碳分子筛空分制氮
- 格式:docx
- 大小:16.82 KB
- 文档页数:2
空分制氮原理一、介绍空分制氮是一种常见的气体分离技术,它通过将空气中的氮气与其他气体分离,得到高纯度的氮气。
本文将介绍空分制氮的原理及其应用。
二、空分制氮原理空分制氮的原理基于空气中氮气和氧气的差异化,利用吸附剂对气体的吸附和解吸作用进行分离。
1. 吸附剂吸附剂是空分制氮中的关键材料,常用的吸附剂包括活性炭和分子筛。
它们具有高度的选择性,能够选择性地吸附氮气或氧气。
2. 吸附过程空分制氮的吸附过程包括吸附和解吸两个阶段。
在吸附阶段,空气中的氮气和氧气会被吸附剂分别吸附。
氮气由于其较大的分子尺寸和较低的极性而被吸附得更强,而氧气则被吸附得较弱。
在解吸阶段,通过改变吸附条件,使吸附剂释放吸附的氮气和氧气。
3. 分离原理空分制氮的分离原理是基于吸附剂对氮气和氧气的不同吸附能力。
在吸附过程中,氮气被吸附剂更强地吸附,而氧气则被吸附剂吸附得较弱。
通过调整吸附条件和周期,可以实现氮气和氧气的有效分离。
三、空分制氮的应用空分制氮广泛应用于各个领域,下面列举几个常见的应用领域。
1. 化工工业在化工工业中,空分制氮被用于提供高纯度的氮气,用于保护化工设备和储存液体化学品。
此外,氮气还可以用于氧化反应、氢化反应和氯化反应等过程中的惰性气体。
2. 电子工业在电子工业中,空分制氮被用于保护电子元件和设备。
由于氮气具有干燥和惰性的特性,可以有效地防止电子元件的氧化和腐蚀。
3. 食品工业在食品工业中,空分制氮被用于食品包装和贮存过程中的惰性气体。
氮气可以有效地延长食品的保质期,并防止食品变质和氧化。
4. 医疗行业在医疗行业中,空分制氮被用于医药生产和诊断设备。
氮气可以用于药物的生产和储存,同时也可以用于呼吸机和麻醉机等设备的供气。
5. 环境保护在环境保护领域,空分制氮被用于净化废气和废水中的有害物质。
氮气的惰性和高纯度使其成为一种理想的清洗和净化剂。
四、总结空分制氮是一种重要的气体分离技术,通过吸附剂对氮气和氧气的吸附和解吸作用进行分离。
碳分子筛碳分子筛概述:碳分子筛的主要成分为元素碳,外观为黑色柱状固体。
因含有大量直径为4埃德微孔,该微孔对氧分子的瞬间亲和力较强,可用来分离空气中的氧气和氮气,工业上利用变压吸附装置(PSA)制取氮气。
鑫陶碳分子筛制氮量大、氮气回收率高,使用寿命长,适用于各种型号的变压吸附制氮机,是变压吸附制氮机的首选产品。
碳分子筛空分制氮已广泛地应用于石油化工、金属热处理、电子制造、食品保鲜等行业。
碳分子筛物化指标:颗粒直径: 1.6mm堆积密度:640-660g/l抗压强度:100N/颗Min.粉尘含量:100PPM Max.碳分子筛性能指标:型号(Type)吸附压力(MPa) 氮浓度(N2%)产氮量(NM3/h.t)N2/Air(%)CMS-160 0.8 99.9999.999.599.098.0401001602002901523343843CMS-185 0.899.9999.960120202699.0 98.0 3103805056服务内容::本公司产品及服务有以下优点:性价比好:能直接降低用户的投资成本和运行成本;硬度大、灰份少、颗粒均匀:能有效地抗气流冲击,使用寿命长;产品质量稳定:本公司严格按企业标准100%检验,并执行生产、出厂两道检验管理;树脂型可用于生产高纯氮气:性能可替代进口同类产品。
/本文来源于济源丰宝碳材料有限公司网站,详情请访问:济源丰宝碳材料有限公司网址:QQ:3663965。
PSA制氮用碳分子筛简介关键字:PSA制氮,碳分子筛二十世纪五十年代,伴随着工业革命的大潮,碳材料的应用越来越广泛,其中活性碳的应用领域扩展最快,从最初的过滤杂质逐渐发展到分离不同组份。
与此同时,随着技术的进步,人类对物质的加工能力也越来越强,在这种情况下,碳分子筛应运而生。
六十年代,碳分子筛在美国最先制造成功并很快推广应用,最初,碳分子筛是被用作从空气中分离氧气的吸附剂,后来逐渐应用在制取氮气的装置上。
