机械原理课程设计牛头刨床2点和八点说明书
- 格式:doc
- 大小:1.01 MB
- 文档页数:22
机械原理课程设计说明书题目牛头刨床设计姓名马纯班级08级机制5班学号200801143指导老师李显昌学院青岛农业大学海都学院目录一、课程设计的目的与要求二、设计正文1.设计题目2.牛头刨床机构简介3.机构简介与设计数据4. 设计内容三、总结一、课程设计的目的和任务1、目的机械原理课程设计是培养学生掌握机械系统运动方案设计能力的技术基础课程,它是机械原理课程学习过程中的一个重要实践环节。
其目的是以机械原理课程的学习为基础,进一步巩固和加深所学的基本理论、基本概念和基本知识,培养学生分析和解决与本课程有关的具体机械所涉及的实际问题的能力,使学生熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,并进一步提高计算、分析,计算机辅助设计、绘图以及查阅和使用文献的综合能力。
2、任务本课程设计的任务是对牛头刨床的机构选型、运动方案的确定;对导杆机构进行运动分析和动态静力分析。
并在此基础上确定飞轮转惯量,设计牛头刨床上的凸轮机构和齿轮机构。
二、设计正文:1、设计题目:牛头刨床1)为了提高工作效率,在空回程时刨刀快速退回,即要有急会运动,行程速比系数在1.4左右。
2)为了提高刨刀的使用寿命和工件的表面加工质量,在工作行程时,刨刀要速度平稳,切削阶段刨刀应近似匀速运动。
3)曲柄转速在60r/min,刨刀的行程H在300mm左右为好,切削阻力约为7000N,其变化规律如图所示。
2、牛头刨床机构简介牛头刨床是一种用于平面切削加工的机床,如图4-1。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。
机械原理课程设计设计题目:牛头刨床综合及其运动学与动力学分析第 1方案,第 8’位置一、牛头刨床的基本参数计算已知: 24370O O l mm = 650H mm = 160K =. 4030BC O B l l :=. 1.计算极位夹角θ及杆摆角ψ000116011801804153811601K K θ-.-ψ===⨯=.+.+2.求2O A l224415383701312022O AO O l l sin sin mm ψ.===.3.求4O B l 、BC l441538226509165122O B H l mm sin sin ψ.===.40300309165127495BC O B l l mm =.=.⨯.=.4.求导路到4O 的距离34O O l当滑块6的导路y-y 通过铰链中心B 的摆动弧·BB"'的扰度中点时,可使机构在整个行程中都能取得较小的压力角,故得:3441141538(1)91651(1)886732222O O O B l l cos cos mm ψ.=+=⨯.⨯+=.二、牛头刨床的速度分析选取合适的长度比例尺0005ml mm μ=., 按指定的作业位置,正确地作出机构的运动简图。
对于机构的位置,可先确定曲柄2的位置,然后依次画出导杆4,连杆5和滑块6的相应位置。
已知:220n r min =/(1)求3A v222202606020944n rad s ππω⨯===./ 方向:顺时针32201312020944002750A O A v r l m s ωω=⋅=⋅=.⨯.=./(2)求4A v滑块3——动参考系,4A ——动点4A V u u u u u u r = 3A V u u u u u u r + 43A A V u u u u u u u u u u r方向: ⊥4O A ⊥2O A //4O A 大小: ? 22O A l ω ?选取速度比例尺0005m sv mm μ/=.,作速度图34pa a 进而可得4A v 的大小为44000500A v v pa μ=⋅=.⨯=4ω的大小为4440345960A O A vl ω.=== 43A A v 的大小为4334000555002750A A v v a a m s μ=⋅=.⨯.=./方向:34a a →(3)求B 的速度影像b 及B v由影像原理知,在速度图上,b 点应位于4pa 的延长线上且4491654346000O BO Al l pb pa ..==⨯= 000500B v v pb μ=⋅=.⨯=(4)求C vB ——基点,C ——动点C V u u u u r = B V u u u u r + CB V u u u u u u r方向: 水平 ⊥4O B ⊥BC 大小: ? 44O B l ω ?根据上述方程,继续在速度图34pa a 上作出C 点的速度影像c 进而可得C v 的大小为 000500C v v pc μ=⋅=.⨯= CB v 的大小为000500CB v v bc μ=⋅=.⨯= 5ω的大小为050274950CBBC v l ω.===(5)求4S v由影像原理知,在速度图上,4s 点位于pb 的中点 44000500S v v ps μ=⋅=.