过电压常见问题分析
- 格式:doc
- 大小:66.50 KB
- 文档页数:9
EOS电应力和过电流过电压是电力系统中常见的两种问题。
EOS电应力,即电涌应力,是指电力系统中瞬间出现的高电压和大电流现象。
这种现象通常由于雷击、开关操作、短路故障等引起。
EOS电应力会对电力设备造成损坏,降低系统的可靠性。
过电流过电压则是电力系统中电流或电压超过额定值的现象。
过电流通常由于短路、过载等引起,而过电压则可能由于电力系统的参数变化、设备故障、雷击等引起。
过电流过电压会对电力设备的安全运行构成威胁,严重时可能导致设备损坏和系统故障。
为了解决这些问题,通常需要采取相应的防护措施,如安装避雷器、熔断器、过电压保护器等设备,以确保电力系统的稳定运行。
同时,加强设备的维护和检测,及时发现和排除潜在的隐患,也是预防这些问题的有效手段。
浅谈变频器过压、欠压、过热、过载故障原因及处理张军现代社会,各行业都提倡节能,采用变频器,则可以大大降低能源的消耗。
变频器的安全运行就成为了很关键的环节,掌握一点变频器故障和分析故障原因方面的知识,能够第一时间察觉到变频器的运行状况,是刻不容缓的。
现将我公司生产线设备几种常见变频器出现过压欠压过热过载故障进行简单归纳与分析。
故障现象一:过压(OU):过电压报警一般是出现在停机的时候。
1、故障主要原因:是减速时间太短或制动电阻损坏。
2、实例:一台台安N2系列3.7kW变频器在停机时跳“OU”。
分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,3、故障处理:所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。
阀门进口泵工业洗衣机故障现象二:欠压(Uu):也是我们在使用中经常碰到的问题。
1、故障主要原因:是因为主回路电压太低(220V系列低于200V,380V系列低于400V),整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。
2、实例:一台DANFOSSVLT5004变频器,上电显示正常,但是加负载后跳“DCLINKUNDERVOLT”(直流回路电压低)。
分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流桥全波整流,然后由电容平波后提供的,3、故障处理:所以应着重检查整流桥,经测量发现该整流桥有一路桥臂开路,更换新品后问题解决。
DL_T6201997交流电气装置的过电压保护和绝缘配合DL/T 6201997《交流电气装置的过电压保护和绝缘配合》是中国电力行业的一项重要技术标准,旨在规范交流电气装置的过电压保护和绝缘配合设计,确保电力系统的安全、稳定运行。
一、过电压的类型及危害1.1 过电压的定义过电压是指在电力系统中,电压瞬间升高超过正常运行电压的现象。
根据其产生的原因和特性,过电压可分为内部过电压和外部过电压两大类。
1.2 内部过电压内部过电压是由系统内部操作或故障引起的,主要包括操作过电压和暂时过电压。
1.2.1 操作过电压操作过电压是由于开关操作、故障切除等引起的电压瞬变。
常见的操作过电压有:开断空载线路过电压合闸空载线路过电压切除空载变压器过电压1.2.2 暂时过电压暂时过电压是由于系统不对称故障或谐振引起的持续时间较长的过电压。
常见的暂时过电压有:单相接地故障引起的过电压谐振过电压1.3 外部过电压外部过电压主要由雷电引起,包括直击雷过电压和感应雷过电压。
1.3.1 直击雷过电压直击雷过电压是雷电直接击中电力设备或线路时产生的过电压。
1.3.2 感应雷过电压感应雷过电压是雷电放电时在附近线路或设备上感应产生的过电压。
1.4 过电压的危害过电压会对电力系统的设备和绝缘造成严重危害,主要包括:绝缘击穿设备损坏系统停电人身安全威胁二、过电压保护措施为了防止过电压对电力系统造成危害,DL/T 6201997标准提出了多种过电压保护措施。
2.1 防雷保护2.1.1 避雷针和避雷线避雷针和避雷线是防止直击雷过电压的主要措施。
避雷针通过引雷作用,将雷电引导至地面,保护设备和线路免受直击雷的侵害。
避雷线则广泛应用于输电线路,形成屏蔽效应,减少雷电直接击中线路的概率。
2.1.2 避雷器避雷器是限制过电压幅值的重要设备,通过非线性电阻特性,将过电压泄放到大地,保护系统绝缘。
常见的避雷器有:氧化锌避雷器碳化硅避雷器2.2 操作过电压保护2.2.1 合闸电阻在高压开关设备中加装合闸电阻,可以有效降低合闸空载线路时的过电压幅值。
变电站电气设备运行中常见故障及应对措施摘要:随着我国电力体制改革的不断深入,变电站的数量和规模不断完善,管理系统逐步智能化。
面对当前经济的快速发展,电力系统越来越追求运行的稳定性和安全性,这已成为我国电力系统的主要发展目标。
但变电站电气运行中存在一些常规问题,直接影响变电站的安全运行质量和效率。
关键词:变电站;电气设备;常见故障;措施;电气设备在变电站中的工作运行状况与电力系统的运行质量有直接关系,在一定程度上电气设备能决定电网运行的安全稳定性,为此若需要对电气设备进行良好的维护。
对变电站电气设备的运行及维护措施进行了探讨。
一、变电运行设备常见的故障类型1.过电压现象对变电设备运行的影响。
对于变电运行设备而言,出现过电压现象是十分普遍和常见的。
导致变电运行设备出现过电压现象主要有两种原因:其一,如果变电设备的变压器的高压算延伸出去的高压输电线路在正常的运行过程中,受到雷电的击打,则会瞬时产生极高的电压侵入波。
其二,过电压现象产生的原因不仅仅来自于雷击现象,还来自于电网内部的操作过电压现象。