到了七十年代未、八十年代初,世界各国对氮气的需求量不断增加,而变压吸附制氮技术也逐渐成熟起来,进一步推动了碳分子筛制造技术的发展。
到了一九八二年,美国和日本的氮气产量相继超过了氧气,此时,变压吸附制取的氮气已经占氮气总产量的18%左右,由于变压吸附制氮所占的市场份额越来越大,世界各主要工业国家都投入了资金研发变压吸附用碳分子筛,其中,美国、日本、德国在技术上处于领先地位。
一直到今天,世界上主要的碳分子筛生产厂家也还是分布在这些国家。
比较著名的有美国的Calgon 公司、普莱克斯公司;日本的岩谷公司、武田公司;德国的BF公司等。
其中,美系分子筛在国内所占市场份额很小,德系和日系分子筛厂家在国内都有代理公司,因而所占市场份额也是最大的。
碳分子筛的原料为椰子壳、煤炭、树脂等,第一步先经加工后粉化,然后与基料揉合,基料主要是增加强度,防止破碎粉化的材料;第二步是活化造孔,在600~1000℃温度下通入活化剂,常用的活化剂有水蒸气、二氧化碳、氧气以及它们的混合气。
它们与较为活泼的无定型碳原子进行热化学反应,以扩大比表面积逐步形成孔洞活化造孔时间从10~60min不等;第三步为孔结构调节,利用化学物质的蒸气:下面以一粒分子筛为例,简单了解一下它的内部的孔结构:在分子筛吸附杂质气体时,大孔和中孔只起到通道的作用,将被吸附的分子运送到微孔和亚微孔中,微孔和亚微孔才是真正起吸附作用的容积。
我们知道,利用碳分子筛变压吸附制氮是靠范德华力来分离氧气和氮气的,因此,分子筛的比表面积越大,孔径分布越均匀,并且微孔或亚微孔数量越多,吸附量就越大;同时,如果孔径能尽量小,范德华力场重叠,对低浓度物质也有更好的分离作用。
制氮机碳分子筛制氮机碳分子筛是一种分离氮气、氧气和其他气体的设备。
它的主要原理是,通过把气体中的污染物分子在不同的碳分子筛上形成层,因此可以将待分离气体中的污染物进行有效分离。
碳分子筛是一种用于过滤各种气体的特殊材料。
碳分子筛由活性碳、聚合物或有机材料组成,具有良好的透气性、耐磨性和抗化学腐蚀性。
碳分子筛可以有效地清除气体中的烃类物质、氨、氯等有机污染物。
碳分子筛的分离机制是将新鲜气体通过碳分子筛,将碳分子筛上的烃类物质、氨、氯等有毒有害物质附着在表面上,使气体中的有毒有害物质被吸附在碳分子筛的表面上,从而使得气体中的有害物质被有效清除,实现气体的分离。
碳分子筛的碳活性点表面的比表面积非常大,能够有效地将气体中的有毒有害物质粘附在表面上,吸附的效率非常高。
碳分子筛可以有效过滤掉气体中的大多数有毒有害物质,使气体质量达到国家或行业政策要求的标准。
此外,碳分子筛的运行成本低,使用寿命长,可用于长期运行,易于操作和维护,有效减少污染,是一种经济、有效的制氮机技术。
第 2 页共 3 页优点:1、碳分子筛可以有效过滤气体中的大多数有毒有害物质,使气体质量达到国家或行业政策要求的标准。
2、碳分子筛的运行成本低,使用寿命长,可用于长期运行,易于操作和维护。
3、碳分子筛的碳活性点表面比表面积非常大,能够有效地将气体中的有毒有害物质粘附在表面上,吸附的效率非常高。
缺点:1、当碳分子筛的使用寿命达到一定程度时,碳分子筛表面的活性点会减少,有毒有害物质的吸附性能会受到影响,从而影响气体的净化效果。
2、碳分子筛所需的碳活性点比表面积较小,吸附效率较低,一般比沸石少多。
3、由于碳分子筛本身的性质,很难进行有效的维护和保养,使用寿命较短。
膜分离和碳分子筛制氮-概述说明以及解释1.引言1.1 概述膜分离和碳分子筛制氮是当前广泛应用于气体分离领域的两种重要技术。
膜分离是通过选择性通透性较好的膜材料,利用分子间的差异使不同组分通过膜材料时产生浓度差,从而实现组分的分离。
而碳分子筛制氮则是利用碳分子筛对空气中的氧气和氮气进行分离,通过选择性吸附氧气而使氮气得以纯化。
膜分离技术具有具有分离效率高、操作简单、设备体积小等优势。
它广泛应用于气体分离、水处理、制备纯净气体等领域。