⨯=(6)速度综合302750A v m s =./ 40A v = 4302750A A v m s =./ 0B v = 0C v = 0CB v = 40S v =220944rad s ω=./ (顺时针) 40ω= 50ω=三、牛头刨床的加速度分析 (1)求4A a4A a u u u u u u r= 4n A a u u u u u u r+ 4t A a u u u u u u r = 3A a u u u u u u r+ 43k A A a u u u u u u u u u u r+ 43rA A a u u u u u u u u u u r方向: 4A O → 4O A ⊥ 2A O → 4O A ⊥ //4O A大小: 244O A l ω ? 222O A l ω 4432A A v ω ? 其中:4n A a 的大小为2244400345960n A AO a l ω=⋅=⨯.= 3A a 的大小为222322209440131200576A O A a l m s ω=⋅=.⨯.=./ 43k A A a 的大小为43443220027500k A A A A a v ω==⨯⨯.=选取加速度比例尺2002m s a mm μ/=.,作加速度图34πa a '' 进而可得4t A a 的大小为24440022880576t A a a a"m s a μ=⋅=.⨯.=./' 方向:44a"a →' 4α的大小为442057640345961665tA AO a l rad s α..===./ 方向:逆时针(2)求B 的加速度影像b’及B a由影像原理知,在加速度图上,b’点应位于4a π'的延长线上,且44916543460288762O BO Al l b mm a ππ..'==⨯.=.' 2π0027621524B a a b m s μ'=⋅=.⨯.=./ 方向:πb '→(3)求C aC a u u u u r= B a u u u u r+ n CB a u u u u u u r + t CBa u u u u u u r方向: 水平 √ C B → ⊥BC 大小: ? √ 25BC l ω ?其中:nCB a 的大小为22500274950nCBBC a l ω=⋅=⨯.= 根据上述方程,继续在加速度图34a a π''上求得C 点的加速度影像c’。
机械原理牛头刨床课程设计说明书一、设计目标本课程设计旨在通过设计和制作一个机械牛头刨床,使学生能够熟悉机械原理相关知识,并培养其机械设计和制造的能力。
二、设计要求1. 设计一个适用于木材刨削的牛头刨床,能够实现刨削操作。
2. 设计结构合理,刨削效果良好,安全可靠。
3. 刨削精度要求达到工业标准。
三、设计内容1. 刨床结构设计:a. 确定刨床的主要组成部分,包括床身、工作台、横梁、进给装置等。
b. 设计床身和工作台的结构,确定材料和尺寸。
c. 设计横梁的结构,确保刨床具有足够的强度和刚度。
d. 设计进给装置,以满足刨削的速度和精度要求。
2. 主动传动系统设计:a. 选择适当的传动方式,如皮带传动、齿轮传动等。
b. 设计传动比,以满足刨削速度要求。
c. 选取适当的传动元件,如电机、皮带轮、齿轮等。
3. 刨削工具设计:a. 选择适当的刨削刀具,如牛头刨刀。
b. 设计刨削刀头的结构和尺寸,以满足刨削要求。
4. 安全保护装置设计:a. 设计适当的安全装置,保证操作人员的安全。
b. 设计急停装置,以应对突发情况。
五、设计步骤1. 确定设计目标和要求,了解使用环境和条件。
2. 进行初步设计,包括结构设计、传动系统设计、刨削工具设计和安全保护装置设计。
3. 进行详细设计,确定各个零件的尺寸和形状。
4. 制作和加工零件,组装刨床。
5. 进行试验和调整,测试刨床的性能和刨削效果。
6. 完善设计和制作文档,撰写课程设计报告。
六、设计成果通过完成本课程设计,学生将获得一个机械牛头刨床的制作经验,并掌握机械原理相关知识。
同时,学生还将培养出良好的团队合作能力和工程实践能力。
机械原理课程设计说明书题目牛头刨床主传动机构的分析与设计院系:信息工程学院班级:10机械2班学号:姓名:指导教师:完成时间:2012年6月24日目录1,任务书 (3)2,摘要 (14)3,工艺原理分析 (15)4,工艺动作分析 (15)5,机械运动循环图 (16)6,机构选型方案评价 (17)7,机械运动简图绘制 (22)8,运动分析,尺度综合 (22)9,动静态力分析 (24)10,飞轮设计 (26)11,传动系统分析 (26)12,参考文献 (28)机械原理课程设计任务书一、冲压式蜂窝煤成型机设计1、设计题目:冲压式蜂窝煤成型机设计2、已知技术参数和设计要求(1)工作原理及工艺动作过程冲压式蜂窝煤成型机是我国城镇蜂窝煤(通常又称煤饼)生产厂的主要生产设备,这种设备由于具有结构合理、质量可靠、成型性能好、经久耐用、维修方便等优点而被广泛采用。
冲压式蜂窝煤成型机的功能是将粉煤加入转盘的模筒内,经冲头冲压成蜂窝煤。
为了实现蜂窝煤冲压成型,冲压式蜂窝煤成型机必须完成五个动作: (1)粉煤加料;(2)冲头将蜂窝煤压制成型;(3)请出冲头和出煤盘积屑的扫屑运动;(4)将在模筒内冲压后的蜂窝煤脱模;(5)将冲压成型的蜂窝煤输出。
