当前位置:文档之家› 页岩气钻井技术新进展

页岩气钻井技术新进展

页岩气钻井技术新进展
页岩气钻井技术新进展

网络出版时间:2017-03-01 17:44:48

网络出版地址:https://www.doczj.com/doc/a012494474.html,/kcms/detail/13.1614.G3.20170301.1744.004.html

页岩气钻井技术新进展

李东杰,王炎,魏玉皓,张彬,于建涛,张波,廖沫然

中国石油华北油田公司

摘要:当前页岩气开发技术日益先进和成熟,水平井技术和大规模储层改造成为非常规油气开发的关键。追踪研究国外近年在页岩气水平井开发中应用的典型新技术,如在钻井工具方面有旋转导向闭环系统、电磁无线随

钻测量装置、新型裸眼侧钻斜向器、随钻成像工具等先进工具出现;在钻头和钻井液方面,贝克休斯等国外石油

公司针对页岩特性,研制推出了ONYX Ⅱ Spear和Talon 3D矢量等系列的PDC钻头,创新优化出了多种新型高

性能水基钻井液;并不断探索“井工厂”作业模式升级换代。文章结合国内目前技术现状,提出了未来中国页岩

气钻井技术应尽快完成核心技术和工具的国产化,继续加大低成本替代技术研究力度,开展储层地质与工程一体

化,以实现页岩气经济有效开发。

关键词:非常规油气;钻井;PDC钻头;钻井液;井工厂;作业模式;新技术

中图分类号:TE24文献标识码:A

21世纪以来,美国通过以水平井钻井和多级水力压裂为代表的开发技术,掀起了“页岩气革命”,很快这股浪潮席卷全球,目前有约30个国家加入了页岩气勘探开发行列。我国也相继在四川长宁、威远,重庆涪陵、彭水,云南昭通等地开展了页岩气开发,并于2014年在重庆涪陵实现了页岩气商

业化开发,但整体而言仍处于初级阶段[1,2]。

目前页岩气在钻井技术方面仍面临许多挑战,如页岩地层的强水敏性和地应力变化,引起井壁失稳严重;三维长水平段水平井摩阻扭矩大,托压严重,轨迹控制困难;储层预测难度大,优质储

层钻遇率制约单井产量再上水平;低油价环境下,降低投资成本急迫,倒逼现有提速技术手段和高

效作业模式亟待优化升级等[3,4]。为解决上述挑战,近年来国外在页岩气等非常规油气的钻井方面取

得了不少新进展,从一定程度上代表了今后非常规油气乃至常规油气钻井的发展方向[5-7]。

1钻井工具

水平井能降低费用、最大限度钻遇油气层,可使井数减少50%~80%,是页岩气开发的主力井型。近年来在水平井钻井方面出现了以下几种代表性新工具。

1.1旋转导向闭环系统(RCLS)

目前国外页岩气水平井轨迹控制多采用三维旋转导向闭环系统,其核心为旋转导向工具,结合随钻地质参数测量系统、地面井下双向信息传输系统和地面监控系统组成的智能闭环钻井系统[8,9]。

旋转导向工具具有独立电动液压模块和控制系统,可通过精确控制3个转向臂与井壁的连续作用力实现导向,同时利用闭环控制系统每秒自动测量套筒位置,及时修正摩擦与振动引起的套筒非

正常转动,确保导向矢量方向准确。最终实现在钻柱旋转的同时完成钻进、监测和导向作业,从而

解决了非常规油气水平井在水平段滑动钻井时间过长、控制井眼轨迹难度大、摩阻和扭矩高,以及

钻完井周期长、投资成本高的问题,实现了在变化的钻井环境中保持相容性和一致性,保证井眼质

量,实现高效钻井。

目前在北美页岩气水平井中,常规旋转导向工具让单一井段“一趟钻”渐成常态,而高造斜率旋转导向工具(15°~18°/30m)则实现了双井段甚至三井段的“一趟钻”(图1)。国内方面,由于国

产旋转导向工具还处于试验阶段,为控制成本多采用“优化井眼轨迹+常规导向动力钻具+减摩减阻

工具”的方式,其中减摩减阻工具多采用水力振荡器,但该工具压耗偏大、耐蚀损性能偏弱,同时

影响MWD、LWD等仪器的信号采集,这些也制约了水力振荡器在页岩气水平井中的推广[10]。

NM连接扣MWD探测器组合动力&遥测柔性稳定器导向机构

图1 3D旋转导向闭环钻具组合结构(高造斜率)

1.2电磁无线随钻测量装置(EM-MWD)

目前传统钻井液脉冲无线随钻测量装置(Pulser MWD),依靠钻井液压力脉冲波传递信号,无法在泡沫、充气等非液体钻井中应用,且传输速率较慢,而电磁无线随钻测量装置通过低频电磁波

将信号从地下传输至地面,通过地面天线接收信号之后解码、处理为可利用的参数[11]。该装置主要

分为间隙接头、着陆器接头和发射机探测器3个部分,其中间隙接头主要负责分离两个电极天线,向地层放射电磁波;着陆器接头由卡箍接头和压力扶正器组成,后者位于着陆器接头卡箍上,下端连接探针,配有井眼和环空传感器;发射机探测器包括发射机传到井口的电子系统、井眼的压力电子数据及环空压力测试器(井底钻进问题早期检测),高分辨率数据记录的存储器模块,整个装置以锂电池组作为电源(图2)。

时间仅为1.3

图3 新型斜向器裸眼侧钻工艺井身结构图

威德福公司在北美Fayetteville 页岩区块应用这种新型造斜器实现了无固井裸眼侧钻,避免了注水泥、候凝及钻塞造斜等工序带来的时间消耗和施工风险,解决了在裸眼导孔内进行侧钻的问题。

1.4随钻测井成像工具

近年来,随钻测井系列不断完善,在数据传输精度和探测深度方面都有显著提高,优质储层钻

发射机探测器

着陆器接头

间接接头

裸眼造斜器(带有封隔器)初始导眼页岩(目的层)页岩

遇率不断以往钻速。新幅提升[1马测量方评价层间4)。

传统

推出Ge 测量,并测范围提5)。目前储层为富数据,不水平段进国内整体处于成出一套术,相比2钻头

优质PDC 钻头断提高,开发往LWD 电子新一代LWD 3]。贝克休斯方法,实时识间边界和地层

统测绘工具探eosphere 储层并对返回数据提高至30m ,前该技术已在富含海绿石的不断校正油藏进尺815m ,较内随钻成像技于起步阶段,套“随钻伽马比租用国外先质高效钻头是头在攻击性、接Re 接收器

Receiver 发效益也不断子成像工具受D 电子成像工斯在北美Bar 识别断层与裂层倾角,展示探测深度有限层随钻测绘系据进行对比,可实时提供在北美、北海的砂岩,厚度藏模型,最终较设计增加技术在关键电离商业应用马+综合录井先进地质导向是钻井提速降稳定性和持接收器

eceiver

断提升。

受钻井液信道工具通过扩大rnett 页岩研发裂缝,显示裂井眼轨迹和裂图4 L 限(4.5~6m ),系统,将多种完成储层测供整体储层规海、俄罗斯和度只有2~5m ,终两口井实现65m ,后期试图5 Geos 电路、机械部用尚有不少距+岩屑快速分向服务,可降降本的重要利持久性等方面道限制,分辨大发射频率和发出高分辨率裂缝形状、交裂缝交互作用LWD 实时伽马

在薄储层或种复合接头安测绘。该系统规模,及时优和中东等150且电阻率低现了一趟钻完试油达到127sphere 储层随部件制作等方距离。由于受分析、显微放降低成本30%利器,近年来面又取得了长发射Transm 辨率较差,为和增大色度谱率LWD 电子交叉情况、连用,结合旋转马成像法

或地质情况复安装在底部钻由1个发射优化井眼轨迹个油田应用低,运用该储钻,储层钻遇72m 3/d ,远超钻测绘系统

方面在国外技受地质导向技放大识别”的%以上。

来国外钻头厂长足进步,促器

mitter

为保证成像分谱识别能力等子成像工具S 连续性,协助压转导向技术精

复杂井中不适钻具中,随钻器和2个接迹,提高对优,在北海油储层随钻测绘遇率达到98超预期。

术的基础上取技术限制,目前地质工程一商针对页岩地促使在页岩气辨率,必须降手段,使成像StarTrak ,利用压裂改造位置精确优化井眼适用[14]。由此斯进行深部定收器组成,将质储层的钻遇田的两口水平绘技术,结合地8%和96%,第