例如变电运行中的断路器开合渣,在进行断路器的开合闸的时候,会对变电站周边的潮流分布进行一定的改变,进而导致过电压现象的产生。
2.短路故障对于变电运行设备的影响。
变电运行设备另一常见故障类型就是短路故障。
短路故障包含了负载短路、接地故障以及相间短路等。
一旦变电运行设备出现短路故障现象,其会迅速增大变电范围内的电流,甚至部分电流会直接从变压器的线圈流过,并超过了变压器的额定运行电流,加之内部强电动力的影响,使得变压器内部结构出现变形、烧毁等现象;同时,短路现象的发生还可能导致在其他变电运行设备上出现高温点,进而出现无法修复的损伤。
3.跳闸故障对于变电运行设备的影响。
变电运行设备出现跳闸故障主要包含了线路跳闸、开关跳闸(主变低压侧开关跳闸、主变三侧开关跳闸)等。
之所以出现跳闸现象,主要原因在于保护拒动、开关拒动进而引发的越级跳闸、开关误动以及母线线路故障等。
铅酸电池过电压保护铅酸电池是一种常见的蓄电池,广泛应用于汽车、摩托车、UPS电源等领域。
然而,在使用铅酸电池的过程中,过电压是一个常见的问题。
过电压会对电池的正常运行造成严重影响,甚至导致电池损坏或者发生安全事故。
因此,铅酸电池过电压保护是非常重要的。
铅酸电池过电压的产生主要有两个原因:充电时的过充和放电时的过放。
在充电时,如果充电电压过高或充电时间过长,就会产生过电压。
而在放电时,如果负载电流过大或者电池容量不足,也会导致过电压的产生。
过电压会导致电池内部的化学反应失控,加速正极和负极的物质溶解,导致电池内部的电解液浓度不均匀,进而引发电池内部的短路。
当电池发生短路时,会产生大量的热量,甚至引发爆炸。
因此,过电压保护对于铅酸电池的安全运行至关重要。
为了保护铅酸电池免受过电压的损害,通常会采取以下几种措施:1. 电压监测:通过安装电压监测装置,可以实时监测电池的电压变化。
当电压超过安全范围时,监测装置会发出警报或者自动切断充电或放电电路,以避免过电压的产生。
2. 电流限制:在充电和放电过程中,可以通过限制充电电流和放电电流的大小,来避免过电压的产生。
具体的做法是在电路中添加电流限制器或者采用恰当的充电和放电策略。
3. 温度控制:过电压会引发电池内部的化学反应,产生大量的热量。
因此,通过安装温度传感器,可以实时监测电池的温度变化。
当温度超过安全范围时,可以及时采取措施降低电池的温度,避免过电压的产生。
4. 定期维护:铅酸电池的使用寿命有限,不可避免地会发生容量下降和内阻增加的现象。
这些问题会导致电池内部的电压变化不稳定,进而引发过电压。
因此,定期维护电池,及时更换老化的电池,是保护铅酸电池免受过电压的损害的重要措施之一。
铅酸电池过电压保护是确保电池安全运行的重要措施。
通过电压监测、电流限制、温度控制和定期维护等手段,可以有效预防和避免过电压的产生。
在使用铅酸电池时,我们应该重视过电压问题,采取相应的保护措施,确保电池的安全性和可靠性。
10kV电压互感器故障原因分析及对策1 电压互感器安装调试问题电压互感器安装调试的故障集中在以下几方面:安装人员在二次回路接线端子引接二次线时,二次线随螺栓顺时针旋转,触及电压互感器底座铁板,极易造成电压互感器短路,可能造成电压互感器爆烈;送电操作人员在通电前未对电气设备进行复检;未按安装工艺标准安装施工,都可能造成电气设备故障。
因此,减少电压互感器发生故障的频率应从以下几方面入手:在电压互感器底盘车上的辅助开关内侧,采用防短路的绝缘材料(如绝缘隔板),同时,在裸露长度适宜的线头穿进辅助开关二次线时应加绝缘护套。
电压互感器手车上的二次接线应加套绝缘护套,严禁在转动处、伸缩轴边布线。
定期检查电压互感器手车上的二次接线情况,确保其处于良好状态。
在电压互感器二次接线端引接二次线时,二次引接线铜接头应装有绝缘护套,拧紧螺栓时应防止二次线随螺栓旋转,以免触及电压互感器底座铁板。
必须对电压互感器二次回路进行绝缘电阻测试,以确认电压互感器二次回路绝缘电阻值是否符合要求。
要摇出电压互感器手车,模拟电压互感器至运行状态。
人为使手车底盘辅助开关触点闭合,松开所有电压互感器二次端子,对回路加100V电压进行检查,检查柜上表计、保护回路(电压)的正确性。
严格执行电压互感器反措,二次接地必须引至主控室一点接地,严禁有其他接地点,否则当一次出现单相接地时会烧毁电压互感器。
2 运行中常见的故障及处理措施电压互感器在运行中一定要保证二次侧不能短路,因为其在运行时是一个内阻极小的电压源,正常运行时负载阻抗很大,相当于开路状态,二次侧仅有很小的负载电流。
若二次侧短路时,负载阻抗为零,将产生很大的短路电流,巨大的发热会将互感器烧坏,甚至导致发生设备爆炸事故。
在运行中为了达到对电压互感器的良好保护,可以采取以下措施:二次侧熔断器是保证电压互感器安全运行的可靠措施,必须选择适当的熔断器,并加装闭锁装置;为避免开口三角绕组两端在电压不平衡的情况下长时间存在较高电压,在开口三角绕组两端加装并联电阻,并联电阻在开口三角感应出零序电压时,使零序电流得以流通,对高压线圈产生去磁作用,从而也能抑制谐振;电压互感器高压侧的每相绕组必须在相与地之间,高压绕组必须呈星形接地,而且还要有中性点接地,同时,电压互感器的低压侧两绕组也必须有一点接地;在10kV以下配电网络中,电源侧的中性点是不直接接地的,电压互感器的中性点接地。
井下低压供电系统常见故障分析及其保护原理摘要:本文对煤矿井下低压电网中常见的的短路、漏电、过载、过电压、欠电压、断相等故障进行了深入的分析,讨论了相应的故障处理原理,针对各种保护确定一套可行的方案。