(2)设计要求蜂窝煤成型机的设计要求如下:(1)蜂窝煤成型机的生产能力为30次/min。
(2)图1表示冲头、脱模盘、扫屑刷、模筒转盘的相互位置情况。
实际上冲头与脱模盘都与上下移动的滑梁连城一片,当滑梁下冲时,冲头将粉煤冲压成蜂窝煤、脱模盘将已压成的蜂窝煤脱模。
在滑梁上升的过程中,扫屑刷将扫除冲头和脱模盘上粘着的粉煤。
模筒转盘上均布了模筒,转盘的间歇运动使加料后的模筒进入冲压位置,成型后模筒进入脱模位置,空的模筒进入加料位置。
图1. 冲头、脱模盘、扫屑刷、模筒转盘位置示意图1-模筒转盘;2-滑梁;3-冲头;4-扫屑刷;5-脱模盘(3)为了改善蜂窝煤冲压成型的质量,希望冲压机构在冲压后有一定保压时间。
目录一、设计题目与原始数据 ..................................... - 1 -二、牛头刨床示意图......................................... - 2 -三、导杆机构设计........................................... - 2 -四、机构的运动分析......................................... - 4 -五、机构动态静力分析....................................... - 9 -六、飞轮设计.............................................. - 13 -七、设计凸轮轮廓曲线...................................... - 15 -八、齿轮设计及绘制啮合图 .................................. - 15 -九、解析法................................................ - 16 -1.导杆机构设计 (16)2.机构运动分析 (17)3.凸轮轮廓曲线设计 (19)4.齿轮机构设计 (22)十、本设计的思想体会...................................... - 22 -参考文献.................................................. - 22 -附录.................................................. - 23 -一、设计题目与原始数据1.题目:牛头刨床的综合设计与分析2.原始数据:刨头的行程H=550mm行程速比系数K=机架长L O2O3=400mm 质心与导杆的比值L O3S4/L O3B=连杆与导杆的比值L BF/L O3B=刨头重心至F点距离X S6=160mm 导杆的质量m4=15刨头的质量m6=58导杆的转动惯量J S4=切割阻力F C=1300N切割阻力至O2的距离Y P=175mm构件2的转速n2=80许用速度不均匀系数[δ]=1/40齿轮Z1、Z2的模数m12=15小齿轮齿数Z1=18大齿轮齿数Z2=46凸轮机构的最大摆角φmax=16o凸轮的摆杆长L O4C=140mm 凸轮的推程运动角δ0=60o凸轮的远休止角δ01=10o凸轮的回程运动角δ0'=60o凸轮机构的机架长L o2o4=150mm 凸轮的基圆半径r o=55mm凸轮的滚子半径r r=15mm二、牛头刨床示意图如图1所示图1三、导杆机构设计1、已知:行程速比系数K=刨头的行程H=550mm机架长度L O2O3=400mm连杆与导杆的比L BF/L O3B= 2、各杆尺寸设计如下A、求导杆的摆角:ψmax =180°×(K-1)/(K+1)=180°×()/(+1)=42°B、求导杆长:L O3B1=H/[2sin(ψmax/2)]=550/[2sin(42°/2)]=776mmC、求曲柄长:L O2A =L O2O3×sin(ψmax/2)=400×sin21°=142mmD、求连杆长:L BF=L O3B×L BF/L O3B=776×=233mmE、求导路中心到O3的距离:L O3M =L O3B-L DE/2=L O3B{1-[1-cos(ψmax/2)]/2}=750mmF、取比例尺:μL=0.005m/mm在1#图纸中央画机构位置图,机构位置图见1#图纸。
目录一、课程设计任务书21.工作原理及工艺举措过程22.原始数据及设计要求3二、设计说明书41.画机构的运动简图42.对位置4点进行速度阐发和加速度阐发63.对位置9点进行速度阐发和加速度阐发9速度阐发图:104.对位置9点进行静态静力阐发13心得体会17谢辞18参考文献19一、课程设计任务书1.工作原理及工艺举措过程牛头刨床是一种用于平面切削加工的机床。
刨床工作时,如图(11)所示,由导杆机构23456带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采取有急回作用的导杆机构。
刨头在工作行程中,受到很年夜的切削阻力,而空回行程中则没有切削阻力。
切削阻力如图(b)所示。