取得一定突破前国内页岩气体化储层跟踪地层设计出的钻井中单井段降低机械像质量大用方位伽置选择,眼轨迹(图

斯伦贝谢向电阻率将储层预遇率(图

平井中,地面地震第一口井破,但还气开发集踪钻进技的个性化段的一趟

钻渐成常态,双井段的一趟钻层出不穷,多井段的一趟钻已不再是个案[15-18]。

2.1ONYXⅡSpear钢体PDC钻头

斯伦贝谢Smith钻头公司IDEAS 综合钻头设计实验平台,专为页岩地层推出ONYX钻头系列新产品——ONYX ⅡSpearPDC钻头,通过改变刀翼尺寸,增大岩屑槽的过流面积,提高钻屑进入环空的效率;钻头表面电镀“防泥包涂层”,将钻头表面带负电性,排斥钻井液中负电固体颗粒,降低钻头泥包风险;采用高温高压合成的优质切削齿,提高耐冲击性和耐研磨性;缩小切削齿尺寸、优化切削齿布齿和减小刀翼高度,减小了钻头黏滑现象,提高工具面控制能力(图6)[19]。

图6 ONYX Ⅱ Spear PDC钻头及水力学效应4D模拟

该钻头在造斜段和水平段均适用,目前已成功用于Bakken,Barnett,Marcellus,Haynesville和Eagle Ford等页岩气田。2011年初,在Haynesville一口页岩气水平井中,一只Ф171.45mm(6?in)Spear SDi611 PDC钻头配合可调弯度螺杆(弯度调节范围1.5°~2.6°),实现“造斜段+水平段”1848m 进尺一趟钻完成,用时122h,平均机械钻速为15.15m/h,节省钻井周期124h,节约钻井成本36.5万美元。2013年初,在Eagle Ford一口页岩气水平井中,一只Ф215.9mm(8?in)Spear Sdi513 PDC 钻头配合斯伦贝谢高造斜率旋转导向系统Power Drive Archer,实现了二开“直井段+造斜段+水平段”3277.8m进尺一趟钻完成,平均机械钻速为16.76m/h,钻进周期8d,

较邻井节约4d。

2.2Talon 3D矢量系列 PDC钻头

贝克休斯公司在Talon 钻头基础上增强了定向能力,升级研发出

Talon 3D矢量系列PDC钻头。该类型钻头具有发散式的排屑槽,更有

利于提高排屑效率;更短的弯曲半径,增强了导向能力和造斜率;采

用一体式刚体结构,表面经StayTough表面敷焊特殊耐磨材料,延长了

钻头寿命,PDC复合片经特殊抛光处理,减少切削齿泥包现象;特殊

的钻头中心破岩工艺,提高了钻头攻击性(图7)。这种个性化PDC钻

头适合钻垂直井段、造斜井段和水平井段,与高造斜率旋转导向钻井

系统一起使用有可能实现页岩气水平井二开“垂直段+造斜段+水平井

段”一趟钻完钻。

图7 Talon 3D矢量系列PDC钻头

在HaynesvilleФ171.45mm的Talon 3D PDC钻头配合弯螺杆钻具,实现了造斜段和水平段共1727.9m进尺一趟钻完成,用时162h,平均机械钻速为10.67m/h,较邻井提高41%,单只钻头进尺较邻井增加181%,周期缩短67h,节省钻井投资10.1万美元。

3钻井液

页岩气井壁失稳一种是由强水敏性地层(蒙皂石含量高达80%以上)及钙、膏泥岩的水敏性坍塌造成;另一种是由地应力引起的层理发育的泥页岩地层的硬脆性坍塌造成的[20]。虽然油基钻井液一直是页岩气水平井首选使用的钻井液,但随着对地层认识的逐渐深入和钻井液技术的不断进步,国外技术人员在开发页岩气高性能水基钻井液方面进行了大量探索。

3.1 SHALEDRIL系列水基钻井液

哈里伯顿公司针对部分页岩钻井研发出SHALEDRIL系列水基钻井液,它具有超低的固相含量,可降低固相侵入和孔隙堵塞,具有较好的储保作用;其专有的凝胶结构有效地提升了钻井液携岩和密度控制能力;还研发了适于高温高压井高黏隔热钻井液,可减小地层伤害、提高油生产能力、保护套管。

3.2 LATIDRILL水基钻井液

贝克休斯公司研发的LATIDRILL页岩水基钻井液体系,可与其他常规水基钻井液配合来抑制黏土水化,可在高温高压条件下附着在钻具和钻屑表面来提高钻速,其整体性能及稳定性可媲美油基钻井液体系,还大幅降低了清理附油钻屑的时间。

3.3HydraGlyd水基钻井液

M-I SWACO公司为敏感性页岩区研发HydraGlyd水基钻井液体系,该体系采用HydrSpeed低成本润滑剂,可达油基钻井液润滑水平,其独有的化学特性能可形成高质量滤饼,可减小井壁失稳风险;HydraHib聚胺类页岩抑制剂,通过调节浓度来调节井壁稳定性;HydraCap包被剂,可替代水解聚丙烯酰胺(PHPA),抑制黏土膨胀及分散,保持井筒完整性,与 PHPA 相比,用量更小、分散能力更强、剪切黏度更低。

在Mildlan盆地一口页岩气井中,采用HydraGlyde高性能水基钻井液在含有页岩、石灰岩交互夹层的水平段钻进1900m,钻进时间3.5d,较邻井使用强抑制性水基钻井液相比,平均机械钻速提高16%,扭矩降低 18%。

国内页岩气钻井液方面主要以油基钻井液为主,目前油基钻井液室内实验性能已达到国外同类水平,其中乳化稳定性、流变性和封堵性甚至更优于国外同类产品,现场应用也基本解决了页岩井壁垮塌难题,可满足页岩气水平井安全钻井要求。在高性能水基钻井液方面国内也有突破,研制出CQH-M1和DRHPW-1等高性能水基钻井液体系, CQH-M1体系具有无土相、高效封堵、复合抑制等特点,已现场应用10余口井,其中在威远区块创下井深5250m、井温130℃、页岩进尺2238m等多项纪录;DRHPW-1体系具有强抑制性和封堵性、高润滑性和热稳定性,整体性能达到油基钻井液水平,首次应用在昭通YS108H4-2页岩气井就创造该地区钻井周期37.17d的新纪录。但整体而言国内高性能水基钻井液还无法全面满足页岩气开发需要,水平段钻进过程中井壁垮塌异常严重,卡钻、埋钻具等复杂事故多发。

4作业模式

低成本开发和快速投产是页岩气等非常规油气开发的关键,而“井工厂”作业则是低成本开发的核心,也正是“井工厂”作业模式的发展,全球页岩气产量自2008年以来出现井喷式增长。

“井工厂”作业是指利用一系列先进钻完井技术和装备、通讯工具,系统优化管理整个建井过程涉及的多项因素,集中布置进行批量钻井、批量压裂等作业的一种作业模式。这种作业方式能够利用快速移动钻机对单一井场的多口井进行批量钻完井和脱机作业,以流水线的方式,实现边钻井、边压裂、边生产[21-24]。

目前,“井工厂”作业模式已由“接替流水线作业”升级为“同步流水线作业”井工厂,实现了在同一井场,多种作业有序并行,同时引入大数据分析,开展资源定位、井位选取、方案筛选、参数优化、远程调控等技术或组织措施的优化,这种基于大数据的高级井工厂钻井作业模式也将有望推动页岩2.0时代的到来(图8)。

图8 “井工厂”作业模式优化流程

国外EOG资源公司、康菲、哈里伯顿、斯伦贝谢等页岩气开发商或油服公司,开始将勘探开发中采集的大量孤立、散乱的数据加以分析应用,取得了极大的经济效益,如优质井数量增加,采气成本降低,老井产量提高甚至翻倍等[25,26]。

国内“工厂化”钻井最早是由海洋平台丛式钻井理念发展起来的。2011年以来,中国石化在大牛地气田、胜利油田盐227区块、涪陵页岩气田,中国石油在苏里格南合作区和苏53区块、威远—长宁页岩气田,都先后开展了“井工厂”作业模式的探索,形成了基于各自地面条件、地质情况、配套装备、技术状况和组织管理模式的中国特色“井工厂”作业模式[1]。目前,苏里格南合作区的“井

工厂”作业模式最为成熟,涪陵页岩气也攻克了山地特色“井工厂”钻井关键技术,但综合水平与

国外相比仍有较大差距,主要表现在设备自动化程度低、关键工具及材料对外依存度高等方面,如

快速移动式电驱钻机国外普遍应用滑轨式和步进式自动化钻井设备,国内仍处于对陆地钻机的改装

阶段,主要以滑轨式钻机为主;高造斜率旋转导向系统国内目前仍处于研发测试阶段,离商业应用

还有较远距离。

6 结论

(1)国外在旋转导向、地质导向、高性能水基钻井液、高效PDC钻头、自动化钻机等页岩气钻

井核心技术方面仍然处于垄断地位,这些是国内页岩气开发再上一个台阶必须跨越的大山,应尽快

通过“引进、吸收、改进、创新”的方法,完成核心技术和工具的国产化,这是页岩气实现效益开

发的根本;另一方面也要继续加大低成本替代技术的比例和研究试验力度,解决当前实际开发成本

问题。

(2)国内页岩气等非常规油气与国外在地质条件复杂,配套装备和技术状况不同,组织管理模

式也存在差异,“井工厂作业是必然之路”,应借鉴国外先进技术经验,立足国情,取长补短,继续

优化升级中国特色页岩气开发钻井技术和模式。

(3)页岩气储层非均质性强,客观地认识储层地质特征是页岩气经济有效开发的前提与基础;开展页岩气储层地质与工程一体化,即地质特征与钻完井及压裂设计有机融合的一体化技术,是实

现页岩气经济有效开发的保证[27]。

(4)由于目前国际油价低位徘徊,使得全球页岩油气开发的步伐有所放慢,但从国家能源战略

上考虑,仍要继续推进页岩油气的勘探开发,并鼓励投资主体多元化,引入有实力的中小型企业,

相互竞争,共同降低开发成本。

参考文献

[1]严向阳,李楠,王腾飞,等.美国非常规油开发关键技术[J].科技导报,2015,33(9):100-101.