膜分离的原理基于物质分子的有效扩散和溶解透过性,通过选择合适的膜材料和适宜的工艺条件,可以实现不同气体组分的分离纯化。
碳分子筛制氮则是一种利用碳分子筛材料对气体进行选择性吸附分离的技术。
碳分子筛是由均匀的碳纳米管和孔隙结构组成的材料。
它具有较高的表面积和丰富的微孔结构,使得其能够选择性吸附氧气而排除氮气。
通过调节工艺条件和碳分子筛材料的特性,可以实现对气体的高效纯化。
本文将重点探讨膜分离和碳分子筛制氮的原理和应用。
首先介绍膜分离技术的基本原理和常见的应用领域,然后深入分析碳分子筛制氮的性质和制氮机理。
通过对两种技术的比较和分析,可以为气体分离领域的研究和应用提供参考和指导。
1.2 文章结构文章结构是指文章的布局和组织方式。
本文分为引言、正文和结论三个部分。
引言部分主要概述了文章的背景和研究的目的。
通过对膜分离和碳分子筛制氮的介绍,引发读者的兴趣,并明确了本文的研究目的。
正文部分分为两个主要部分:膜分离和碳分子筛制氮。
其中,膜分离部分首先介绍了膜分离的原理,即利用不同物质在膜上的传输速率差异实现分离的方法。
接着,列举了膜分离的应用领域,如饮用水处理、气体分离等。
此部分的目的是详细介绍膜分离技术的基本原理和实际应用。
碳分子筛制氮部分首先介绍了碳分子筛的性质,包括高比表面积、孔径可调等特点。
然后,阐述了碳分子筛制氮的机理,即通过选择性吸附氮气分子实现氮气的分离提纯。
此部分的目的是介绍碳分子筛在氮气制备中的应用原理和机制。
碳分子筛制氮机吸附塔改进
唐晓为
【期刊名称】《设备管理与维修》
【年(卷),期】2005(000)006
【摘要】氮气因其惰性被广泛用作保护气体,化工企业中的置换、清洗、密封、
捡漏都离不开它。
制氮装置大多采用深冷法,但深冷空分装置复杂、投资大,操作管理维修麻烦。
近30年来,利用变压吸附分离理论研究开发的分子筛空分制氮技术,因其设备简单、装置小巧、投资省、操作维护方便,可实现自动化和电脑化运行而倍受青睐。
公司于1996年7月购入一台温州瑞气机电有限公司生产的NGN-26—39型碳分子筛制氮机。
设备使用初期效果良好。
但一年后排出气体中含碳粉、管道气动阀故障频繁、制出气体含氧量升高,设备无法正常使用。
打开吸附塔检修,发现碳分子筛大量破碎、流失。
筛选、补充碳分子筛后,使用一年,故障重现。
此后年年如此。
【总页数】1页(P40)
【作者】唐晓为
【作者单位】湖南关西汽车涂料有限公司工务部,长沙市德雅路790号,410003【正文语种】中文
【中图分类】TQ0
【相关文献】
1.碳分子筛制氮机在煤矿防灭火中的气源改造
2.碳分子筛变压吸附制氮机在酮苯脱蜡装置中应用的可行性探讨
3.碳分子筛制氮机在煤矿灭火中的应用
4.<sub>NH</sub><sup>GN</sup>型碳分子筛制氮机
5.移动式碳分子筛制氮机在煤矿灭火中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
碳分子筛变压吸附提纯氮气模块名称预习考查题目权重1.碳分子筛吸附法从空气中分离提纯氮气的原理是什么?()A.利用N2与O2在空气中的浓度差异,优先吸附N2气B.利用N2与O2在碳分子筛中扩散速率的差异,优先吸附O2气C.利用碳分子筛中的微孔尺寸的选择性,优先吸附O2气D.利用N2与O2在碳分子筛中扩散速率的差异,优先吸附N2气2.一个连续变压吸附分离装置,至少需要几个吸附柱,包括哪些操作步骤?()A.2个,操作步骤包括系统充压、加压吸附、减压脱附、柱间气流切换B.3个,操作步骤包括系统充压、加压吸附、减压脱附、柱间气流切换C.1个,操作步骤包括系统充压、加压吸附、减压脱附D.3个,操作步骤包括加压吸附、减压脱附、柱间气流切换3.本实验采用什么工程手段来实现吸附和解吸操作?()A.加压吸附,常压脱附B.加压吸附,升温脱附C.加压吸附,真空脱附D.低温吸附,高温脱附4.当吸附剂用量一定时,影响本实验变压吸附效果的主要因素有哪些?()A.