关键词:故障短路漏电保护一、井下低压供电系统特点我国矿井通常采用变电站加放射式供电的形式,以动力变压器为中心,引出主电缆,各个用电设备分别挂接在母线上,各个供电回路彼此独立,互不干扰。
供电系统结构主要分为五个部分:高压配电装置、降压变压器、总馈电开关、分支馈电开关和磁力启动器。
磁力启动器的末端接负载。
如图1所示。
图1 井下低压供电系统结构井下低压供电系统的特点:(1)我国矿井低压电网采用的电压等级目前,我国矿井供电结构主要采用6kV或10kV,通过双回路下井,在井下变电站通过井下降压变压器,将高压降为3.3kV、1140V、660V和380V等不同电压等级,目前我国井下普遍采用的是660V和1140V的低压电网,再通过不同型号的矿用电缆送到移动变电站、负荷控制中心,馈电开关或者磁力启动器等电气设备,形成了煤矿井下的配电网络,向采煤机、皮带运输机、破碎机、井下通风机等电器设备供电。
(2)井下电网的中性点接地方式井下低压电网的中性点接地方式可以分为大电流接地系统和小电流接地系统(NUGS)。
大电流接地系统包括中性点直接接地系统和中性点经低阻接地系统。
小电流接地系统包括中性点不接地系统(NUS)、中性点经消弧线圈接地系统(NES)和中性点经高阻接地系统(NRS)。
各种中性点接地方式的特点如下表2-1所示。
由于受历史条件和环境的影响,目前不同的国家采用的中性点处理方式也不同,像英国、加拿大国家大都采用的是中性点经小电阻接地和直接接地方式,日本、俄罗斯、德国等国家大多采用中性点不接地或经消弧线圈接地方式。
在我国井下电网中,普遍采用中性点不接地的方式,当井下电网发生单相接地故障时,由于大地与中性点之间绝缘,故障时的接地电流比较小,而三相电网线电压之间保持平衡,从而使生产设备在短时间内可以继续工作。
过电压的保护措施过电压是指电力系统中电压突然增大到超过正常运行范围的现象。
过电压的发生可能是由于各种内外原因引起的,如雷电、开关突然开闭、设备故障等。
过电压不仅会给电力系统带来损害,还会对设备和人身安全构成威胁。
因此,保护电力系统免受过电压的影响是非常重要的。
为了保护电力系统免受过电压的影响,我们可以采取以下措施:1. 发电机保护在电力系统中,过电压通常首先来自发电机端。
因此,对发电机进行保护是非常重要的。
常见的发电机过电压保护技术包括:•差动保护:通过比较发电机主变压器两侧的电流差异来判断是否存在过电压。
•过电压继电器:通过检测电气参数(如电压、频率等)来实时监测发电机的运行状态,一旦出现过电压就立即切断电路。
•过电压屏蔽:在发电机绕组和其他敏感元件之间放置过电压屏蔽器,以吸收并分散过电压。
2. 输电线路保护输电线路是电力系统中很容易受到过电压影响的部分。
为了保护输电线路免受过电压的影响,我们可以采取以下措施:•过电压抑制器:在输电线路上安装过电压抑制器,当出现过电压时,抑制器会自动接入,将过电压引流到地面。
•避雷器:安装在输电线路两端的避雷器可以将过电压引向地面,避免影响线路的正常运行。
•过电压继电器:在线路上安装过电压继电器,可以及时检测到过电压并切断电路,保护线路免受损坏。
3. 电力变压器保护电力变压器也是电力系统中容易受到过电压影响的设备之一。
为了保护电力变压器免受过电压影响,我们可以采取以下措施:•差动保护:通过比较变压器高、低压侧电流差异来判断是否存在过电压。
•过电压继电器:在变压器的高、低压侧安装过电压继电器,一旦出现过电压就立即切断电路,防止过电压对变压器造成损坏。
•过电压屏蔽:在变压器绕组和其他敏感元件之间放置过电压屏蔽器,以吸收并分散过电压。
4. 使用避雷器避雷器是用于保护电力系统和设备免受过电压冲击的重要设备。
避雷器主要通过将过电压引导到地面来保护系统。
在电力系统中安装避雷器可以有效地降低由雷击、开关操作等引起的过电压对设备的损坏。
操作过电压产生的不同原因及限制措施作者:杨亮亮来源:《硅谷》2015年第04期摘要操作过电压是电力设备内部产生的电压,由于电力设备的运行状态发生改变,系统中的就会发生一系列的电磁振荡出现了高于系统正常运行时的电压幅值,而这个值远大于设备设计的额定绝缘水平,这样就会给设备的绝缘带来危害,从而影响电力系统的安全稳定运行。
为保障电力系统的安全性与稳定性必须综合考虑过电压的产生原因、种类及其相应的限制措施,从而最大限度的减少过电压造成的危害,为电力系统正常运行提供可靠保障。
关键词操作过电压;空载;电力系统中图分类号:TM531 文献标识码:A 文章编号:1671-7597(2015)04-0251-01电力系统要适应经济的进步就要不断的改革创新,电力改革的成功与否直接关系着国民经济的发展,甚至可以说电力建设是国家经济发展的命脉,为经济的发展提供可靠地保障。
操作过电压是系统发生改变时必然会产生的问题,它的产生会对电力设备绝缘造成危害,影响整个电力系统的正常运行,妨碍经济的正常发展。
要保障电力系统的安全性与稳定性必须针对工作中过电压产生的具体事例进行分析,总结发生原因并找到相应的限制措施,从而将危害降到最低,使电力系统稳定运行为经济建设保驾护航。
1 操作过电压产生的原因电力系统的大多数设备都是储能的元件,当系统内开关或者系统出现突发事故时,储存在电感中的磁能和储存在电容中的静电场能量发生了转换过渡的振荡过程,系统从一种稳定状态变为另一种稳定状态,产生了高于系统本身的电压形成了操作过电压。
2 操作过电压常见的种类2.1 电弧接地过电压当中性点不接地系统单相接地时,故障点流过数值不大的接地电容电流,当电压等级提高时接地电流也随之增加,当电流过大时产生的电弧可能出现时燃灭的不稳定状态,引起电网运行的瞬间变化,进而导致电磁能量振荡产生过电压也就是电弧接地过电压。