Yan Xiangyang, Li Nan, Wang Tengfei,et al. Key technologies for tight oil development in the United States[J].Science and Technology Review,2015,33(9):100-101.

[2]石林.中石油钻井工程技术现状、挑战及发展趋势[J].天然气工业,2013,33(10):1-10.

Shi Lin. Current situation, challenges and developing trend of CNPC′s oil & gas drilling[J]. Natural Gas Industry, 2013, 33(10): 1-10.

[3]唐代绪,赵金海,王华,等.美国Barnett页岩气开发中应用的钻井工程技术分析与启示[J].中外能源,2011,

16(4):50-51.

Tang Daixu, Zhao Jinhai, Wang Hua, et al. Technology analysis and enlightenment of drilling engineering applied in the development of Barnett shale gas in America[J]. Sino-Global Energy, 2011,16(4):50-51.

[4]张茂林.万云祥,谢飞龙,等.吉木萨尔非常规油钻井提速技术与实践[J].石油钻采工艺,2014,36(5):18-21. ZhangMaolin,WanYunxiang,XieFeilong,et al.Technology and practice of increasing drilling rate for tight oil in Jimusar[J].Oil Drilling and Production Technology,2014,36(5):18-21.

[5]张玉胜,刘庆,朱礼平,等.JY1HF页岩气水平井钻井技术[J].天然气技术与经济,2016,10(5):40-43. ZhangYusheng, Liu Qing, ZhuLiping,et al. Shale-gas horizontal-well drilling technology for JY1HF well[J]. Natural Gas Technology and Economy,2016,10(5):40-43.

[6]许坤,李丰,姚超,等. 我国页岩气开发示范区进展与启示[J]. 石油科技论坛,2016,35(1): 44-49.

Xu Kun, Li Feng, Yao Chao, et al. Progress in China’s demonstration zones of shale gas development[J]. Oil Forum, 2016,

35(1): 44-49.

[7]白玉湖,陈桂华,徐兵祥,等. 页岩气产量递减典型曲线模型及对比研究[J]. 中国石油勘探,2016,21(5): 96-102. BaiYuhu, Chen Guihua, XuBingxiang,et al. Comparison of typical curve models for shale gas production decline prediction. China Petroleum Exploration, 2016, 21(5): 96-102.

[8]郭先敏,侯芳.国外钻井装备与技术新进展[J].石油机械,2016,44(7):20-26.

GuoXianmin,Hou Fang.Foreign drilling equipment and technology progress[J].China Petroleum Machinery,2016,44(7):20-26.

[9]陈志学,冯晓炜,崔龙连,等.致密砂岩气藏钻完井关键技术研究进展[J].科技导报,2013,31(32):74-79. ChenZhixue,FengXiaowei,CuiLonglian,et al. Advances in the key technologies of drilling and completion for tight sand-stone gas reservoirs[J]. Science and Technology Review, 2013, 31(32): 74-79.

[10]明瑞卿,张时中,王海涛,等.国内外水力振荡器的研究现状及展望[J].石油钻探技术,2015,43(5):116-122.

Ming Ruiqing,Zhang Shizhong,Wang Haitao,etal.Research status and prospect of hydraulic oscillator worldwide[J].Petroleum Drilling Techniques,2015,43(5):116-122.

[11]廖少波.电磁随钻测量技术的发展探讨[J].石化技术,2016,37(2):60-61.

Liao Shaobo. Discussion on the development of electromagnetic measurement-measurement while drilling technology[J].Petrochemical Industry Technology,2016,37(2):60-61.

[12]杨涛,易铭.Blackstar EM-MWD在煤层气水平井中的应用[J].中国煤炭地质,2010,(8):137-138.

Yang Tao, Yi Ming. Application of Blackstar EM-MWD system in CBM horizontal wells[J]. Coal Geologyof China,2010,(8):137-138.

[13]曾义金.页岩气开发的地质与工程一体化技术[J].石油钻探技术,2014,42(1):1-6.

ZengYijin.Integration technology of geology andengineering for shale gas development[J].Petroleum Drilling Techniques,2014,42(1):1-6.

[14]王丽忱,甄鉴,陈冬炜.近年测井技术新进展及测井行业发展趋势[J].国际石油经济,2015,23(9):51-55.

Wang Lichen,ZhenJian,ChenDongwei.Technological progress driven growth in the well-logging industry[J]. International Petroleum Economics, 2015,23(9):51-55.

[15]郑家伟,国外金刚石钻头的新进展[J].石油机械,2016,44(8):31-36.

ZhengJiawei.New Development in foreign diamond drill bit[J].China Petroleum Machinery,2016,44(8):31-36.

[16]Fleming C. Economics challenge drill bit manufacturers to reduce drilling costs [J]. World Oil, 2015,(12) : 55-59.

[17]Joanne Liou. New bits look beyond design at overall wellbore/Advanced cutters,manufacturing methods,data analysis help extend bit life, performance[J].Drilling contractor,IADC,2012,(7-8).

[18]全球七大最具创新钻头牛在哪里[EB/OL].[2016-01-08].https://www.doczj.com/doc/a012494474.html,/s/ blog_151503f9e0102w8hb.html.

[19]左汝强.国际油气井钻头进展概述(四)——PDC 钻头发展进程及当今态势(下) [J].探矿工程(岩土钻掘工程),2016,43(4):40-48.

ZuoRuqiang. International advancement of drilling bits for oil and gas well ( 4) —PDC Bits progress and present trend[J]. Exploration Engineering (Rock &Soil Drilling and Tunneling), 2016,43(4):40-48.

[20]龙大清,樊相生,王昆,等.应用于中国页岩气水平井的高性能水基钻井液[J].钻井液与完井液,2016,33(1):17-21. LongDaqing,FanXiangsheng,Wang Kun,et al. High performance water base drilling fluid for shale gas drilling[J]. Drilling Fluid and Completion Fluid, 2016, 33(1): 17-21.

[21]陈新龙,徐军,高迅,等.涪陵页岩气开发“井工厂”钻机现状及发展[J].石油机械,2015,43(9):32-36.

Chen Xinlong,Xu Jun,GaoXun,et al. status and prospect of multi-well pad drilling rig for shale gas development in fuling [J].China Petroleum Machinery,2015,43(9):32-36.

[22]王淑玲,吴西顺,张炜,等.全球页岩油气勘探开发进展及发展趋势[J].中国矿业,2016,25(2):7-15.

Wang Shuling,Wu Xishun,Zhang Wei,et al. Progress and trend of global exploration and development forshaleresources[J]. China Mining Magazine, 2016,25(2):7-15.

[23]罗佐县.美国海恩斯维尔页岩气产业发展模式分析与启示[J].石油科技论坛,2016,35(1):50-55. LuoZuoxian. Analysis of US Haynesville shale gas industrial development pattern[J].Oil Forum,2016,35(1):50-55.

[24]陈平,刘阳,马天寿.页岩气“井工厂”钻井技术现状及展望[J].石油钻探技术,2014,42(3):1-7.

Chen Ping,Liu Yang,Ma Tianshou.Status and prospect of Multi-Well pad drilling technology in shale gas[J].Petroleum Drilling Techniques,2014,42(3):1-7.

[25]OlofHummes,Paul Bond,Anthony Jones,et https://www.doczj.com/doc/a012494474.html,ing advanced drilling technology to enable well factory concept in the Marcellus shale[R].SPE 151466,2012.

[26]Demong K L,Boulton K A,Elgar T,et al.The evolution of high density pad design and work flow in shale hydrocarbon developments[R].SPE 165673,2013.

[27]杨金华,何艳青,郭晓霞.美国油气钻井业发展的新特点与启示建议[J].国际石油经济,2014,22(9):20-28. YangJinhua, HeYanqing,GuoXiaoxia. Newly developed features of the U.S. oil and gasdrilling industry, and their implications[J]. International Petroleum Economics, 2014,22(9):20-28.