(b)2.原始数据及设计要求Y图(11)已知曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路xx位于导杆端点B所作圆弧高的平分线上。
要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。
以上内容与后面静态静力阐发一起画在1号图纸上。
二、设计说明书1.画机构的运动简图1、以O4为原点定出坐标系,根据尺寸辨别定出O2点,B点,C点。
确定机构运动时的左右极限位置。
曲柄位置图的作法为:取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3…12等,是由位置1起,顺ω2标的目的将曲柄圆作12等分的位置(如下图)。
图12取第I计划的第4位置和第9位置(如下图13)。
图 132. 对位置4点进行速度阐发和加速度阐发(a ) 速度阐发 取速度比例尺l μ=mmsm001.0对A 点:4A V = 3A V + 34A A V 标的目的:4BO ⊥O 2⊥ //O 4 年夜小: ? √ ?4A V =l μ⨯4pa =sm mm mm sm673239.0239.673001.0=⨯4ω=AO A l V 44=sr mmsm38431.1486334.0673239.0= 34A A V =l μ43a a l =sm mm mmsm156326.0326.156001.0=⨯ V 5B = V 4B =4ω⨯B O l 4=sm747530.0对C 点:C V = B V + CB V 标的目的: //'XX B O 4⊥BC ⊥ 年夜小: ? √ ?C V =l μ⨯pc l =mm sm001.0sm mm 749708.0708.749=⨯ CB V =l μ⨯bc l =mmsm001.0sm mm 0490895.00895.49=⨯ 5ω=bcl CBl u V =s r 363626.0 速度阐发图:图 14(b)加速度阐发 选取加速度比例尺为a μ=mm s m2001.0对A 点:4A a = n A a 4 + t A a 4 = 3A a + k A A a 34 + 34rA A a 标的目的:A→4OB O 4⊥ A→2O B O 4⊥//B O 4 年夜小: √ ? √√ ?由于3A a =22ωA O l 2=234263.4smKA A a 34=24ω34A A V =2432808.0s mn A a 4=24ωA O l 4=2931975.0s m 已知,根据加速度图15可得:t A a 4=a μ''a n l =2549416.0sm, rA A a 34=a μ''a k l =2298112.3s m 。
牛头刨床机械原理课程设计8’运动分析牛头刨床机械原理课程设计8’运动分析是指牛头刨床机械原理课程设计的八个主要运动分析方面的研究和分析。
它是机械学理论与牛头刨床机械原理课程设计中许多方面的一种综合性研究,不同于传统机械及机械控制相关的学科,有着自身独特的性质。
本文就牛头刨床机械原理课程设计8’运动分析进行深入分析,以期为工程设计和机械应用提供参考。
1、运动分析的基本概念运动分析是牛头刨床机械原理课程设计中必不可少的研究内容,其内容包括初始运动的准确分析、控制品的运动的动态分析、机械布置的结构分析、运动的变化情况分析以及牛头刨床机械原理的计算机仿真分析等。
运动分析的基本概念是以牛头刨床机械的物体及其相互关系为基础,分析运动物体间的动力学关系,求解物体运动的过程及参数,回答物体运动时所问的问题。
2、物体运动的速度分析物体运动的速度分析是牛头刨床机械原理课程设计中最重要的部分,它需要考虑物体的力学性质和运动参数,以及其相互的关系,并根据这些参数计算出物体运动的过程所需要的物理量和物理要素,以求得物体运动的最优结果。
通常情况下,需要考虑物体运动方向、运动状态、坐标系变换、时间演变等多种因素,并借助牛头刨床机械原理中的分析方法求解问题。
3、物体运动的动能分析物体运动的动能分析是指在牛头刨床机械原理课程设计中,通过分析物体运动的动能学分析,求解物体运动的动能学参数,其中包括物体的动能、力学活动能以及动能传递的几何关系等。
其目的是可以准确地预测和模拟物体运动时可能遇到的实际情况,从而有效地缩小物体运动的误差,进而提高物体控制的效果。
4、物体运动的静力分析物体运动的静力分析是指利用物体的坐标系变换、动量角度、力学活动能转移及各静力系统运行情况等,以及牛头刨床机械原理的物体运动模型,对物体的运动方式的静力特征进行考察和分析,求解物体运动的静力参数,从而获得物体运动的最佳结果。
5、牛头刨床机械原理计算机仿真牛头刨床机械原理计算机仿真是一种用于分析和模拟物体运动的计算机技术。
机械课程设计牛头刨床——说明书
牛头刨床是一种机械自动化的刨床用来加工钻头。
它具有技术先进、精度高、效率高、结构紧凑、安全可靠等优点,可以方便快捷地完成多种形状的钻头加工。
本项目旨在设计一台具有自动化控制和进给功能的牛头刨床,它能够实现对多种尺寸
钻头的高速加工。
首先,牛头刨床采用先进的机械结构,把主轴安装在轴承上,驱动系统