2.2 切除空载线路过电压切除空载线路过电压是系统常见的操作过电压之一,当断路器最初分闸时,断路器触头间的恢复电压上升速度大于介质绝缘恢复速度,这样会导致电弧重燃,而一旦电弧发生重燃系统就会发生电磁振荡最终出现幅值较大的过电压。
浅谈乡镇 10kV 配电线路常见故障原因分析及防范措施发布时间:2022-01-07T03:13:20.573Z 来源:《中国电业》2021年第22期作者:艾牧[导读] 10kV架空配电线路由于长期处于露天运行,又具有点多、线长、面广艾牧云南电网有限责任公司楚雄武定供电局云南省武定县651600摘要10kV架空配电线路由于长期处于露天运行,又具有点多、线长、面广,结线方式复杂多变等特点,因此运行中的10kV架空线路经常容易发生故障。
这不但阻碍宽敞市民的正常生产、生活用电,而且还给供电企业造成了经济缺失。
近年来,通过大规模的配电网基建改造,高低压配电线路网络结构有了明显的改观。
但从近几年来实际运行看,仍旧存在许多的问题。
文章就10kV架空配电线路常见故障及防范措施方面进行以下探讨。
本文对10kV配电运行事故进行分类统计分析,并结合其他单位配电运行事故,找出存在的薄弱点,积极探究防范措施,这关于提高配电网治理水平具有重要意义。
关键词:10kV架空配电线路;故障分析;防范措施1.配网网常见故障类型1.1外破造成的故障因l0kV线路面向用户端,线路通道远比输电网复杂,受外界各类因素影响,易引发线路故障,具体几个方面:①城区线路通道多数沿公路布设,引起的车辆撞到电杆,造成倒杆、断断线。
②市政施工时,对配网造成破坏,主要表现在两个方面:一是基面开挖伤及地下敷设电缆;二是施工机械、物料超高触碰带电线路造成故障停电。
③尽管配网线路建设在先,但仍部分居民不顾安危铤而走险在配电线路下方违规建房,影响配电线路的安全运行,增加新的安全隐患。
④生活垃圾中的漂浮塑料、农田用的塑料薄膜等物体,由于大风作用挂到配电线路上,雨季来临受潮后造成故障停电。
⑤鼠、猫、蛇、鸟等动物爬到配电变压器上造成相间短路,鸟同时从柱上开关上起飞时造成相间短路。
1.2自然灾难造成的故障汛期连续降雨造成山体滑坡,造成配电线路倒杆断线,供电设备受损;山火造成造成供电设备受损;机械施工,如挖机、吊车在线路周围施工,由于施工管理不到位,操作人员安全意识淡薄误碰到带电线路,造成相间短路故障;雷击造成10kV架空线路故障较为常见,由于10kV线路路径较长,穿越地带复杂多变,因此在每年的雷季中常遭雷击,其现象有绝缘子击穿或爆裂、断线、避雷器爆裂、配变烧毁等。
过电压的概念什么是过电压?过电压是指电力系统中出现的超过额定电压的瞬时电压波动。
它是指短时间内电压突然升高,超出了电力设备所能承受的标准电压值,导致电力系统中电流过大,对设备和线路造成潜在危害的现象。
过电压的产生原因过电压主要由以下原因引起: 1. 雷电击中高压输电线路或设备:当雷电击中高压输电线路或设备时,电力系统的电压会瞬间发生剧烈的变化,导致过电压的出现。
2. 设备故障:电力系统中的设备故障,如绝缘损坏、短路等,可能导致电流突然增大,引发过电压。
3. 突然断电和恢复电力:当电力系统发生突然断电后,重新恢复供电时,电压会瞬间增加,可能导致过电压的产生。
4. 改变电力系统结构:电力系统的结构变动,如开关操作、切换操作等,都有可能引起过电压。
过电压的分类根据过电压的源头和形态,过电压可分为不同的类型: 1. 大气过电压:即雷电过电压,是由雷电击打导致的,是最常见的一种过电压。
雷电的电磁辐射和电磁感应作用会引起电压的剧烈变化,从而产生高电压。
2. 操作过电压:即由电力系统开关操作引起的过电压。
在开关操作时,电压会出现突变,可能产生过电压。
3. 暂态过电压:由电力设备故障、突然断电和电力系统结构改变等引起的短暂电压升高。
过电压对设备的影响过电压对电力设备和线路有很大的危害,可能导致以下问题: 1. 设备绝缘损坏:过电压会使设备绝缘受损,加速绝缘老化,降低设备的绝缘性能,可能导致设备短路、跳闸等故障。
2. 设备烧毁:过电压过大时,设备无法承受电压的冲击,可能导致设备烧毁,严重影响设备的使用寿命。
3. 数据丢失:过电压可能导致设备失效,造成数据丢失,对数据中心等关键设备造成严重影响。
4. 系统中断:过电压可能引发电力系统的短路、跳闸等问题,导致系统中断,影响正常的供电。
过电压保护措施为了保护设备和线路,防止过电压产生的损害,需要采取一些过电压保护措施: 1. 避雷器安装:在建筑物、设备和电力线路上都需要安装避雷器,以吸收雷电的过电压,保护设备和线路的安全。
操作过电压产生的影响因素及其限制措施摘要:操作过电压是内部过电压的一种,是由于对电力设备的操作,突然改变了系统的运行状态,使系统发生电磁振荡,因此就产生了高于系统本身运行的电压等级,这种很高的电压对电力系统稳定运行会带来很大的危害。
要保证电力系统的稳定运行,必须弄清楚电力系统存在过电压的根本原因,并针对不同的原因采取不同的抑制措施是很有必要的。
文章就简要分析过电压产生的影响因素及其限制措施。
关键词:操作过电压;影响因素;限制措施;管理防范我国正处在经济高速发展的时期,对电量的需求量特别大,电力建设是现阶段非常重要的一个任务,电力建设的好坏直接影响着我国经济的发展速度,可以这样说,电力建设就是我国各行业经济发展的命脉,为经济持续高速增长提供可靠保证,掌控着国家的一切活动顺利开展。
“十二五”期间,我国的电力需求量增速变化了,预计应该在10%上下,这些年大规模扩展电网,全国电力建设联网运行以及智能电网的出现,使得系统的结构和运行方式便得越来越复杂,增加了发生系统性事故和导致大面积停电的概率,在现代化要求的电力系统网络建设中,保证电力系统稳定性和可靠性已经成为电力系统正常运行的最重要的问题。