(收稿日期:2016-10-15)

页岩气水平井钻井技术

页岩气水平井钻井技术 摘要当前我国页岩气水平井钻井施工整体表现出成本高、周期长、复杂事故多等问题。针对这些问题,本文对国内页岩气井进行了技术跟踪,归纳了当前我国页岩气水平井钻井过程中所面临的轨迹优化及控制、井壁稳定、摩阻扭矩、井眼清洁以及固井技术等难点问题。 关键词页岩气水平井轨迹控制井壁稳定摩阻 美国页岩气资源的规模化开发和商业化利用,正在改变着世界能源格局,而同为世界能源进口大国的中国,同样拥有丰富的页岩气资源。政策以及相关支持政策的陆续出台,不但表明了我国政府大力发展页岩气资源的决心,而且正在积极推进我国页岩气产业的全面、快速发展。 页岩气是指赋存于富有机质泥页岩及其夹层中,以吸附或游离状态为主要存在方式,在一定地质条件下聚集成藏并具有商业开发价值的非常规天然气。与常规天然气藏相比,页岩气储层孔隙度主体小于10%,储层孔隙为0~500nm,孔喉直径介于5~200nm,渗透率极低,一般多采用水平井并经水力压裂技术改造后进行开发。当前,公认的具备商业开采价值的页岩气藏需具备以下条件:①页岩气储集层厚度大于100ft(30m);②富有机质页岩有机质丰富,TOC > 3 %;③成熟度Ro在1.1-1.4之间;④气含量>100ft3/t;⑤产水量较少,低氢含量;⑥黏土含量小于40 %,混合层组分含量低;⑦脆性较高,低泊松比、高杨氏弹性模量;⑧围岩条件有利于水力压裂控制。页岩气藏作为典型的连续型油气聚集,往往分布在盆地内厚度大、分布广的集“生-储-聚”为一体的页岩烃源岩地层中。页岩作为粘土岩常见岩石类型之一,是由粘土物质经压实、脱水、重结晶作用后形成的,其成分复杂,除包含高岭石、蒙脱石、水云母、拜来石等粘土矿物外,还含有诸如石英、长石、云母等碎屑矿物和铁、铝、锰的氧化物与氢氧化物等自生矿物,页岩层理构造发育,多呈页状或薄片状(图1左),并沿层理发育有大量裂隙和微裂隙(图1右),脆性高、易碎,外力击打作用下易裂成碎片,且吸水膨胀性强,长时间裸露浸泡后极易引起井壁缩径、垮塌、掉块等复杂事故。例如,四川威远-长宁构造完成的3口页岩气水平井,水平井段钻进过程多次遭遇井壁垮塌、掉块等复杂,引发卡钻、报废进尺等事故,并导致3口水平井储层段40%进尺作业占总作业时间70%以上。同时,页岩气水平井井壁失稳问题频发,不但严重影响到钻井周期、钻井成本等问题,还直接导致井身质量差、固井难度大、储层污染严重等问题,这些问题都给后续开发带来极为不利的影响。据不完全统计,截止2012年初,四川威远、长宁及云南昭通页岩气产业化示范区完钻的4口水平井,平均井深3357米,平均钻井时间118天,而北美地区井深4000~5000米,水平段1500~2000米的页岩气井钻井周期通常在15~20天,水平段钻井时间仅为5~8天。由此可见,我国相对落后的页岩气水平井钻井技术,已经成为制约我国页岩气工业快速发展的重要瓶颈。

井筒钻井新技术介绍

钻井新技术介绍 交流材料 编写人:刘修善刘月军 华北石油管理局钻井工艺研究院 2001年11月

目录 一、水平井钻井技术·····························································································2 二、分支井钻井技术·····························································································5 三、大位移井钻井技术···························································································8 四、地质导向钻井技术······················································································11 五、深井超深井钻井技术 ··················································································14 六、欠平衡钻井技术··························································································18 七、小井眼钻井技术··························································································21 八、连续油管钻井技术······················································································24

吴晓东页岩气勘探开发技术现状与展望

吴晓东复杂结构井/页岩气勘探开发技术现状与展望 6非常规气藏开发中面临的主要问题及解决思路? (1)深层超高压气藏的开发 ①动态监测,包括地层压力变化、底水上升、压敏性影响等: ?安全高效的钻完井技术; ③高压下的地面安全集输技术: (2)髙含硫气田的开发 ①防毒防腐的安全开采及集输技术; ②硫沉积的相态问题及英防治技术,有的还含C02,更加复杂化; ?生产动态的监测问题: ④地面脱硫与硫的综合利用: (3)大而积低渗透气田的开发 ①加强气藏描述,在差中选优,寻找相对富集区,逐步滚动发展,提高钻井成功率: ②提高单井产能:大型压裂、进一步提高压裂液的流变性能和携砂性能,减少压裂液对地层的伤害是大型压裂水平升级的关键,大型压裂的优化设计技术。 复杂结构井技术:提髙泄流范围,提高单井产能,尽可能穿过更多的质量较好的气层; 水平井段倾斜,减小对垂直流动造成的可能阻碍:尽可能穿过更多的与河道相交的水平和垂直阻流带:穿过多个砂体和裂缝带 ③降低建井成本 降低钻井成本(提高钻速,改变管理体制,市场化) 发展小井眼技术; (4)火山岩气田开发 ①火山岩气藏储层受火山口控制,岩性复杂,岩相变化剧烈,裂缝比较发冇,识别难度大,需要加强有效储层的描述和预测; ?渗透率低,发展有效的提高单井产能的技术; ③C02防腐及其分离和综合利用: (5)多层疏松含水气藏开发 ①防砂控水,研究出水后的防砂技术: ②大跨度、长井段开采工艺技术: (6)多层疏松含水气藏开发 ①C02的防腐: ? C02的分离及利用: 7页岩气综合地质评价? (1)基础地质特征①没有找到②页岩厚度和而积保证:充足的有机质,利于页岩气生成:储渗空间,利于页岩气富集。(2)地化分析①地化参数测试②生炷特征(3)储层研究①物性特征:孔隙度与页岩的气体总量之间呈正相关关系:随孔隙度的增加,含气疑中游离气量的比例增加。②温压条件。温度对页岩气成藏的影响:在相同压力下,温度增高,吸附气含量降低。压力对岩气成藏的影响:一方面,含气量与压力之间呈正相关关系:另一方面,压力对

页岩气钻井地质技术工作要求

页岩气资源调查评价 钻井地质技术工作要求 二○一三年二月

为确保页岩气资源调查评价项目保质保量按时完成上级下达任务,根据《页岩气勘查开发相关技术规程(试行)2012.8.》及国土资源部油气中心等有关要求,针对本项目工作具体情况,加强页岩气钻井地质技术管理,特制定以下页岩气钻井地质技术工作要求: 一、准备工作 1. 收集相关资料 页岩气钻井地质人员(岩芯编录人员,下同)应收集与本页岩气井相关的技术资料:规程或规范、井位论证报告、钻井工程及地质设计、井区及区域地质资料、其它有关技术学习资料等。 2. 工具、材料及表册 在出野外工作前,应充分准备工具或材料:照相机、罗盘、地质锤、钢卷尺、岩芯箱摄影牌(含标贴)、放大镜、盐酸;量倾角用直尺和量角器、黑中性笔、彩色标记笔、采样袋、绵纸、包装胶袋;钻探原始记录表(班报)、简易水文观测原始记录表(班报)、岩芯鉴定表、岩芯回次鉴定表、岩芯回次票、岩芯分层票、停钻通知书、岩芯处理报告书、测井通知书、封孔设计书、封孔报告书、采样登记表、送样标签、送样登记表(含测试项目)、开工报告、开孔验收书、钻探工程质量验收书等。 3. 其它准备工作 应熟悉井区地层、构造,熟练掌握井区各层位岩性、古生物化石等。 4. 钻井井场 钻塔、井场除按规定(责任、安全牌等)要求外,钻塔要求有红布标——“贵州省黔西南区××页×井”(纵幅挂),安全警戒线(附彩旗)。 岩芯用岩芯箱装,并有防水设备保护。 5. 钻井开工工作 页岩气井施工方将钻井工程设备安装、岩心箱(含岩心遮盖防温布)、安全及责任牌、场地准备就绪,地质人员接到施工方信息后,应立即把编制好的开工报告(一式四份)加盖项目承担单位、所在县国土地局、贵州省矿权储备局公章留存备案或送呈,现场验收钻井并填写开孔验收书(含签名)。 二、岩芯编录工作 钻井施工页岩气目的层的上覆地层孔深每100~200m,地质人员应及时进行现场岩芯鉴定编录,孔深至目的层之前20~50m,地质技术人员应随班钻井观察岩性及层位,孔深到达目的层时除随班钻井观察岩性及层位外,应随时跟踪泥页岩层(含砂泥岩软岩层)含气情况,及时配合现场解吸工作人员采解吸样,目的层孔深每50m应及时进行岩芯编录。 岩芯编录时,应仔细观察岩石的岩性、颜色、结构、层理、构造、节理、裂隙、结核、古生物化石等并依次记录。岩性属砂岩类还应观察记录分选性、磨圆度、胶结物,化石描述应尽量到属或种,腕足类、瓣腮类切忌混淆搞错。 岩芯编录时,凡泥页岩类岩层厚度0.5m以上应单独分层描述,若目的层厚大于100m,泥地比大于60%,0.5m以下泥页岩为其它主岩层的夹层原则上可不单独分层,但需注明井深段位置,否则应单独分层描述;凡颜色深(深灰色、灰黑色、黑色)的粉砂质泥岩、泥质粉砂岩厚度大于1m无论目的层厚度多少应单独分层描述;凡颜色深的粉砂岩、细砂岩、含泥灰岩、泥灰岩厚度大于2m无论目的层厚度厚薄应单独分层描述。 岩芯观察时若遇颜色深的碳酸盐类岩石与砂泥岩等岩石难以辨别,可借助盐