吸附压力、温度、气体流量、解吸压力B.吸附压力、气体流量、脱附压力、吸附时间E.吸附压力、气体流量、吸附时间D.温度、气体流量、脱附压力、吸附时间5.何谓穿透曲线?()A.吸附柱出口流体中被吸附物质的浓20度随时间的变化曲线B.吸附柱出口流体中被吸附物质的浓度随气体流量的变化曲线C.吸附柱出口流体中被吸附物质的浓度随吸附压力的变化曲线D.吸附柱出口流体中被吸附物质的浓度随进口浓度的变化曲线你的回答本模块得分[满分100]B|B|C|B|A 100 模块名称仪器选择题目权重选错一次扣5分10你的回答本模块得分[满分100]正确答案:吸附柱(2个)、微机、放空阀、流量计、CYES氧气分析仪、脱水柱、取样阀、空气压缩机及减压阀、脱油柱、缓冲罐、流量调节阀、水循环真空泵做错次数:0100模块名称操作步骤题目权重选错一次扣5分10你的回答本模块得分[满分100]正确答案:B、检查压缩机、真空泵、吸附装置和计算机之间的连接是否到位,接通压缩机电源,接通吸附装置上的电源和真空泵电源,开启计算机并打开“在线控制软件”,点击“泵开关”,开启真空泵。
P S A变压吸附制氮原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998制氮机制氮机,是指以空气为原料,利用物理方法将其中的氧和氮分离而获得氮气的设备。
根据分类方法的不同,即深冷空分法、分子筛空分法(PSA)和膜空分法,工业上应用的制氮机,可以分为三种。
制氮机是按变压吸附技术设计、制造的设备。
制氮机以优质进口碳分子筛(CMS)为,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。
通常使用两吸附塔并联,由进口PLC控制进口气动阀自动运行,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。
中文名制氮机含义制取氮气的机械组合工作原理利用碳分子筛的吸附特性主要分类深冷空分,膜空分,碳分子筛空分、11.2.3.工作原理PSA变压吸附制氮原理碳分子筛可以同时吸附空气中的氧和氮,其吸附量也随着压力的升高而升高,而且在同一压力下氧和氮的平衡吸附量无明显的差异。
因而,仅凭压力的变化很难完成氧和氮的有效分离。
如果进一步考虑吸附速度的话,就能将氧和氮的吸附特性有效地区分开来。
氧分子直径比氮分子小,因而扩散速度比氮快数百倍,故碳分子筛吸附氧的速度也很快,吸附约1分钟就达到90%以上;而此时氮的吸附量仅有5%左右,所以此时吸附的大体上都是氧气,而剩下的大体上都是氮气。
这样,如果将吸附时间控制在1分钟以内的话,就可以将氧和氮初步分离开来,也就是说,吸附和解吸是靠压力差来实现的,压力升高时吸附,压力下降时解吸。
而区分氧和氮是靠两者被吸附的速度差,通过控制吸附时间来实现的,将时间控制的很短,氧已充分吸附,而氮还未来得及吸附,就停止了吸附过程。
因而变压吸附制氮要有压力的变化,也要将时间控制在1分钟以内。
深冷空分制氮原理分子筛制氮机工艺流程图深冷制氮不仅可以生产氮气而且可以生产液氮,满意需要液氮的工艺要求,并且可在液氮贮槽内贮存,当出现氮气间断负荷或空分设备小修时,贮槽内的液氮进入汽化器被加热后,送入产品氮气管道满意工艺装置对氮气的需求。
碳分子筛变压吸附提纯氮气,实验报告实验报告一、实验目的1.了解气体吸附和压缩变化的实验原理和方法。
2.掌握碳分子筛提纯氮气的基本原理和方法。
3.正确操作反应器,调整参数,保证实验操作的可行性。
二、实验原理气体吸附和压缩变化是利用气体分子间相互作用力发生变化的现象。
当气体分子集中在碳分子筛的表面时,它们会被吸附到碳分子筛的内部孔道中。
当气体压力加大时,筛子内气体的压缩随着压力的增大而增大。
在反应器内,通过平衡吸附和压缩两种力作用的平衡状态来提纯气体,实现气体分离和回收。
氮气可以通过分子筛分离技术进行提纯。
在碳分子筛中,氮气分子的大小比氧气分子大,可以通过对分子筛进行调整来控制氮气和氧气分子的吸附和压力变化,从而达到提纯氮气的目的。