操作过电压高于正常运行电压,大于原先设备设计的电压等级的额定绝缘水平,会对电力系统设备的绝缘带来极大的危害,从而影响电力系统设备的正常运行,如果该设备是电网中的重要设备,会对整个电网运行的稳定行和可靠性有极大的影响,而且操作过电压由于系统改变的需求,所以操作过电压时常发生。
为了保证电力系统运行的稳定性和可靠性必须在各方面考虑操作过电压,分析其产生原因,并找到相应的解决方法来限制操作过电压,从而将危害抑制到最小,使电力系统能够更稳定的运行,为国民经济的发展提供可靠保证。
1 操作过电压产生的原因电力系统由电源、电感、电阻、电容等元件组成的复杂系统网络。
当这个网络系统内部有开关或是系统出现突发性的事故时,电力系统拓扑网络结构将会发生很大的改变,将从一种稳定的状态变化到另一种稳定的状态,在变化过程中,各个储能元件的能量重新分配,系统将发生L、C振荡,从而可能在某些重要的设备上,甚至可能在全部系统中出现很高数量级的过电压,进而危及电网安全运行,使系统中绝缘薄弱部位被击穿。
10KV 铁路电力系统谐振过电压产生原因及抑制措施摘要:铁路10KV 电力系统是中性点不接地系统,中性点直接接地的三相五柱电磁式电压互感器线圈电感和电网对地电容与构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压。
本文通过对10KV 中性点不接地运行方式下谐振过电压的分析,说明产生谐振过电压的条件、种类及特点,并针对各种抑制谐振过电压的措施进行探讨,得出可行性结论。
关键词:铁路;电力;过电压;抑制措施1 概述铁路10KV 电力系统均为中性点不接地系统(小电流接地),发生单相接地故障时,由于对线电压不产生影响,允许继续运行2个小时,提高了供电的可靠性和连续性,但是存在着易产生过电压的问题。
在10KV 配电所的每一段母线上均接有一台三相五柱电磁式电压互感器,其一次线圈中性点直接接地。
由于电网对地电容与压互的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,甚至能长时间自保持,对系统的安全运行威协极大,它是导致压互高压熔丝熔断和压互烧损、避雷器爆炸的主要原因,也是某些重大事故的诱发原因之一。
近五年以来,在我段管内共发生谐振过电压烧坏压互高压保险12次,烧毁10KV 压互1台,压互瓷瓶内部引出线烧断1次。
2 铁路10KV 电力系统谐振过电压产生的条件2.1 内部条件铁路10KV 电力系统是中性点不接地系统,为了监视系统的三相对地电压,10 kV配电所每段母线上均接有Y/Y/接线的三相五柱电磁式压互。
母线电压互感器的高压侧接成Y 型,其中性点是接地的,由于铁路10KV 电力系统中电缆较多,各相对地电容较高,电网对地电容与压互的电感相匹配构成谐振条件。
当发生谐振时,压互感抗显著下降,励磁电流急剧增大,可达到额定值的数十倍,造成压互烧毁或保险熔断。
2.2 外界激发条件激发产生谐振过电压的外部条件有以下几种:(1)线路发生单相接地或瞬间接地。
(2)向带有三相五柱电磁式压互的空母线充电(不带馈线负荷的情况下空送母线)。
什么是过电压电力系统在特定条件下所出现的超过工作电压的异常电压升高。
过电压属于电力系统中的一种电磁扰动现象。
电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。
基本介绍overvoltage过电压种类过电压是指工频下交流电压均方根值升高,超过额定值的10%,并且持续时间大于1分钟的长时间电压变动现象;过电压的出现通常是负荷投切的结果。
电力系统在特定条件下所出现的超过工作电压的异常电压升高,属于电力系统中的一种电磁扰动现象。
电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。
研究各种过电压的起因,预测其幅值,并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。
主要分类过电压分外过电压和内过电压两大类。
外过电压又称雷电过电压、大气过电压。
由大气中的雷云对地面放电二次过电压保护器而引起的。
分直击雷过电压和感应雷过电压两种。
雷电过电压的持续时间约为几十微秒,具有脉冲的特性,故常称为雷电冲击波。
直击雷过电压是雷闪直接击中电工设备导电部分时所出现的过电压。
雷闪击中带电的导体,如架空输电线路导线,称为直接雷击。
雷闪击中正常情况下处于接地状态的导体,如输电线路铁塔,使其电流互感器过电压保护器电位升高以后又对带电的导体放电称为反击。
直击雷过电压幅值可达上百万伏,会破坏电工设施绝缘,引起短路接地故障。
感应雷过电压是雷闪击中电工设备附近地面,在放电过程中由于空间电磁场的急剧变化而使未直接遭受雷击的电工设备(包括二次设备、通信设备)上感应出的过电压。
因此,架空输电线路需架设避雷线和接地装置等进行防护。
通常用线路耐雷水平和雷击跳闸率表示输电线路的防雷能力。
内过电压电力系统内部运行方式发生改变而引起的过电压。
有暂态过电压、操过电压保护器作过电压和谐振过电压。
暂态过电压是由于断路器操作或发生短路故障,使电力系统经历过渡过程以后重新达到某种暂时稳定的情况下所出现的过电压,又称工频电压升高。
浅谈 35kV变电站运行常见的问题和预防措施摘要:35kV变电站是输变电工程系统软件的主要组成部分,其运行的可靠性关系到所有输变电工程系统软件的运行质量。
变电站运行过程中,极易发生高压断路器、变压器、电缆等常见故障,对一切正常运行造成较大危害。