长宁页岩气田钻井技术难点及对策探讨_谢果

长宁页岩气田钻井技术难点及对策探讨 谢果1,任虹宇 2 (1.中国石油西南油气田分公司工程技术研究院,四川 广汉 618300; 2.中国石油西南管道德宏输油气分公司,云南 芒市 678400) 摘要:随着时代的进步,科技的发展,人类社会对油气资源需求量越来越大,油气资源成为了人类发展史上最为主要的资源之一。国家经济发展建设离不开油气资源,工业生产、国防建设离不开油气资源。随着油气资源开采力度的加大,世界范围内能源紧缺加剧,这使得页岩气成为油气勘探的新方向。我国页岩气虽然资源丰富,但地质条件较复杂,开发存在难度,气田钻井技术存在难点,如何解决值得研究。本文将针对长宁页岩气田钻井技术难点及对策展开研究和分析。 关键词:钻井技术;页岩气田;技术难点;对策中图分类号:TE242.9 文献标识码:A 作者简介:谢果(1987-),男,大学本科学历,助理工程师,研究方向:钻井技术及固井技术研究。收稿日期: 2016-03-10随着我国经济发展速度的加快,能源消耗问题日益突出,为了缓解国内能源供求矛盾,解决能源供应问题,寻找新能源势在必行。相关调查研究表明,全世界目前拥有6 600万亿立方英尺的可开发页岩气,中国拥有1 275万亿平方英尺可开发页岩气,占全球存储量的五分之一,说明我国完全可以开发页岩气田,缓解能源紧缺压力。但目前我国页岩气田开发刚刚起步,相关技术经验缺乏,尤其在钻井技术方面存在难点,如何进行技术改进值得研究。 1 页岩气田基本特征及其开发情况 页岩气是蕴藏于页岩层可供开采的天然气资源,指赋存于富有机质泥页岩及其夹层中,以吸附和游离状态为主要存在方式的非常规天然气,其成分以甲烷为主,主要分布在盆地内厚度较大、分布广的页岩烃源岩地层中[1],属于高效、清洁能源,应用领域非常广泛。当前很多发达国家都在尝试开发页岩气,从而解决常规天然气存储量下降问题。页岩气勘探开发成功率高,相对成本低,生产周期长,具 有较高工业经济价值[2]。 中国页岩气储备量世界第一,但开采难度较大,储层一般呈低孔、低渗透率的物性特征,气流阻力比常规天然气大,所有井都需实施储层压裂改造才能开采出来。目前中国页岩气开发仍处于起步阶段,距离商业化仍有一定距离。 2 长宁页岩气田钻井技术难点 长宁地形地势复杂,属于典型盆地,南北两端小, 中腹较大,地势南高北低,南部为中低山,中北部为丘陵。目的层埋深大于2 300 m ,深层页岩气埋深超过了4 500 m ,页岩气形成机理复杂,所储位置特殊,开发难度大。 (1)地层井壁稳定性差。保障地层井壁稳定性很重要,是保障正常开发的前提条件。影响井壁稳定性的因素多种多样,具有不确定性。长宁页岩地层非均质性及各向异性突出,有层理裂缝特征。因此,在钻井过程中,在外力作用下,页岩地层结构发生改变,超出应力荷载范围,将造成裂缝延伸,诱发质量安全问题,对井壁稳定性造成影响,导致井壁不能满足质量要求[3]。另一方面,长宁页岩地区,矿物成分脆性矿物含量较多,已经达到50%以上,所以脆性好,页岩地层强度低,也会严重影响井壁稳定性,甚至引起井下故障,发生井壁垮塌事故。 (2)井眼轨道复杂。为了保障经济效益的实现,减少井场数量,目前开发中主要采用的是丛式水平井。而这种井与常规水平井相比井眼轨道差距非常大,复杂性较强。丛式水平井是偏移距大的三维井眼轨道。为了实现地下井网全覆盖,所以通常情况下会利用交叉式开发模式,更进一步加大了井眼轨道复杂性。开发过程中长水平段,开发效率高,成本低。但水平井段并不是越长越好,长度增加不仅会诱发垮塌,更会加大钻井难度,提高钻井成本。此外,由于轨道复杂,工具的使用也会存在诸多限制和困难,会严重影响工具面摆放与控制。 3 长宁页岩气田钻井技术难点的对策 (下转47页) 谢果 等·长宁页岩气田钻井技术难点及对策探讨

647.2-2013_页岩气水平井钻井作业技术规范_第_2_部分:钻井作业(出版稿)

Q/SYCQZ 川庆钻探工程有限公司企业标准 Q/SYCQZ 647.2—2013 页岩气水平井钻井作业技术规范 第2部分:钻井作业 2013-12-22发布2014-01-22实施

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 钻井工程设计 (1) 4 井眼轨迹控制 (2) 5 防碰作业 (3) 6 水平段安全钻井 (3)

前言 《页岩气水平井钻井作业技术规范》分为五个部分: ——第 1 部分:丛式井组井场布置; ——第 2 部分:钻井作业; ——第 3 部分:油基钻井液; ——第 4 部分:水平段油基钻井液固井; ——第 5 部分:井控。 本部分为第 2 部分。 本标准按 GB/T 1.1-2009《标准化工作导则第 1 部分:标准的结构和编写规则》进行编写和表述。 本标准由川庆钻探工程有限公司提出。 本标准由川庆钻探工程有限公司钻井专业标准化技术委员会归口。 本标准起草单位:川庆钻探工程有限公司钻采工程技术研究院、川庆钻探工程有限公司川东钻探公司、川庆钻探工程有限公司川西钻探公司 本标准主要起草人:张德军、赵晗、卓云、叶长文。

页岩气水平井钻井作业技术规范第2部分:钻井作业 1 范围 本标准规定了页岩气丛式井组钻井工程设计、井眼轨迹控制、防碰作业、水平段安全钻井等内容和要求。 本标准适用于川渝地区页岩气井的钻井作业。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 SY/T 1296 密集丛式井上部井段防碰设计与施工技术规范 SY/T 5088-2008 钻井井身质量控制规范 SY/T 5416 定向井测量仪器测量及检验 SY/T 5435-2003 定向井井眼轨迹设计与轨迹计算 SY/T 5547 螺杆钻具使用、维修和管理 SY/T 5619 定向井下部钻具组合设计方法 SY/T 6332-2004 定向井轨迹控制 SY/T 6396 钻井井眼防碰技术要求 Q/SYCQZ 001 钻井技术操作规程 Q/SYCQZ 372-2011 丛式井井眼防碰技术规程 3 钻井工程设计 3.1 井身结构 3.1.1 表层套管应封隔地表漏层和垮塌层,相邻两井表层套管下深错开20 m以上。 3.1.2 水平井技术套管下入位置井斜应不低于60°,若井下出现严重垮塌、钻遇高压油气,可提前下入技术套管。 3.1.3 油层套管尺寸不小于 11 4.3 mm,抗内压强度与增产改造施工压力之比>1.25。 3.1.4 水平段长度宜控制在800 m ~ 1400 m。 3.2 靶区 3.2.1 靶区半径设计符合SY/T 5088-2008的规定,且满足井眼轨迹控制要求。 3.2.2 水平段井眼方向与地层最小主应力方向的夹角不小于 15°。 3.3 井眼轨道 3.3.1 每口井地下靶心与井口位置连线相互之间不宜空间交叉。