采用定位器和伺服电机控制,以及专门的单元位置控制器,从而实现高精度、高效率的转动。
其次,加工部分由刨复计算机控制组成,采用步进电动机驱动,辅以直接传动原理使
机器加工运行稳定可靠,同时采用数控系统将开关、传感器,以及容允误差等元器件连接
到计算机中,实现自动检测和改变加工参数,从而保障了加工精度和效率。
此外,牛头刨床采用安全保护系统,在加工进程中关闭主轴的驱动动力,并关闭传动
装置,达到操作安全的作用。
此外,还可以针对特殊工件采用手动调整加工参数功能,实
现更多加工精度要求。
总而言之,本台牛头刨床可以实现多种钻头加工,通过自动化控制和进给功能,实现
对钻头尺寸和质量的更精确控制,提高加工精度和效率,并保证操作安全。
此外,还可以
根据不同的工件型号,以满足不同精度要求。
目录第1章设计任务1.1 设计任务与目的 (1)1.2 原始参数 (3)第2章运动方案设计2.1 主机构方案(选型) (4)第3章电动机的选择3.1 电动机的功率 (6)3.2 电动机的型号 (8)第4章齿轮机构设计4.1 传动比的分配 (9)4.2 齿轮机构的设计 (9)第5章主机构的设计5.1 主机构运动分析 (12)5.2 主机构受力分析 (17)第6章速度波动调节w的计算 (28)6.1 Δmax6.2 飞轮的设计 (29)第7章总结7.1 体会心得 (30)7.2 参考文件 (31)第1章设计任务1.1 设计任务及目的设计目的1.学会机械运动简图设计的步骤和方法。
2.巩固所学的理论知识,掌握机构分析与综合的基本方法。
3.培养学生使用技术资料,计算作图及分析与综合的能力。
4.培养学生进行机械创新设计的能力。
设计任务牛头刨床是一种常用的平面切削加工机床,电动机经带传动、齿轮传动(图中未画出)最后带动曲柄1(见图1)转动,刨床工作时,是由导杆机构1-2-3-4-5带动刨头和刨刀作往复运动,刨头5右行时,刨刀切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,不进行切削,称空回行程,此时速度较高,以节省时间提高生产率,为此刨床采用有急回作用的导杆机构。
下图为牛头刨床传动装置工作原理图牛头刨床的工艺功能要求如下:1)刨削速度尽可能为匀速,并要求刨刀有急回特性。
2)刨削时工件静止不动,刨刀空回程后期工件作横向进给,且每次横向进给量要求相同,横向进给量很小并可随工件的不同可调。
3)工件加工面被抛去一层之后,刨刀能沿垂直工件加工面方向下移一个切削深度,然后工件能方便地作反方向间歇横向进给,且每次进给量仍然要求相同。
4)原动机采用电动机。
中小型牛头刨床的主运动(见机床)大多采用曲柄摇杆机构(见曲柄滑块机构)传动,故滑枕的移动速度是不均匀的。
大型牛头刨床多采用液压传动,滑枕基本上是匀速运动。
滑枕的返回行程速度大于工作行程速度。
机械原理课程设计说明书设计题目:牛头刨床的设计机构位置编号:8 5方案号:III班级:2504100222姓名:秦璇学号:25041002222012年 1 月 10 日目录一、前言 (1)二、概述§2.1课程设计任务书 (2)§2.2原始数据及设计要求 (2)三、设计说明书§3.1画机构的运动简图 (3)§3.2导杆机构的运动分析 (4)§3.3导杆机构的动态静力分析8号点 (9)§3.4刨头的运动简图 (14)§3.5凸轮机构设计 (15)§3.6齿轮机构设计 (23)四、课程设计心得体会 (26)五、参考文献 (27)一〃前言机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。
是培养学生机械运动方案设计、创新设计以及应用计算机对工程实际中各种机构进行分析和设计能力的一门课程。
其基本目的在于:⑴.进一步加深学生所学的理论知识 培养学生独立解决有关本课程实际问题的能力。
⑵. 使学生对于机械运动学和动力学的分析设计有一较完整的概念。
⑶. 使学生得到拟定运动方案的训练 并具有初步设计选型与组合以及确定传动方案的能力。
⑷. 通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。
⑸. 培养学生综合运用所学知识,理论联系实际,独立思考与分析问题能力和创新能力。
机械原理课程设计的任务是对机械的主体机构 连杆机构、飞轮机构凸轮机构,进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮,或对各机构进行运动分析。
二、概述§2.1课程设计任务书工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床,如图(a)所示,由导杆机构1-2-3-4-5带动刨头5和削刀6作往复切削运动。
工作行程时,刨刀速度要平稳,空回行程时,刨刀要快速退回,即要有极回作用。
机械原理课程设计说明书-牛头刨床的运动分析与设计一、设计目标本机械原理课程设计的目标是对牛头刨床进行运动分析与设计,通过分析刨床的运动原理和结构特点,设计出合理的刨床结构,确保刨床的运动稳定性和工作效率。
二、刨床的运动分析1. 刨床的基本运动牛头刨床的基本运动包括主轴转动、工作台进给运动和刀架进给运动。