这就需要对常见故障的发生采取合理的预防措施,加强管理,提高管理能力,同时加强对变电站相关机械设备的维护保养。
发现相关问题后,需要立即进行处理,确保变电站运行的安全稳定,为电力工程工作的顺利推进。
做出更高的奉献。
关键词:35kV变电站运行;问题;预防措施引言随着电力工程应用范围的不断发展,公众对35KV变电站运行中的安全系数已经明确提出了更好的规定。
由于35KV变电站运行进度比较快,在运行过程中不可避免地会出现一些问题。
为了更好更快地推动35KV变电站稳定运行,大家必须不断总结35KV变电站运行过程中常见故障和35KV变电站引起的常见故障,以便于改进。
快速处理35KV变电站运行中经常出现的常见故障,提高35KV变电站的高效率,使其合理满足公众对电力工程的要求。
1.关于35KV变电站的相关分析通过对供电系统相关基础理论的分析,变电站是供电系统的关键组成部分,其运行以整个供电系统的稳定为目标,存在重大隐患。
同时,配电所也是发电站与消费者之间的重要桥梁,起着电力转换和分配的作用。
配电所的任务是利用一些相应电气设备的有机化学组件进行断开、接通和调整工作电压。
相关专业技术人员根据变电站线路及所负责的电量,有效制定35KV变电站运行方案。
因此,对于35KV变电站运行中常见的常见故障,只有通过维护工作经验的不断积累和探索,才能发现有效的处理和预防措施,促进35KV变电站的稳定运行。
总体目标变为现实。
2.35kV变电站运行过程中的常见问题35kV变电站是我国供电系统中尤为关键的部分,也是供电系统中提供家庭用电、企业用电的一个特别关键的环节。
因此,35kV变电站运行的稳定与大家生活质量的稳步发展与其社会发展有着非常密切的联系。
高压变频器功率单元常见故障分析与维修高压变频器在我国的电力能源、石油化工等行业得到了大力应用,极大的促进了这些行业生产效率的提高。
但是高压变频器在使用过程中,很容易出现各种的故障问题,比如出现过电压故障、熔断器故障等,影响着生产工作的正常开展,对这些故障的维修还需要花费极大的维修费用,不利于经济效益的提高。
因此,为了解决高压变频器常见的故障问题、提高经济效益,就必须要对高压变频器常见的故障问题进行分析总结,确保这些故障问题能够得到有效预防和解决。
本文分析了高压变频器功率单元常见的故障问题和维修措施,以供参考。
标签:高压变频器;功率单元;常见故障分析;维修1.油田高压变频器使用概况在我国的油田生产中广泛应用了高压变频器,不仅利用高压变频器对天然气等进行压缩,还利用高压变频器进行原油的输送。
我油田煤层气近几年给螺杆泵压缩机和往复式压缩机系统共安装了16套高压变频系统,极大地提高了煤层气压缩机组的安全性、经济性、可靠性。
高压变频器美中不足的是由于受大功率开关元件IGBT的耐压这一主要技术参数的影响,逆变工作无法直接的实现,所以当前应用的高压变频器大多是以单元串联脉宽调制叠波升压作为输出原理进行工作,煤层气压缩机高压变频器就是基于此种原理。
单元串联式高压变频器的核心部件是功率单元,这种功率单元也是承受高电压大电流冲击的部件,是该类型变频器的主要易损件之一。
对相应的故障在现场进行正确及时地维修处理,将会极大减少因设备故障影响生产的时间,有利于保障油田安全生产,提高油田生产的经济效益。
2.高压变频器功率单元常见故障问题分析与维修2.1功率单元常见轻故障分析与维修在日常使用中,高压变频器往往会在现场频繁出现熔断器故障、过电压故障、光纤故障等故障问题。
2.1.1熔断器故障问题的分析与维修当控制界面上显示熔断器出现故障时,工作人员应当根据对应的单元号来找到具体出现故障的熔断器,针对对应单元的两只熔断器,工作人员需要用万用表进行检查,及时找到出现故障的熔断器,并确定没有其它元件损坏的情况下利用相同规格的熔断器进行更换。
电力系统常见电气故障分析电力系统是现代社会不可或缺的基础设施,而电气故障是电力系统运行过程中经常出现的问题,可能对人们的生产生活造成严重影响。
因此,对电力系统常见电气故障进行分析和探讨,对于确保电力系统正常运行、提高电力系统可靠性具有非常重要的意义。
一、局部放电故障:局部放电是电力系统中最常出现的电气故障之一。
通常由介质材料或接头、支架等局部绝缘出现缺陷,使局部电场强度大于介质击穿强度而引起。
局部放电不仅会加速设备的老化破坏和缺陷扩大,还会引起相邻设备间的相互干扰,影响电力系统的安全运行。
因此,对局部放电故障进行检测和预防非常重要。
二、绝缘老化故障:随着使用时间的延长,电力设备中的绝缘材料会逐渐失去其良好的电气特性,伴随老化和破损。
这样绝缘层的击穿强度就会下降,发生绝缘老化故障的几率也就越大。
因此,定期进行设备的检测和保养,及时更换老化的绝缘材料,对维护电力设备的长久稳定运行以及维护用电安全都是非常重要的。
三、短路故障:短路故障是电力系统中常见的电气故障之一。
短路故障通常不仅会造成很大的电压和电流冲击,也会对系统内部设备造成严重损害,甚至引起火灾等危险。
因此,在电气系统的设计中,应该注重设计设备的灵敏保护措施,及时检测并排除短路故障,以确保电力系统的安全、稳定运行。
四、过电压故障:过电压故障是指电力系统中的电压超过系统设计电压,引起设备的烧毁或损坏。
过电压故障是电力系统中常见的电气故障之一,常见原因是雷击、电力设备切换、设备阻抗变化等。
过电压的发生会对设备造成很大的损害,并可能引起火灾等安全隐患。
因此,在电气系统中,应该安装良好的过电压保护装置,及时排查并消除过电压故障。
五、接地故障:接地故障是电力系统中常见的故障之一。
当电力设备接地时,电力系统中的电流会流向地面,导致电力设备不能正常工作或造成电流泄漏等安全隐患。