三、实验仪器和材料1.碳分子筛实验装置2.N2 /O2 混合气体(氮气和氧气的体积比为8:2)3.滴定用酸和碱四、实验步骤1.开启实验装置,调整氮气和氧气的流量,将混合气体导入碳分子筛反应器。
2.开始加压,一直加压至2.5Mpa,然后保持此压力稳定5分钟。
3.缓慢减压到空气,使压力恢复到大气压之下。
4.在反应器出口进行比色检测,检测混合气体中的氮气和氧气的含量,检测值在理论值的范围内。
5.使用滴定用酸和碱对氮气进行酸碱度测试,并进行鉴定。
五、实验结果与分析在实验中,搭载碳分子筛仪器,可以成功提纯氮气和氧气混合气体。
通过实验,发现在恒定压力下,碳分子筛的内孔对氧气和氮气具有不同的吸附能力,可以实现氮气和氧气的分离。
并且,实验物质的质量达到了实验目的,具体表现在反应器中氧气和氮气的比例在实验结果范围之内。
六、实验结论通过本实验的实验过程和结果分析,可以得出结论:使用碳分子筛仪器可以较好地分离氮气和氧气,实现提纯氮气的目的。
本实验的实验结果符合实验目的要求。
七、实验中的问题及处理方法在实验过程中,发现碳分子筛在加压和减压过程中的温度和压力变化影响到实验结果。
为了解决这个问题,通过测量温度和压力,对加压和减压速率进行了调整和控制,保证实验的准确性和可行性。
制氮机分子筛制氮碳分子筛安全操作及保养规程制氮机分子筛和制氮碳分子筛是目前用于产生高纯度氮气的一种主流方法,广泛应用于电子、光伏、化工、食品、医药等领域。
然而,这种设备在使用过程中也存在一定的危险性。
本文将介绍制氮机分子筛和制氮碳分子筛的安全操作和保养规程,以确保工作人员和设备的安全。
1. 制氮机分子筛的安全操作规程1.1 设备安装和调试在设备安装和调试过程中,应遵守以下规程:•安装设备时,应按照设备操作手册进行操作。
•安装前,应先对设备进行检查,确保其外壳、管路、阀门等旋转部件均未出现磨损、裂缝等情况。
•在紧固螺丝、管件等过程中,应采用专业工具,确保紧固力均匀,防止漏气。
•设备调试应由具有相关资质的专业人员完成。
1.2 设备启停操作在使用设备时,应遵守以下规程:•进行启动前,应先检查电气设备、阀门、仪表等是否处于正常工作状态。
•启动前应先确认设备外壳、管路、连接件等是否处于严密状态。
•在启动前应先将系统压力异动时间预警,以确保设备安全稳定运行。
•操作人员应严格按照操作手册进行操作,防止误操作导致事故。
1.3 应急处理在设备发生故障时,应立即按以下规程进行应急处理:•当设备发生漏气、压力异常等状况时,应迅速关闭阀门。
•在拆开管路或停机检修前,必须先停止加压,排除系统内压力。
•在有毒气体泄漏的情况下,应迅速通风、向上风口喷水等应急措施。
•在设备燃气泄漏或着火时,应拨打应急电话并采取应急措施。
2. 制氮碳分子筛的安全操作规程2.1 实验环境准备在使用制氮碳分子筛之前,应遵守以下规程:•确保实验室具备良好的通风设备,室内氧含量不低于19.5%。
•将制氮碳分子筛置于实验台上,保持稳定状态。
•将实验用的样品或反应体系倒入准确的容器中。
2.2 制氮操作流程在制氮碳分子筛的操作过程中,应遵守以下规程:•开始制氮前,应确保仪器系统处于良好的工作状态。
•在填充反应体系前,应将反应管轴心调整到与喷嘴中心处于同一水平面。
制氮设备工作原理
制氮设备的工作原理主要是基于变压吸附技术(PSA),利用碳分子筛作为吸附剂,从空气中分离出氮气。
以下是制氮设备的工作流程:
1. 空气经过压缩后进入分子筛吸附塔,在一定的压力下,由于空气动力学效应,氧气在碳分子筛微孔中的扩散速率大于氮气,因此氧气被优先吸附,而氮气则被富集起来。
2. 吸附塔中的氧气被碳分子筛吸附后,氮气则通过塔顶被导出。
3. 一段时间后,吸附塔内的碳分子筛会达到饱和状态,此时吸附能力下降,无法继续吸附氧气。
此时,需要将吸附塔内的压力降低至常压,使碳分子筛脱附所吸附的氧气等杂质,实现再生。