页岩气钻井关键技术及难点研究

页岩气钻井关键技术及难点研究 摘要:页岩气属于非常规天然气资源,国外的页岩气开发已经积累了一定的经验。我国的页岩气开发处于初级阶段,为了更好地开发页岩气,结合我国页岩气 井钻探的实际情况,对页岩气钻井关键技术进行研究,解决钻井的难点问题,不 断提高页岩气井钻探的效率。 关键词:页岩气;钻井;关键技术;难点分析 我国页岩气资源丰富,普遍存在分布广、丰度低、易发现、难开采等特点, 是具有自生自储、低孔低渗、无气水界面、大面积连续成藏的低效型气藏资源。据在川南和滇北地区的页岩气完钻井统计显示,页岩气开发主要存在地层不确 定因素多,压力及流体性质难以预测; 泥页岩和致密砂岩易水化膨胀、易破碎, 井壁不稳定; 固井易气窜,完井困难; 储层易损害,采收率低; 钻井速度慢,钻井 周期长; 开发技术难度大,钻井成本高等问题。为获得较高的钻井收益率,需要 掌握页岩气藏地层特点,预防和克服井下复杂情况,加快页岩气优快钻井配套 技术研究,实现我国非常规油气资源开发的突破与发展。 1.页岩气钻井关键技术 1.1页岩气进入井眼途径 页岩气井中,页岩气进入井眼的过程如下:在钻井、完井压降的作用下,裂 缝系统中的页岩气流(游离气)向井眼并且基质系统中的页岩气(吸附气)在基 质表面进行解析;在浓度差的作用下,页岩气由基质系统向裂缝系统进行扩散;在流动势的作用下,页岩气通过裂缝系统流向井眼。页岩气进入井眼途径复杂, 是钻井过程中的关键之一。 1.2钻井井位部署 页岩气的吸附气含量达到25 %~85 %,同时没有远距离的运移和聚合,因此,其开采必须借助于现代化的压裂工艺,通过进一步扩充裂缝,连通相关的孔隙, 从而获得一定产能的页岩气。以前由于压裂工艺和设备的限制,导致无法获得具 有工业价值的页岩气。现代设备和技术的快速发展,是目前页岩气工业能够快速 发展的重要因素之一。 1.3浅层大位移井 大位移井是在定向井、水平井技术之后又出现的一种特殊工艺井。大位移井 的定义一般是指井的水平位移与井的垂深之比等于或大于 2 的定向井且井斜角大 于 60°,具有很大的水平位移和很长的大井斜稳斜井段。地质导向工具、旋转导 向钻井系统、闭环钻井、先进的随钻测量系统、新型钻井液、先进完井工具得到 开发和应用,促进了长水平井钻井技术的迅速发展,目前已经钻成了水平位移超 过 10 000 m,最大水平段长度已达 6 000 m 以上。目前国内浅层大位移水平井钻 井研究情况非常缺乏。 2.页岩气水平井钻完井技术的难点分析 2.1井眼轨迹优化设计及控制 由于页岩气储层渗透率低,为了实现页岩气的高效开发,必须进行大量水平 井钻井,而长水平段水平井钻井过程中,如何有效降低摩阻扭矩,如何实现井眼 轨迹精确控制则是需要解决一个难点。为了获得更好的压裂效果、沟通更多的 天然裂缝以及井壁稳定的考虑,水平井眼轨迹通常设计为沿着最小水平地应力 方向,同时,为了降低钻井成本,国外多采用多井平台长水平段水平井开发,即 每平台 6~8 口水平井,最多可达 24 口井,水平段长度通常介于 1000~1500m,

美国页岩气开发现状及对四川盆地页岩气开发的建议

美国页岩气开发现状及对四川盆地页岩气开发的建议 张家振张娟孙永兴戴强杜济明 川庆钻探钻采技术研究院钻完井中心,广汉,618300; 摘要:伴随着世界能源供需矛盾的加剧和美国页岩气商业性开发的巨大成功,全世界将目光不约而同的聚焦于页岩气开发。四川盆地拥有潜力巨大的页岩气资源,且作为中国天然气的主要产区之一,加快页岩气的勘探开发及配套技术的研究和战略储备已迫在眉睫。本文着重调研了美国几个主要页岩气藏的完井开发现状,对四川区块的页岩气勘探开发做了简要概述,并针对目前情况提出了几点建议。 页岩气是产出于暗色泥页岩或高碳页岩中的天然气资源,和煤层气、致密砂岩气藏一样属于非常规天然气范畴。全球页岩气资源量巨大,据专家预测可能为常规天然气资源量的2倍,全世界的页岩气总资源量约为456×1012m3[1]。 页岩气藏储层一般呈低孔、低渗透率的物性特征,气体的阻力比常规天然气大,采收率比常规天然气低,一般认为必须采用水平井钻探并进行大型水力压裂增产作业,或采用多分支井等其他技术增加井眼与气藏沟通面积才可获得商业油气流[2]。1 美国页岩气资源 美国本土48个州范围内页岩气藏的分布广泛,其中蕴藏的页岩气资源也非常丰富。钻井和改造技术的进步为页岩气的商业开采做出了巨大贡献。美国页岩气产量近几年内飞速增长,产气量由2006年的311×108m3增至2008年的507×108m3,2009年的900×108m3,预计2010年页岩气产量将占美国天然气产量的13%。图1展示的是美国本土48州中富含天然气的高碳泥页岩分布范围。 图1美国页岩气藏分布范围 美国页岩气藏的开采达到商业化依赖于以下三种因素的综合作用:水平井钻井技术的巨大进步、水力压裂技术的极大成熟、近年来天然气价格的快速增长。其中,水力压裂技术的进步对页岩气商业开采起到了至关重要的作用。前两项技术的贡献使得许多之前无法开采的天然气资源实现了商业性开发。 Navigant咨询公司的调查数据表明,近几年Barnett页岩气藏等较早开采的页岩气藏页岩气开发获得了巨大成功:Barnett页岩气产量从1998年的266×104m3/天增长到2007年的0.85×108m3/天,增长率超过3000%;同时,Fayetteville页岩、Haynesville页岩、Woodford页岩和Marcellus页岩均表现出了相似的增长势头。该公司对生产商的调研结果显示预期页岩气产业在未来将会有持续且高速的增长。据预测美国南部7大页岩气藏在下一个十年里持续产量保守估计在7.65~11.04×108m3/d,有可能占到美国天然气产量的一半左右[3]。 美国的页岩气藏的分布超过20个州至少21个

油气井智能开采技术综述与发展趋势

油气井智能开采技术综述与发展趋势 刘宁(长江大学石油工程学院)王英敏(河南油田勘探开发研究院) 摘要 油田数字化是目前油气田发展的新趋势,而智能井技术是实现油田数字化的主要构成部分,是实时油藏管理的关键结构单元,通过安置在油藏平面上的传感器与控制阀,可以对油藏与油井的动态进行实时监测,分析数据,制定决策,改变完井方式,以及对设备的性能进行优化,从而提高油藏采收率,增加油井产量;减少作业中投入的劳动力,更有效地进行油气藏管理。本文叙述了智能井技术的发展历史、原理及特点,并结合实例说明了其技术优势以及国内外智能井的发展趋势。 关键词 数字油田 智能井 系统 传感器 智能完井 DOI:10 3969/j.issn.1002-641X 2010 11 009 1 简介 智能井技术是为了适应现代油藏经营管理和信息技术应用于油气藏开采而发展起来的新技术,通过生产动态的实时监测和实时控制,达到提高油藏采收率和提高油藏经营管理水平的目的[1] 。 自从1997年世界上第一套智能井系统(SCRAM S)在北海首次安装,全球智能井系统的应用迅速加快,其功能和可靠性有了显著的提高。例如,贝克休斯公司1999年推出的液压智能井系统InForce TM 已商业化;2000年下半年将其全电力智能井系统InCharg efM 推向市场;其他的智能井系统有斯伦贝谢公司的油藏监测和控制(RM C)系统、BJ 公司的系列智能井仪器和威德福公司的Simply Intellig ent TM 智能井系统[2]。 目前,各种类型的电力智能井系统、电力-液压智能井系统与光纤-液压智能井系统均已成功应用,这些技术将油藏动态实时监测与实时控制结合在一起,为提高油藏经营管理水平提供了一条崭新的途径。 2 智能井技术原理及特点 智能井这个术语一般指基本过程控制向井下的 转移,是一个实时注采管理网络,是一种利用放置在井下的永久性传感器实时采集井下压力、温度、流量等参数,通过通信线缆将采集的信号传输到地面,利用软件平台对采集的数据进行挖掘、分析和学习,同时结合油藏数值模拟技术和优化技术,形成油藏管理决策信息,并通过控制系统实时反馈到井下对油层进行生产遥控、提高油井产状的生产系统[2]。智能井系统的主要构成和用途,如图1所示 [3] 。 图1 典型智能井系统组成和用途 在油田开发过程中,智能井的主要优点是: 优化产量和储量采收率; 最大限度地降低基建费用(CAPEX)和作业费用(OPEX);!更加有效地管理油藏。 在油田开发过程中,智能井的基本用途: 控制注入井内的注入水或注入气沿井眼分布; 控制或隔断生产井内无用流体从井眼流出;!通过合采加速生产。 智能井的其他用途: 能够有效地管理油藏采油过程,特别是对二次注水或三次EOR 采油项目尤为重要; 智能井还能控制注入水或注入气在井内层间、隔层间和油藏间的分布,从而限制或隔断无用的流出物从井内不同产层产出,因此,作业者能够管理注水或采油过程,使未波及到的储量得以动用;!控制压降,确保井眼的稳定性;不同储层流体组分混合;控制自流;连接井;气举和自动气举;减少干扰或进行遥控等作用[4]。 总之,智能井技术是一种强有力的工具,它有助于处理油田开发中经常遇到的各种地下不确定因素,解决各种挑战性问题。包括:驱动机理对采收 33 刘宁等:油气井智能开采技术综述与发展趋势