因此,在电气系统设计和施工过程中,必须注意接地装置的设置和保护措施,防止接地故障的发生。
电压互感器的常见故障及解决对策电压互感器作为一种公用的一次设备在电力系统中发挥着重要的作用。
无论是互感器本身还是二次回路出现问题。
都将给整个二次系统带来严重影响。
因此对其故障进行准确判断和处理具有现实意义。
标签:电压互感器;故障;对策1. 电压互感器概述1.1电压互感器的定义电压互感器和变压器很相像,都是用来变换线路上的电压。
但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来测量线路的电压、功率和电能。
因此,电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。
电压互感器是一个带铁心的变压器,它主要由一、二次线圈、铁心和绝缘组成。
在互感器工作中,是通过改变一次、二次绕组的线圈数量来提升电压比,通过接通测量仪表、继电保护装置来进行工作的。
1.2电压互感器的类型电压互感器主要分为两种:一种是电磁式电压互感器,另外一种是电容式电压互感器,但是电磁式电压互感器是较传统的电压互感器。
相较之下,电容式电压互感器具有一定的优越性,目前,电容式电压互感器在110kV及以上系统中运用较多。
2. 电压互感器常见故障和分析电压互感器常见故障现象为:一次熔断器熔断、二次空气开关跳闸、回路断线故障。
电压互感器一次侧熔断器熔断主要是以下原因引起的:①电压互感器内部绕组发生层间、匝间或者相间短路故障;②电压互感器一、二次回路故障,导致电压互感器过电流;③过负荷运行或长期运行,熔断器接触部分发生锈蚀导致接触不良;④感应雷电波致使电压互感器铁芯磁场接近饱和;⑤铁磁谐振作用;⑥中性点不接地系统发生单相接地,使非接地相电压升高到线电压,以及发生间歇性电弧接地时产生数倍过电压,都会使电压互感器铁芯饱和,致使电压互感器电流剧增。
电压互感器二次侧空气开关跳闸多为二次回路导线受潮、腐蚀及损伤而发生一相接地、两相接地短路;负荷设备内部存在金属性短路,也会造成其空气开关跳闸。
1. 操作过电压产生的原因及危害? 操作过电压是由于进行断路器操作或发生突然短路而引起的衰减较快持续时间较短的过电压。 操作过电压产生的原因:①空载线路合闸和重合闸过电压。②切除空载线路过电压。③切断空载变压器过电压。④弧光接地过电压。⑤线路非对称故障分闸和振荡解列。 ➢ 截流过电压:由于真空断路器具有良发的灭弧性能,当开断小电流时,电弧在过零前熄灭,由于电流被突然切断,其滞留于电机等电感绕组中的能量必然向绕组中的杂散电容充电,转变为电场能量。对于电机和变压器,特别是空载或容量较小时,则相当于一个大的电感,且回路电容量较小,因此会产生高的过电压,特别是开断空载变压器时更危险。从理论上讲可以产生很高的过电压,但由于触头和回路中有一定的电阻,产生损耗以及发生击穿,对过电压值有相当的抑制作用。 ➢ 多次重燃过电压。多次重燃过电压是由于弧隙发生多次重燃,电源多次向电机电源充电而产生的。在真空断路器切断电流的过程中,触头的一侧为工频电源,另一侧为LC回路充放电的振荡电源,如果触头间的开距不够大,两个电压叠加后就会使弧隙之间发生击穿,断路器的恢复电压就会升高。如时触头开距不够大,就会发生第二次重燃,再灭弧,再重燃,以至发生多次重燃现象。多次的充放电振荡,使触头间的恢复电压逐渐升高,负载端的电压也不断升高,致使产生多次重燃过电压,损坏电气设备。 ➢ 三相开断过电压。三相开断过电压是由于断路器首先开断相弧隙产生重燃时,流过该相绵弧隙的高频电流引起其余两相弧隙中的工频电流迅速过零,致使末开断相随之被切断,在其他两相弧隙中产生类似较大水平的截流现象,从而产生更高的操作过电压,产生的过压加在相与相之间的绝缘上。在开断中,小容量电机或轻负荷情下容易出现三相开断过电压。对母线支撑件,套管以及所连接的二次设备产生影响。 2. 如何正确选择系统过电压保护装置? 过电压种类繁多,应根据保护对象合理选择选择过电压保护装置,从而有效地抑制系统过电压,保护运行设备绝缘安全。在选择时应遵循以下原则: 保护装置的保护水平应低于被保护对象的绝缘耐压水平; 相间保护水平应与相对地保护水平保持一致; 考虑保护装置自身安全,持续运行电压应按:1.15*1.1Ue(Ue为额定相电压)。 3. 试分析无间隙四星型和四间隙四星型结构组合式保护器特点? 1) 三相四星型组合式过电压保护器 保护器结构如图,由氧化锌阀片组成星型结构。
优点: 将氧化锌阀片进行拆分,组合。继承MOA的优点; 保护相对地同时,兼具保护相对地过电压; 动作响应速度快; 缺点: 正常运行时,荷电率偏高。三相平衡时,使靠近电源侧氧化锌阀片承担相电压,动作电压是设计时的一半左右。故此部分荷电率为设计时的一倍,易老化,称为保护器的薄弱环节。 易发生连锁现象。一旦发生阀片热崩情况,会发生连锁反应,使其他阀片发生热崩,导致相间短路,引发事故。 2) 三相四间隙四星型组合式过电压保护器 保护器结构如图,由氧化锌阀片和间隙配合组成星型结构。