主轴转动通过电动机驱动刨刀进行旋转,实现刨削工作。
工作台进给运动使工件在水平平面上进行进给运动,供刀架进行刨削。
刀架进给运动使刀架在垂直于工作台的方向上进行进给,并在工件刨削时左右平移,调整刨削的位置。
2. 刨床的运动传动刨床的运动传动主要通过齿轮传动和导轨传动实现。
主轴转动通过电动机通过齿轮传动带动主轴实现。
工作台进给运动通过齿轮和导轨的组合实现,工作台在导轨上进行水平移动。
刀架进给运动通过螺杆和导轨的组合实现,螺杆带动刀架进行垂直平移,并在导轨上进行水平移动。
三、刨床结构设计基于上述运动分析,对牛头刨床进行结构设计如下:1. 主轴结构:主轴采用直径大、刚度高的优质轴承,保证刨床的稳定性和工作效率。
主轴和电动机通过齿轮传动连接,确保刨床主轴的转动平稳。
2. 工作台结构:工作台采用结实的铸铁材料,设计为可拆卸结构,方便工件的放置和取出。
工作台通过导轨和齿轮传动实现水平进给运动,导轨和齿轮选用耐磨材料,减小运动阻力。
3. 刀架结构:刀架采用铸铁材料,设计为可调节结构,方便调整刨削位置。
刀架通过螺杆和导轨的组合实现垂直进给运动和水平进给运动,确保刀具与工件的接触面平整。
四、设计流程1. 进行刨床的运动分析,确定刨床的基本运动和运动传动方式。
2. 根据运动分析结果,进行刨床的结构设计,包括主轴结构、工作台结构和刀架结构。
3. 设计刨床各部件的尺寸和连接方式,确保结构的牢固性和可拆卸性。
4. 进行刨床的总体装配和调试,确保刨床的运动平稳和工作效率。
5. 测试刨床的性能和稳定性,进行必要的调整和改进。
五、安全注意事项1. 在使用刨床时,应仔细阅读操作指南,并按照操作规程进行操作。
i目录一: 机械原理课程设计内容、要求以及目的 1 二:牛头刨床机构简介及原始数据 1 三:机构方案的初步确定 3 1:曲柄滑块机构与摆动导杆机构 32:曲柄滑块机构与扇形齿轮齿条机构 53:综合评定确定方案7 四:机构工艺动作分解及运动循环图8 五:主机构尺度综合及运动特性评定9 六:电动机功率与型号的确定22 七: 主机构受力分析25 八:飞轮转动惯量的计算30 九:减速机构以及工作台进给机构的确定32 十:设计心得与体会35 十一:参考资料36- 1 - 一:课程设计题目、内容及其目的题目:牛头刨床内容:平面刨削机床运动简图设计及分析,计算刨削机构在指定位置的速度、加速度、受力、绘制位移、速度、加速度曲线、平衡力矩曲线、等效阻力矩曲线以及等效驱动力曲线。
根据上述得到的数据,确定飞轮转动惯量。
目的:1:学会机械运动见图设计的步骤和方法;2:巩固所学的理论知识,掌握机构分析与综合的基本方法;3:培养学生使用技术资料,计算作图及分析与综和能力;4:培养学生进行机械创新设计的能力。
二:牛头刨床简介,机构的要求及原始数据1:牛头刨床简介牛头刨床是一种用于平面切削加工的机床,如图1。
电动机经皮带和齿轮传动,经过减速机构减速从而带动曲柄1。
刨床工作时,由导杆3经过连杆4带动刨刀5作往复运动。
刨头左行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头右行时,刨刀不切削,称空行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约0.05H的空刀距离,见图2,b),而空回行程中只有摩擦阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。
机械原理课程设计说明书牛头刨床机构设计一、课程设计题目机械原理课程设计说明书牛头刨床机构设计二、设计目的通过本次机构设计,加深学生对于机械原理的理解和掌握;培养学生具备独立解决机械问题的能力;通过模拟实现,让学生深刻理解牛头刨床的结构和工作原理。
三、设计要求(1)设计要求结构简单可靠,工作平稳,制造易于加工和装配。
(2)设计要求工作台长宽比要合理,工作台面平整度略小于加工零件的平面度。
(3)设计要求工作台移植要平稳,能适应各种行程要求。
(4)设计要求床身刚性好,工作平台在工作时不得发生变形。
(5)设计要求走刀架结构刚性好,刀架在工作时不得发生晃动。
四、设计内容(1)牛头刨床的结构和工作原理分析。
(2)牛头刨床机构的设计选择。
(3)牛头刨床机构的构造设计。
(4)牛头刨床机构的运动仿真。
(5)设计说明书的撰写。
五、设计步骤一、牛头刨床的结构和工作原理分析。
通过对牛头刨床的结构和工作原理的了解,明确机床的工作条件和要求,为机构的设计提供依据。
二、牛头刨床机构的设计选择。
根据机床的工作要求,选择适合的机构方案,包括床身、工作台、走刀架、传动机构、电气控制等方面的设计。
三、牛头刨床机构的构造设计。
对选定的机构方案进行具体的构造设计,包括各构件的选材、尺寸、结构形式、加工工艺等方面的设计。
四、牛头刨床机构的运动仿真。
选用CAD等软件对设计完成的机构进行运动仿真,检验机构的合理性、正确性和有效性。
五、设计说明书的撰写。
撰写设计说明书,包括机床的工作原理、构造设计、工艺要求、加工及调试方法等方面的内容。
六、设计成果(1)设计完成的牛头刨床机构模型。