页岩气钻井地质及工程设计要点

页岩气钻井地质及工程设计要点 一、封面 页首写构造:大地构造单元名称。井别:参数井(或调查井)、压裂井等。井型:直井等。页首下写项目名称:××省××页岩气××井地质及工程设计页倒二行:编制单位。 页末:编制日期(出稿时年月日)。 二、扉页 页首:项目设计名称。页中:项目名称、承担单位、编制单位、项目负责、设计人、参加人员、单位负责、审核等。 页末:编制日期(出稿时年月日)。 三、责任表及目录 责任页表:井号、井别、井型、主管单位、项目名称、承担单位、项目负责、设计人、参加人、项目组意见、专家论证意见(右下角签字、日期)、主管单位(右下角签字、日期)。目录:可按二级大纲级别设置目录及章节所在页码。以上一至三项无须页码。 四、正文 1 目的和任务 扼要说明本项目的主要目的和任务。 2 井区位置概况 2.1 井区位置和交通 叙述井位所在区主要的行政隶属(省、县、乡或镇、村)地理位置、地理坐标、铁路、公路干线及要道、井场进出公路相通等情况。附交通位置示意插图(图内外框、坐标数据、比例尺、井位位置等)。 2.2 井区自然地理 1. 地形地貌:主要阐述井位及其附近的地形(平缓或宽阔、土地、植被、井位标高、高差、平坝面积等。 2. 水源、电力、通讯:重点叙述井位处钻探工程用水距离、水量及其保障等情况,扼要叙述电力和通讯情况。

3 基本数据 列表说明页岩气钻井地理位置、构造位置、井口坐标(经纬、直角)、井口标高、设计井深、目的层位、钻探目的、设计目的、完井方式、录井情况、随钻实验情况等。 4 钻探设计依据及目的 4.1 设计依据 根据有关资料或报告简要阐述页岩气厚度、地层、构造、测试结果、页岩气稳定情况、相关结论等。 4.2 钻探目的 简要叙述钻探所达到的目的:目的层系、获取岩芯地层、了解的地层、获取地层厚度、有机质含量、岩石力学特征、页岩储集能力、页岩含气量系列参数等,为××提供地质依据。5 井区地质概况 5.1 区域地层 简述区域由老到新有关主要的地层(系、统、组)。5.2井区地层 由老到新详细阐述井区钻井遇地层及其上下地层系、统、组、段的岩性、厚度、接触关系,附相关地层插图 。5.3区域构造 简述区域大地构造位置及构造轮廓,与本井区有关的褶曲、断裂并加以综述。附区域构造插图。 5.4井区构造 先综述井区构造基本形态:地层志向、倾向、倾角极值及一般值、发育断裂和褶曲条数、长度、断距。 分述有关褶曲、断裂具体情况。5.4构造演化特征 综述沉积环境、沉积相、构造运动及其演化情况等。

中国页岩气开发的现状和前景报告

可再生能源概论课程设计题目:我国页岩气开发前景分析 院系能源动力工程学院 专业班级热能动力工程1208班 姓名 学号 指导教师 2016年4月17日

摘要 本文概述了页岩气开发的意义,分别介绍了国外和国内页岩气开发的现状,通过对比美国与中国页岩气特点和开发技术,分析中国页岩气开发的前景,并对中国页岩气开发提出建议。 关键词:页岩气;开发的现状;中国;前景

Abstract(Time New Roman小2号加粗居中) This article outlines the significance of the development of shale gas, and briefly introduces the status of shale gas development in the foreign and domestic. Through comparing shale gas characteristics and development of technology between the United States and China, the paper analysis the prospect of development of shale gas in China, and puts forward some suggestions on the development of shale gas in China. Key Words:Shale gas; development status; China; Prospect

钻井液技术新进展

钻井液技术新进展 摘要:钻井液技术的革新对加强石油勘探开发,提高石油采收率具有重要作用。本文介绍了国外钻井液技术的新进展,包括井壁稳定、防漏堵漏、抗高温钻井液、提高机械钻速的钻井液、低密度钻井液流体、储层保护等技术,同时介绍了国内钻井液技术的相关进展,通过分析比较,指出开发新型钻井液技术的关键在于研发新的处理剂,为钻井液技术的发展指明了方向。 关键词:水基钻井液;油基钻井液;钻井液处理剂;纳米技术 油气井工作液指在钻井、完井、增产等作业过程中所使用的工作流体,包括钻井液、钻井完井液、水泥浆、射孔液、隔离液、封隔液、砾石充填液、修井液、压裂液、酸液及驱替液等。近年来,钻井液在保障钻井井下安全、稳定井壁、提高钻速、保护储层等方面的作用日益突出,随着当前复杂地层深井、超深井及特殊工艺井越来越多,对钻井液技术提出了更高的要求。为此,国内外对应用基础理论和新技术方面进行了广泛的研究,取得了一系列的研究成果和应用技术,有效的解决了钻井过程中迫切的难题,并为钻井液技术的进一步发展奠定了基础指明了方向。本文在调研近几年国内外钻井液新技术的基础上,对国外和国内钻井液技术的新进展分别进行阐述[1-3]。 1国外钻井液技术新进展 1.1井壁稳定技术 1.1.1高性能水基钻井液技术 国外各大钻井液公司均研发了一种在性能、费用及环境保护方面能替代油基与合成基钻井液的高性能水基钻井液(HPWM)代表性技术有M-I公司的ULTRADRIL体系、哈利伯顿白劳德公司的HYDRO-GUADRTM体系[4-5]。该钻井液体系中,聚胺盐的胺基易被黏土优先吸附,促使黏土晶层间脱水,减小水化膨胀;铝酸盐络合物进入泥页岩内部后能形成沉淀,与地层矿物基质结合,增强井壁稳定性;钻速提高剂能覆盖在钻屑和金属表面,防止钻头泥包;可变形聚合物封堵剂能与泥页岩微孔隙相匹配,形成紧密填充[6]。 在墨西哥湾、美国大陆、巴西、澳大利亚及中国的冀东、南海等地的现场应用效果表明,高性能水基钻井液具备抑制性强、能提高机械钻速、高温稳定、保护储层及保护环境的特点[7-8]。 1.1.2成膜水基钻井液技术 通过在水基钻井液中加入成膜剂,使钻井液在泥页岩井壁表面形成较高质量的膜,以阻止钻井液滤液进入地层,从而在保护储层和稳定井壁方面发挥类似油基钻井液的作用。

页岩气充气泥浆钻井技术

页岩气充气泥浆钻井技术 充气泥浆钻井是将一定量的气体 (空气、氮气、天然气等)连续不断 注入泥浆内,使其呈均匀气泡分散于 泥浆中,形成充气泥浆。从井内返出 的泥浆经过地面除屑除气后再次注入 井内循环。充气泥浆的密度可根据用 用户要求在0.45g/cm3以上进行调整, 从而达到防止漏失和防止油气层污染 的目的。其主要优点为:减少钻井液 漏失造成对目的层的污染,提高机械 钻速,降低钻井成本。

充气钻井液的分散相气体可以是空气、天然气、氮气等气体; 连续相可以是各种类型的常规钻井液,也可以是淡水、清洁盐水、地层水、柴油等液体,但作为连续相的钻井液必须是易充气、易脱气且很稳定。 充气钻井液入井前通过调整气、液量来调整钻井液的密度;返出井口后经过地面除气器,气体从充气钻井液中脱离出来,以保证泵的正常上水。

?充气钻井技术优点 ⑴在0.55~1.03g/cm 3密度范围内能够通过充气进行有效地调整,从而降低静液柱压力,实现近平衡或欠平衡钻井,保护油气层; ⑵需要较高静液柱压力(而其它气体系不能产生)的油气藏,可以采用充气钻井液来钻,从而最大程度地降低地层损害; ⑶将充气钻井液应用到其它气体体系不能奏效的情况下,例如,在欠平衡钻井过程中,能够产出大量水的严重漏失地层,通过调整注气量和液量,可以在环空中获得平衡状态,从而既不漏失,也不井涌;对井塌等钻井复杂问题亦较泡沫有较强适应能力;

⑷基液可以是钻井液而不是水,因此可以在钻穿水敏性地层时,维持井眼的稳定性; ⑸减少钻具磨损和井下钻具着火的危险; ⑹钻井时效高,能大幅提高钻机作业效率; ⑺保持较高的PH值用于克服内在的腐蚀损害和对充气钻井液的破坏; ⑻消除了着火和灰尘危害,有利于保护环境;

