束到达测距仪后,光电元件会将激光束转换为电信号。
4. 电信号处理:测距仪内部的电路会对接收到的电信号进行处理和分析。
电路会检测激光发射和接收的时间差,即激光束从发射到反射回来的时间。
5. 距离计算:根据光在空气中的传播速度和激光的发射与接收时间差,可以计算出激光束从测距仪发射到目标物体反射回来所经历的时间。
通过时间乘以光速,可以得到目标物体与测距仪之间的距离。
激光测距仪的测量精度通常在毫米级别,并且具有较长的测距范围。
这使得激光测距仪在建筑、工程测量、地质勘察等领域有着广泛的应用。
有关“激光测距”的实验报告有关“激光测距”的实验报告如下:一、实验目的本实验旨在通过激光测距的方法,测量目标物体与测距仪之间的距离,并验证激光测距的原理及精度。
二、实验原理1.激光测距的基本原理是利用激光的快速、单色、相干性好等特点,通过测量激光发射器发出激光信号到目标物体再反射回来的时间,计算出目标物体与测距仪之间的距离。
具体而言,激光测距仪通常采用脉冲法或相位法进行测距。
2.脉冲法测距是通过测量激光发射器发出激光脉冲信号到目标物体再反射回来的时间,计算出目标物体与测距仪之间的距离。
其计算公式为:d=2c×t,其中d为目标物体与测距仪之间的距离,c为光速,t为激光脉冲信号往返时间。
3.相位法测距则是通过测量调制后的激光信号在目标物体上反射后与原信号的相位差,计算出目标物体与测距仪之间的距离。
其计算公式为:d=2×Δφλ,其中λ为调制波长,Δφ为相位差。
三、实验步骤1.准备实验器材:激光测距仪、标定板、尺子、三脚架等。
2.将标定板放置在平整的地面上,用三脚架固定激光测距仪,调整激光测距仪的高度和角度,使激光束对准标定板中心。
3.按下激光测距仪的测量按钮,记录标定板的距离读数。
4.用尺子测量标定板的实际距离,并与激光测距仪的读数进行比较。
5.重复步骤3和4多次,记录数据并分析误差。
四、实验结果与分析1.激光测距仪的测量精度较高,误差在±1cm以内。
2.在不同距离下,激光测距仪的误差略有不同,但总体来说表现良好。
3.在实际应用中,需要注意环境因素对激光测距的影响,如烟雾、尘埃等可能会影响激光信号的传播和反射。
五、结论与展望本实验通过激光测距的方法测量了目标物体与测距仪之间的距离,验证了激光测距的原理及精度。
实验结果表明,激光测距仪具有较高的测量精度和可靠性,适用于各种需要高精度距离测量的场合。
未来,随着技术的不断发展,激光测距的应用领域将更加广泛,如无人驾驶、机器人导航、地形测绘等。
一、激光测距简介:激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。
由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。
激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点:①激光有小的光束发散角,即所谓的方向性好或准直性好。
②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。
③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。
若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。
若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。
世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。
美国军方很快就在此基础上开展了对军用激光装置的研究。
1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。
激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。
它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。
由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。
国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。
激光测距仪-分类:一维激光测距仪用于距离测量、定位;二维激光测距仪(Scanning Laser Range finder)用于轮廓测量,定位、区域监控等领域;三维激光测距仪(3D Laser Range finder)用于三维轮廓测量,三维空间定位等领域。
激光测距-方法激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。