(2)牛头刨床的结构和工作原理分析报告。
(3)牛头刨床机构的设计方案报告。
(4)牛头刨床机构的构造设计报告。
(5)牛头刨床机构的运动仿真报告。
(6)设计说明书。
七、注意事项(1)本次课程设计需要大量运用机械原理知识,对于机械原理的理解和掌握是非常重要的。
(2)在设计过程中需要注意结构的合理性、稳定性、可靠性和经济性。
学院:专业班级:学生姓名:学号:日期: 2012年01月12日目录:一.机构简介 (3)导杆机构的运动分析 (3)计算数据 (4)二. 设计(计算)说明书 (4)1.导杆机构的设计(1)画机构的运动简图 (5)(2)对位置点进行速度分析和加速度分析 (7)(3)对位置2点进行速度分析和加速度分析 (8)(4)对位置8点进行动态静力分析 (9)(5)对位置2点进行动态静力分析 (14)2.凸轮机构的设计 (19)3.齿轮机构的设计 (24)三.参考文献 (27)一.机构简介牛头刨床是一种用于平面切削加工的机床。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨刀每次削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构,使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减少主轴的速度波动,以提高切削质量和减少电动机容量。
图1-11.导杆机构的运动分析已知曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。
要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上。
1.1设计数据牛头刨床是一种用于平面切削加工的机床。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作切削。
此时要求速度较低且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率。
为此刨床采用急回作用得导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮机构带动螺旋机构,使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需装飞轮来减小株洲的速度波动,以减少切削质量和电动机容量。
设计数据:设计内容导杆机构的运动分析导杆机构的动态静力分析符号n2 L0204 L02A L04B L BC L04S4 X S6 Y S6 G4 G6 P Y P J S4 单位r/min mm N mm kgm2方案Ⅰ60 380 110 540L04B L04B240 50 200 700 7000 80 Ⅱ64 350 90 580L04B L04B200 50 220 800 9000 80 Ⅲ72 430 110 810L04B L04B180 40 220 620 8000 100曲柄位置的确定曲柄位置图的作法为:取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3 (12)等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置(如下图)。
图1-2选择表Ⅰ中方案1取第2位置和第8位置(如下图1-3)。
AA图1-3速度分析以速度比例尺µ=s)/m m和加速度比例尺µa=s²)/m m用相对运动的图解法作该两个位置的速度多边形和加速度多边形如下图1-4,1-5,并将其结果列入表格(1-2)v A2=v A3= ω2l O2A=s表格1-1位置未知量方程2和8杆V A4υA4=υA3+υA4A3大小? √?方向⊥O4A⊥O2A∥O4BV C5υC5=υB5+υC5B5大小? √?方向∥XX⊥O4B⊥BCa A4a A4 =a nA4+ a A4τ= a A3n + a A4A3K + a A4A3r 大小:ω42l O4A? √2ω4υA4A3?方向:B→A⊥O4B A→O2⊥O4B(向左)∥O4B(沿导路)a c5V B5=V B4a c5= a B5+ a c5B5大小? √?方向∥XX √⊥BC2杆速度图:如图1-4v A4=μv L pa4==sω4=v A4/l O4A==sv B=ω4l O4B=v C=μv L pc= =s图1-42杆加速度图:如图1-5由速度已知曲柄上A(A2 A3 A4)点开始,列两构件重合点间加速度矢量方程,求构件4 上A 点的加速度aA4,因为:a A2=a A3=w2l02A =(2π)2xl o2A =(2π)s2=s2a n A4=w24l o4A=KA4A3=2w4v A4A3=图1-5 a=u a L p’c==s2c8杆速度图:如图1-6图1-6 va2=va3=w2l02a=sV a4= v a3+ v a4a3大小?√√方向⊥O4a ⊥O2an A a 4C aI6Al S4A =93. l O4A =383.ΣM A =F R54cos18。