优点: 解决荷电率偏高的问题。氧化锌阀片和间隙互为保护,正常运行时间隙不导通荷电率为零,保护氧化锌;保护器动作时,间隙击穿,氧化锌动作承担灭弧任务,保护间隙。 无截波,无续流; 缺点: 间隙的存在使保护器动作有延时; 间隙密封要求高,进潮后会使动作电压降低,易引发氧化锌热崩溃; 受海拔高度、空气湿度影响较大; 动作有延时。 4. 过电压保护装置在线监测的必要性? 过电压保护产品运行中往往因泄露过电流过大而引发氧化锌热崩溃(氧化锌0.75倍持续运行电压时不大于50uA),最终导致相间短路。 EAT配置在线检测装置,可实时在线监测装置运行状况,监测出装置运行时泄漏电流。当泄露电流超标时,可通过RS485通讯提示系统运行监控人员及时更换。在线监测装置记录动作次数,便于分析系统过电压程度。 5.一特六柱全相双安全保护装置特点有哪些? 六只氧化锌阀片组成独立保护,不会引起星型结构连锁反映的缺陷; 相间、相对地保护; 响应速度快,动作时间nS级; 无截波,无续流; 伏安特性曲线良好,残压低; 真空环氧树脂浇注,密封性好,对环境要求低,适用范围广; 防相间短路设计; 配置在线检测装置,可实时在线监测装置运行状况,记录动作次数。 6. 试分析弧光过电压产生及原因? 1) 单相弧光接地过电压的形成机理 对于单相弧光接地过电压形成机理的理论分析方法很多,对于电网中性点不接地系统,电力电缆在其相间和相地间都有等效电容。经计算表明,发生单相弧光接地时过电压的最大值将达到: Umax=1.5Um+(1.5Um–0.7Um)=2.3Um 单相弧光接地的过电压瞬时幅值最大可以达到20.4KV。如果弧光接地在接地点造成弧光间隙性反复燃烧,那么产生的过电压倍数将远远大于2.3倍。根据有关资料介绍,在国外有些专家对单相弧光接地进行了实测,其结果显示,过电压幅值高达正常相电压幅值的3~3.5倍。在系统发生单相接地时,都产生了较高的过电压,才会引起避雷器放电。强烈的过电压使相间空气绝缘被击穿,形成相间弧光短路,至于避雷器的爆炸,主要是由于避雷器的选型错误(原设计型号为Y3W-10/31.5)和产品质量欠佳(受潮),再加上弧光短路产生的高能热量加剧了避雷器的爆炸。由此可见如此高的过电压一旦产生就将会在电力网络绝缘薄弱环节形成闪络放电,严重时将破坏绝缘,造成相间短路或者损害电气设备。发电机接地电流已远远大于5A,才会造成发电机定子铁芯熔化,即与发电机有电气连接的电力网络的单相接地电流已大大超过了5A。 2) 单相弧光接地产生的原因 从上述分析可见,单相弧光接地是威胁电力系统安全、稳定和可靠运行的最主要和最直接因素。而中性点的接地方式,直接影响到单相弧光接地的产生和限制力度。根据我国的传统设计经验,在6KV-35KV电力系统普遍采用中性点不接地方式,这是因为在早期的电力网中,电力电缆采用量不大,系统的单相接地电容电流并不大。而随着各电力系统的飞速发展和增容,原电力系统主接线发生了很大的变化,电力电缆的采用量急剧增加。从诸多系统的运行现状和经验来看,其过电压发生的机率越来越高,由于过电压造成的事故在整个电气事故中所占的比例也越来越大。供电系统亦属于这种情况。该系统从最初的以架空线为主的配电系统发展成为了拥有发电、供配电以及以电力电缆连接为主的电力系统,再加上即将上马的更高变配电网络,将形成以发、变和配电综合一体化电力系统。因此最初采用的中性点不接地方式将受到严峻的考验!根据《电力设备过电压保护设计技术规程》和电力部、国家的有关标准和要求,对于3~35KV电力系统,当单相接地电流小于30A时,如要求发电机能带单相接地故障运行,则当与发电机有电气连接的3~35KV电网的接地电流小于5A时,其中性点可采用不接地运行方式。 7. 试分析消弧线圈对于限制弧光过电压的不足? 1) 有效限制架空线路弧光过电压,对于电缆中高频电流不能做很好的补偿。 2) 由于电网运行方式的多样化及弧光接地点的随机性,消弧线圈要对电容电流进行有效补偿确有难度,且消弧线圈仅仅补偿了工频电容电流,而实际通过接地点的电流不仅有工频电容电流,而且包含大量的高频电流及阻性电流,严重时仅高频电流及阻性电流就可以维持电弧的持续燃烧; 3) 当电网发生断线、非全相、同杆线路的电容耦合等非接地故障,使电网的不对称电压升高,可能导致消弧线圈的自动调节控制器误判电网发生接地而动作,这时将会在电网中产生很高的中性点位移电压,造成系统中一相或两相电压升高很多,以致损坏电网中的其它设备。 4) 另外,由于消弧线圈补偿弧光接地电流,使得故障点不宜发现,不利于小电流选线,快速查出故障。 8. 试阐述消弧消谐柜工作原理? 装置对系统发生的弧光接地故障,首先分析弧光接地的性质,然后针对具体的接地类型,采取相应的处理方式,处理方式如下: 1)如果系统发生不稳定的间歇性弧光接地故障,则微机控制器判断接地的相别,同时发出指令使故障相的真空接触器闭合,从而完成消弧。数秒后,故障相的高压真空接触器断开,系统恢复正常运行。真空接触器快速动作将不稳定的弧光接地转化为稳定的金属性接地。 2)如果接地故障是稳定的弧光接地,微机控制器在判断接地相别后,则装置输出开关量接点信号,也可根据用户要求由微机向真空接触器发出动作指令;若故障消失,说明这一电弧接地故障是由过电压冲击引起的瞬时性接地故障,系统恢复正常运行;若故障相接触器断开后,系统再次在原故障相出现稳定的电弧接地,则装置认定此故障为永久性电弧接地故障,于是再次闭合故障相真空接触器,等待值班人员处理。 9. 试阐述消弧消谐柜常见问题及改进方案? 1) 熔丝熔断 ➢ 熔丝熔断发生原因主要有以下几个方面: 设计失误,没有准确计算出系统对地电容电流,选择熔芯额定电流偏小; 装置误动作,引发相间短路; 无远程通讯功能,故障不能及时恢复。 ➢ 可作改进: 合理选择熔芯额定电流; 合理选用消弧装置; 提高控制器抗干扰能力; 增加远程通讯功能。 2) 装置误动 ➢ 装置误动发生原因主要是控制器判据不合理、受电磁干扰,使控制器发出错误动作命令。 ➢ 可作改进: 双CPU技术,合理设计控制器判据; 提高控制器抗干扰能力。 3) PT故障 ➢ PT故障包括PT熔丝熔断和PT烧坏,引发此类故障的原因多是铁磁谐振。 ➢ 可作改进: 提高PT抗饱和点; 一次消谐; 二次消谐。