4. 在系统中通常设置两个吸附塔,一塔吸附产氮,另一塔脱附再生。
通过PLC程序控制器控制气动阀的启闭,使两塔交替循环,以实现连续生产高品质氮气之目的。
以上是制氮设备的基本工作原理,具体流程可能因设备型号和工艺参数的不同而有所差异。
工业制氮气方法
工业上常见制氮方法分为深冷空分法、分子筛空分法和膜空分法三种。
一、深冷空分法
深冷空分制氮是一种传统的制氮方法,将空气压缩、净化后,再利用热交换将空气液化成液态空气,再利用液氧和液氮的不同沸点,通过对液态空气的精馏,分离得到氮气。
深冷空分制氮设备占地面积比较大,无论是基建成本、设备成本,还是运行成本都比较高,并且产气慢,安装要求高,周期比较长,深冷空分制氮机适用于大规模工业制氮。
二、分子筛空分法
又叫变压吸附法,以空气为原料,碳分子筛为吸附剂,利用变压吸附原理和碳分子筛选择性吸附氧气和氮气原理,使氮气和氧气分离。
比传统的制氮方法工艺流程要更简单、自动化程度更高、产气速度更快、能耗更低,产品纯度还可以根据用户的需要调节,越来越受到中小制氮用户的欢迎,现已成为中小型制氮用户的..方法。
三、膜空分法
也称为中空纤维膜分离法,利用氧气和氮气等不同性质的气体在一定的压力条件下,在膜内渗透率不同,将氧气和氮气分离。
比其他制氮设备结构更简单、体积更小、维护量少、产气速度更快、扩容更方便等优点,特别适用于纯度≤99.5%中小氮气用户,但当氮气纯度在98%以上时,变压吸附制氮机则更便宜更合适。
碳分子筛工作原理
碳分子筛的工作原理是利用碳分子孔洞筛分的特性达到氧气和氮气分离,从而得到氮气这个产品!当碳分子筛吸附杂质气体时,大孔和中孔仅作为通道起作用,吸附的分子被输送到微孔和亚微孔中,微孔和亚微孔是实际吸附的体积。
如上图所示,内部含有大量微孔,这使得具有小动力学尺寸的分子能够迅速扩散到孔隙中,同时限制大直径分子的进入。
由于不同尺寸的气体分子的相对扩散速率不同,可以有效地分离气体混合物的组分。
因此,在碳分子筛的制造中,根据分子大小的大小,内部的孔分布应为0.28~0.38nm。
在孔径范围内,氧气可以通过微孔口快速扩散到孔隙中,而氮气难以通过微孔孔口以实现氧气和氮气的分离。
孔的孔径是碳分子筛分离氧和氮的基础。
如果孔径太大,氧和氮分子筛很容易进入微孔并且不起分离的作用;当孔径太小时,氧气和氮气不能进入。
在微孔中,也没有实现分离。
国内碳分子筛由于条件不能很好地控制孔径。
市场上销售的碳分子筛的孔径分布为0.3~1 nm,只有岩石分子筛为0.28~0.36 nm。
椰子壳,煤,树脂等。
首先将第一步加工然后粉碎,然后与基础材料混合。
基材主要是增加强度以防止破碎的粉末材料;第二步是激活。
孔用活化剂在600
至1000℃的温度下进料。
常用的活化剂是水蒸气,二氧化碳,氧气及其混合物。
它们与更活泼的无定形碳原子发生热化学反应,以扩大比表面积并逐渐形成孔隙。
成孔时间为10-60分钟。
第三步是使用碳中的苯等化学蒸气调节孔结构。
2.碳分子筛变压吸附(PSA )空分制氮原理吸附剂(碳分子筛)吸附剂是变压吸附系统的核心。
碳分子筛是一种速度型的吸附剂,广泛应用于空气分离制取氮气。
其对空气中N 2、O 2的吸附分离主要是基于:在一定时间内,其对空气中O 2的吸附速度远远大于N 2的吸附速度(如图2-1、2-2所示)。
吸附压力在吸附平衡情况下,空气压力越高,则碳分子筛(吸附剂)对N 2、O 2的吸附量越大。
反之,压力越低,则吸附量越小(图2-3所示)MPa )图2-3:吸附压力曲线图2-1: 用于空气分离的碳分子筛相对吸附量 相对吸附量 0 60 120 180 240 360吸附时间(sec )图2-2:吸附速度曲线碳分子筛变压吸附制氮根据图2-3所示,利用吸附剂在不同压力下对气体吸附量不同的原理,对气体进行加压吸附,减压解吸脱附的循环操作,即变压吸附(Pressure Swing Adsorption,简称PSA)。
PSA气体分离技术广泛应用于空气干燥、空气分离(提取氮气或氧气),其它气体提纯等领域。