l AB µl +M S4+ F I4cos4。
l S4A µl +G 4sin13。
l S4A µl +F RO4τl O4A µl =0代入数据, 得F RO4τ = N 方向垂直O 4B 向右ΣF = F R54 + F R34 + F´S4 + G 4 + F RO4τ + F RO4n =0方向: ∥BC ⊥O 4B 与a S4同向 ∥y 轴 ⊥O 4B ∥O 4B大小: √ ? √ √ √ ?作力的多边形如图1-8所示,选取力比例尺µP =50N/mm 。
图8F R34=EA·µN=9025NF RO4n =FA·µN=2000N方向:∥O4B向下因为曲柄2滑块3的重量可忽略不计,有F R34 = F R23= F R322.1.3对曲柄分析,共受2个力,分别为R32,R12和一个力偶M,由于滑块3为二力杆,所以R32=R34,方向相反,因为曲柄2只受两个力和一个力偶,所以F R12与F R32等大反力,由此可以求得:h2=,则,对曲柄列平行方程有,ΣM O2=M-F42·h2=0 即即M=·m第二节凸轮机构的设计㈠凸轮机构的设计要求概述:⒈已知摆杆9作等加速等减速运动,要求确定凸轮机构的基本尺寸,选取滚子半径,将凸轮实际轮廓㈠凸轮机构的设计要求概述画在2号图纸上。
该凸轮机构的从动件运动规律为等加速等减速运动。
各数据如表:符号ψmax l O9DΦΦs Φ’【α】单位度mm 度度数据15.125 75 10 75 40推程0≤2φ≤Φo /2 回程Φo+Φs≤φ≤Φo+Φs+Φ'o/2ψ=24*Φ*Φ/(25*π)ψ=π/12-24(φ-17π/36)2/25πω=96φ/25 ω=-96(φ-17π/36)2/25β=192π/25 β=-192π/25推程Φo /2≤φ≤Φo回程Φo+Φs+Φ’o/2≤φ≤Φo+Φs+Φ’oψ=π/12-24(5π/12-φ)2/25ψ=24(8π/9-φ)2/25πω=96(5π/12-φ)2/12 ω=-96(8π/9-φ)2/25β=-192π/25 β=192π/25(1)、角位移曲线:φ()ψ()φ()图(1)①、取凸轮转角比例尺μφ=°/mm和螺杆摆角的比例尺μψ=°/mm在轴上截取线段代表,过3点做横轴的垂线,并在该垂线上截取33'代表(先做前半部分抛物线).做03的等分点1、2两点,分别过这两点做ψ轴的平行线。
②、将左方矩形边等分成相同的分数,得到点1'和2 '。
③、将坐标原点分别与点1',2',3'相连,得线段O1',O2'和03',分别超过1,2,3点且平行与Ψ轴的直线交与1",2"和3".④、将点0,1",2",3"连成光滑的曲线,即为等加速运动的位移曲线的部分,后半段等减速运动的位移曲线的画法与之相似.(2)角速度ω曲线:①、选凸轮转角比例尺μφ=°/mm和角速度比例尺μω=(rad/s)/mm,在轴上截取线段代表。
'φ(°)ω()图(2)②由角速度方程可得φ=φo/2,ω= ωmax ,求得v换算到图示长度,3点处φ=Φ/2,故ωmax位于过3点且平行与ω轴的直线.由于运动为等加速、等减速,故连接03'即为此段的角速度图,下一端为等减速连接3'6即为这段角速度曲线。
③其他段与上述画法相同,只是与原运动相反。
(3)角加速度曲线:①选取与上述相同的凸轮转角比例尺μφ=°/mm和角加速度比例尺μβ=(rad/s)/mm在轴上截取线段代表。
②由角加速度方程求的角加速度β.因运动为等加速,等减速,故各段加速度值也相同,只是方向相反.序号偏角0 0°1 °2 °3 °4 15°5 15°③13段为加速段β为正值,β轴上取β做平行于13的直线段即为1、3段的加速度,其余各段与3做法相似。
β(°)φ(°)图(3)4作摆动从动件盘形凸轮轮廓设计: ⑴设计原理设计凸轮轮廓依据反转法原理。
即在整个机构加上公共角速度(-ω)(ω为原凸轮旋转角速度)后,将凸轮固定不动,而从动件连同机架将以(-ω)绕凸轮轴心逆时针方向反转,与此同时,从动件将按给定的运动规律绕其轴心相对机架摆动,则从动件的尖顶在复合运动中的轨迹就是要设计的凸轮轮廓。
⑵设计凸轮轮廓: A、绘制凸轮的理论轮廓线[既滚子轴心实际轮廓]①将ψ-φ 曲线图(如图(1))的推程运动角和回程运动角个分成4等份,按式求个等分点对应的角位移值:ψ1=μψ1*11'',ψ1=μψ2*22'',……,的数值见表(1)。
②选取适当的长度比例尺μl 定出O2和O9的位置(选取μl=mm )。
以O2为圆心,以r 0/μl 为半径,作圆,再以以O2为圆心,以r b /μl 为半径作基圆。
以O 9为圆心,以l O o9D/μl 为半径,作圆弧交基圆与D O (D ’O )。
则O 9D O 便是从动件的起始位置,注意,要求从动件顺时针摆动,故图示位置D O 位于中心线O 2O 9的左侧。
③ 以O 2为圆心,以l O o9 O 2/μl 为半径作圆,沿(-ω)[即为逆时针方向]自O 2O 96 °7 °8 ° 90°开始依次取推程运动角Φ0=75°,远休止角Φs=10°,回程运动角Φo’=75和远休止角Φs’=200°,并将推程和回程运动角各分成4等份,得O91 ,O92, O93……O99各点。