页岩气资源分布_开发现状及展望

第12卷第2期2010年4月 资源与产业 RESOU RCES &I NDU STR IES V ol 12N o 2 Apr 2010 收稿日期:2009-11-20;修订日期:2010-03-08;责任编辑:车遥。 基金项目:国家重点基础研究发展规划项目(2008ZX05000-014);长江学者和团队创新发展计划(I RT 0864)。 第一作者简介:安晓璇(1984 ),女,硕士生,主要从事碳酸盐岩储层评价研究。E m a i:l an2003xuan @yahoo co m cn 资源开发 页岩气资源分布、开发现状及展望 安晓璇1,黄文辉1,刘思宇1,江怀友2 (1 中国地质大学 海相储层演化与油气富集机理教育部重点实验室,北京100083; 2 中国石油经济技术研究院,北京 100011) 摘 要:目前页岩气资源勘探开发已成为世界焦点,研究表明世界页岩气的资源量为636 283 1012m 3。美国页岩气资源丰富,广泛分布于美国的南部、中部及东部。中国也拥有丰富的页岩气资源,据初步评价与美国页岩气资源量大体相当,但目前我国页岩气开发还处于初级阶段。美国是页岩气勘探开发技术最先进,开发最全面的国家,加拿大也有较长的页岩气开发历史。由于页岩气储层渗透率低,开采难度大,因此我们需要学习国外先进技术,开发一套适合我国页岩气储层的钻井开采工艺,同时需要国家的大力支持,推动我国页岩气产业的发展。 关键词:页岩气;页岩气资源量;开发现状;展望中图分类号: P618 13 文献标识码:A 文章编号:1673-2464(2010)02-0103-07 THE D ISTR IBUTI ON ,DEVELOP MENT AND EXPECTATION OF SHALE GAS RES OURCES AN X iao xuan 1 ,HUANG W en hui 1 ,LI U S i yu 1 ,JI A NG H ua i you 2 (1.T he Educa tionM i n istry K ey Laboratory of M arine Reservo i r E vo l ution and H ydro carbon A ccu mu l a tion M echan is m,Ch i na Universit y of G eosciences,B eijing 100083,China ; 2.Institute of Econo m ics and T echnology,C N PC,B eijing 100011,Ch i na) A bstrac t :The exp l o ra ti on o f shale gas resources becom es a focus of t he wor l d .T he natura l g as resources a re 636 283 1012m 3i n the wo rld Sha le gas resources are r i ch i n Ame rica ,m ost of t he m are distri buted i n southe rn ,cen tral and eastern parts T here also are p l enty o f shale gas resources i n Ch i na , nea rl y the same quantity as i n Ame rica In Am erica there is t he mo st advanced exp l o ration and expl o ita ti on techno l ogy ,and it i s t he on l y country wh ich has the h i ghest explo itati on m ethod Canada has a l ong h i story o f sha l e gas exp l o ration and expl o ita ti on Ch i na is still at the beg inn i ng for the s ha l e gas explo itati on The permeability of t he shale ro cks is nor m a lly very l ow,so it is difficu lt to be explo ited T herefore ,w e need to l ea rn the advanced foreign techno l ogy to deve l op a set o f exp l o itation m et hods t o dev elop our sha le gas reservo irs ,and w e need the suppo rt fro m t he gove rn m ent ,i ncreasing env iron m ental pro tecti on wh ile deve l op m ent K ey word s :sha l e gas ;sha l e gas resources ;exp l o itation m ethod ;explorati on expectation 1 页岩气概述 页岩气是指那些聚集在暗色泥页岩或高碳泥页 岩中,以吸附或游离状态为主要存在方式的天然 气 [1] 。在页岩气藏中,天然气不仅存在于泥页岩, 也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩和砂岩地层中。

页岩气勘探开发系列技术

页岩气勘探开发系列技术 目前,我国大规模开发非常规天然气尤其是页岩气的关键技术体系尚未形成,缺乏核心技术和相关标准规范。页岩气储层 孔隙度一般为4%~5%,渗透率小于10×10-3μm2。页岩气储层的特点决定其开发所采用的技术与常规天然气开发技术有所 区别。页岩气井对设备、钻采技术要求都很高,比如,在压裂 技术上,常规油气井的压力等级一般为30MPa,而页岩气井一般在100MPa左右;泥沙堵漏等问题也给施工带来一定难度。因此必须综合采用先进的勘探、钻井和开发技术,才能实现页岩气的商业开发。目前,国外石油企业已经积累了比较丰富的 页岩气开采经验,在开采技术方面形成了比较成熟的勘探开发 系列技术,包括三维地震综合采集与处理技术、多分支水平井技术、水平井加多段压裂技术、清水压裂技术和同步压裂技术等。 (1)钻井工程技术 页岩气钻井技术大概经历了直井、单支水平井、多分支水平井、丛式井、丛式水平井钻井的发展过程。直井是美国2002 年之前页岩气开发的主流钻井方式,其目的是获取页岩气地质、油藏资料,为后续钻井、压裂和采气等做技术准备;继2002年Devon公司在FortWorth盆地Barnett页岩气7口水平井的试钻成功,利用增加储层泄流面积、提高页岩气采收率等方式

使得产气量显著提高,水平井、分支井、丛式井水平井等得以迅速发展,相继成为美国页岩气开发的主要钻井方式。水平井钻井技术经过近80年发展,目前已相当成熟完善,特别是井下动力钻具、地质导向工具、旋转导向钻井系统、随钻测量系统、控压钻井等新技术出现,使得在页岩气勘探开发领域水平井较直井更具优势: 图2:水平井钻井示意图 水平井成本为直井的1.5~2.5倍,但初始开采速度、控制储量和最终评价可采储量却是直井的3~4倍; 水平井与页岩层中裂缝(主要为垂直裂缝)相交机会大,可明显改善储层流体的流动状况。统计结果表明,水平段长度为200m或更长时,比直井钻遇裂缝的机会多达几十倍;

国外保护油气层钻井液技术新进展

2002Ο12Ο26收到 2003Ο01Ο16改回 国外保护油气层钻井液技术新进展 吴诗平 鄢捷年 (石油大学 北京 102200) 在油气钻探过程中,钻井液作为第一种入井流体,在对储层实施保护的过程中起着至关重要的作用。在长期的钻井实践中,我国已总结出三大类、共11种保护油气层的钻井液体系[1],但随着时间的推移和钻井难度的增加,保护油气层钻井液技术正面临着进一步发展和更新。近年来,液技术的研究,并已取得了较大进展和成功应用。 1 暂堵型钻井液、完井液体系的对比评价 由于储层具有高渗、天然裂缝发育等特性以及储层衰竭等原因,许多井在钻井、完井和修井过程中都会出现非常大的滤液漏失。J.Dorman 等人[2]分别对通过调整钻井液组分来控制滤失量的方法进行了研究。实验所用的主要仪器为颗粒堵塞测试仪(简称PPA )。该仪器在选择钻井液组分来降低滤失、评价颗粒堵塞情况方面十分有效。 用于室内评价的暂堵型钻井液、完井液体系有:①含有超细盐粒的聚合物体系(SSPF );②含有超细盐粒并加入合成聚合物的抗高温改性钻井液体系(SSPT ΟHT );③含有超细CaCO 3颗粒的聚合物体系(SCPF );④含有微细纤维素固相的聚合物体系(MCPF );⑤含有微细纤维素固相和抑制膨胀的天然聚合物的聚合物体系(MCPF ΟNDSP );⑥增效型聚合物凝胶体系(P GP );⑦增效型交联聚合物凝胶体系(XP GP );⑧抑制膨胀的稳定聚合物凝胶体系(DSP GP )。其对比评价内容包括高温热滚后钻井液滤失量的变化、用PPA 装置评价钻井液的滤失特性(包括瞬时滤失量以及时间与滤失量的变化关系)、正压差与滤失量的关系、动态滤失量等。 对于MCPF 体系,其组分包括黄原胶生物聚合物、PAC ΟHV 、改性淀粉(降滤失剂)、p H 缓冲剂以及微细纤维素。实验表明,该体系的瞬时失水量相对较高,但当泥饼形成后其滤失量能够有效地得以控制。不同的实验压力对SSPF 和SCPF 体系的动滤失量有很大影响,但泥饼厚度均很小。P GP 、XP GP 以及DSP GP 体系也能在不同压力下表现出良好的控制滤失和储层损害的能力,并且聚合物凝胶几乎可以完全阻止钻井液固相和滤液进入储层而造成损害。 在考虑对钻井液体系进行滤失量控制的同时,还必须考虑其流变性,尤其是高温下的流变性是否满足要求。使用Fan Ο50C 高温高压流变仪对SSPF 、SCPF 以及MCPF 体系在不同温度下的流变特性进行了评价。结果表明,随着温度升高,SSPF 和SCPF 体系比MCPF 体系具有更好的假塑性流体特征和低剪切流变特性。 通过实验研究结果的对比分析,得出以下几点认识: (1)对于高渗储层,使用含有超细盐粒(作为架桥粒子)的聚合物钻井液以及含有超细CaCO 3颗粒的聚合物钻井液,在静态和动态条件下均能有效地控制滤失; (2)在上述各种钻井液、完井液体系中,SSPF 和SCPF 体系的动滤失量相对较低; (3)在135℃(275υ)以上的高温下,建议使用具有良好抗高温性的SSPF ΟHT 体系; (4)MCPF 体系有较高的瞬时滤失量,但在泥饼形成之后滤失性可得到有效控制,而MCPF ΟNDSP 体系能有效地控制瞬时滤失量和高温高压滤失量; (5)SSPF 和SCPF 体系对于孔隙性储层能有效地控制滤失量,但对于滤失量很高的裂缝性储层,建议在体系中添加微细纤维素(MC )固相粒子进行改进。 2003年 中国海上油气(地质) CHINA OFFSHORE OIL AND G AS (GEOLO GY ) 第17卷 第4期

相关主题
文本预览
相关文档 最新文档