碳分子筛变压吸附制氮是:应用PSA气体分离技术,以碳分子筛为吸附剂,以压缩空气为原料,利用碳分子筛在一定时间内对N2、O2的吸附速度差异,在密闭容器内进行加压吸O2产N2,减压脱附O2的循环操作过程。
变压吸附制氮的技术应用模型图2-4所示,变压吸附制氮技术的最简单应用单元是由一只装满碳分子筛的吸附器、进气管路、出气管路和程控阀门组成。
如图2-4(左)所示,当压缩空气从进气端进入,流经吸附器内的吸附剂(碳分子筛)时,压缩空气中的O2被吸附,而未被吸附的N2则被富集起来,由出气端流出。
如图2-4(右)所示,在一段时间后,碳分子筛吸附饱和,则关闭进气阀和出气阀并打开排气阀,就可以对吸附剂进行解吸再生。
再生完全后则进入下一个吸附周期。
图2-4(左):吸附应用单元图2-4(右):吸附应用单元。
PSA制氮工作原理及流程变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。
碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示:碳分子筛的孔径分布特性使其能够实现O2、N2的动力学分离。
这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。
碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。
压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。
最终从吸附塔富集出来的是N2和Ar的混合气。
碳分子筛对O2、N2的吸附特性可以用平衡吸附曲线和动态吸附曲线直观表现出来:由这两个吸附曲线可以看出,吸附压力的增加,可使O2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。
变压吸附周期短,O2、N2的吸附量远没有达到平衡(最大值),所以O2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。
变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产品氮气。
3.PSA制氮机装置基本工艺流程:PSA制氮机及二氧化碳脱除装置基本工艺流程示意图制氮机部分:空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。
左吸过程结束后,左吸附塔与右吸附塔通过上、下均压阀连通,使两塔压力达到均衡,这个过程称之为均压,持续时间为2~3秒。
空分制氮的工作原理与设备的维护保养空分制氮又称变压吸附制氮(简称PSA)是自上世纪80年代从国外引进的气体分离技术。
采用进口碳分子筛为吸附剂,在常温下利用变压吸附原理从空气中来获取氮气,在一定压力下,利用空气中氧、氮在碳分子筛表面的吸附量的差异,即碳分筛对氧的扩散吸附远大于氮,通过PLC控制气动阀的启动,达到A、B两塔交替循环,加压吸附,减压脱附的过程完成氮氧分离,得到所需程度的氮气。
碳分子吸附剂在加压的条件下,空气中的氧气和氮气在碳粉丝筛孔穴内的扩散速度差异而将空气中的氧气、氮气分离开来,氧气分子比氮气分子先行扩散到碳分子筛吸附剂的孔穴内,未能扩散到碳分子筛吸附剂孔穴的氮气作为产品气输出供用气站使用。
一、我司制氮站设计能力与设备配置2、氮气站设备组成(1)压缩空气系统螺杆式空气压缩机2台(2)压缩空气净化系统过滤器组、微热再生干燥机空气缓冲罐1套(3)变压吸附制氮装置变压吸附制氮机1套(4)氮气储罐10m3氮气储罐2台2.1压缩空气系统空气压缩技术指标:型号:GA160-8.5 数量:2台排气量:27m3min 排气压力:0.85Mpa电气功率:160KW 电源:380V 50HZ重量:3025kg2.2空气净化系统技指标微热再生干燥机:型号:SJ-50/8 数量:1台额定处理:55 N m3/h 出口露点:≤-40℃进口温度:≤40℃再生气耗量:13-15%功率:12KW 电源电压:380V 50HZ工作方式:两吸附筒轮换交替吸附,实现连续干燥。
切换周期:一般定位T=10min,亦可用T=4min、T=20min三级过滤器:型号:HC50 HT50 HA50 数量:3台/1套处理气量:50 m3/min 除水率100%过滤精度:0.01U 除油精度:0.01PPM空气缓冲罐:容积5m3 数量:1台设计压力:1.0Mpa2.3 PSA空分制氮装置技术指标型号:FD-1000-98 数量:1台产气量:1000N m3/h 氮气纯度:≥98%(无氧含量)出口压力:0.80Mpa 出口露点:≤-40℃电源:220V 50HZ 功率:1KW2.4氮气储罐容积:10 m3 数量:2台设计压力:0.8Mpa二、空气制氮系统工艺流程图1、工艺流程图见图12、工艺步骤:2.1压缩空气提纯空压机采集外界空气经压缩进入一级聚合微粒过滤器(F101)除去大部分粉尘与油水滴;性能:过滤精度3U,除水率99%,除油雾率40%,(自动排放5~6分钟/次),然后进入二级聚合粒过滤器,进一步除去粉尘与油水滴,性能:过渡精度1U,除水率100%,除油雾率70%(自动排放10~20分钟/次)。
碳分子筛空分制氮
一、碳分子筛空分制氮的原理
我公司生产的碳分子筛是PSA制氮装置上的吸附剂,采用变压吸附原理(PSA)从空气中分离制取氮气。
碳分子筛对空气中的氧和氮的分离作用主要是基于这两种气体在碳分子筛表面上的扩散速率不同。
直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔。
直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少,这样在气相中可以得到氮的富集成分。
因此,利用碳分子筛对氧和氮在某一时间内吸附量的差别这一特性,由全自动控制系统按特定可编程序施以加压吸附,常压解析的循环过程,完成氮氧分离,获得所需高纯度的氮气。
二、碳分子筛制氮控制的条件
1、空气压缩纯化过程
纯原料空气进入碳分子筛吸附塔,是非常必要的,因为颗粒及有机气体进入吸附塔会堵塞碳分子筛的微孔,并逐渐使碳分子筛的分离性能降低。
纯化原料空气的方法有:1、使空压机的进气口远离有、油雾、有机气体的场所;2、通过冷干机、吸附剂净化系统等,最后经处理后的原料空气进入碳分子筛吸附塔。
2、产品氮气的浓度和产气量
碳分子筛制取氮气,其N2浓度和产气量可根据用户的需要进行任意调节,在产气时间及操作压力确定时,调低产气量,N2浓度将提高,反之,N2浓度则下降。
用户可根据实际需要调节。
3、均压时间
碳分子筛制氮过程,当一个吸附塔吸附结束时,可将此吸附塔内的有压气体从上下两个方向注入另一个已再生好的吸附塔中,并使两塔气体压力相同,此一过程称为吸附塔的均压,选择适当的均压时间,即可回收能量,也可以减缓吸附塔内的分子筛受到冲击,从而达到延长碳分子筛的使用寿命。
参考阀门的切换速度一般选择均压时间为1-3秒。
4、产气时间
根据碳分子筛对氧和氮的吸扩散速率不同,其吸附O2在短时间内就达到平衡,此时,
N2的吸附量很少,较短的产气时间,可有效的提高碳分子筛的产气率,但同时也增加了阀门的动作频率,因此阀门的性能也很重要。
一般选择吸附时间为30-120秒。
小型高纯制氮机推荐使用短的产气时间,大型低浓度推荐使用长的产气时间。
5、操作压力
碳分子筛在动力学效应的同时,又具有平衡吸附效应,吸附质分压高,吸附容量也高,因此加压器吸附是有利的,但吸附压力太高,对空压机的造型要求也增高,另外常压再生与真空再生两个流程对吸附压力要求也不同,综合各项因素,建议常压再生流程的吸附压力选为5-8kg/cm2为宜;真空再生流程的吸附压力选择为3-5Kg/cm2为宜。
6、使用温度
作为吸附剂选择较低的吸附温度有利于碳分子筛性能的发挥,制氮机工艺在有条件的情况下,采取降低吸附温度是有利的。