第九章 非参数检验方法
- 格式:ppt
- 大小:1.36 MB
- 文档页数:42
⾮参数检验⽅法⾮参数检验的推断⽅法不涉及样本所属总体的分布形式,也不会使⽤均值、⽅差等统计量,⾮参数检验是通过研究样本数据的顺序和分布的性质来构成理论基础,下⾯介绍⼀些⾮参数检验经常使⽤的样本数据信息:1.顺序:将样本数据按照升序排列,可以得到X1≤X2≤X3≤Xi....≤Xn,其中Xi为第i个顺序量。
2.秩将样本数据按照升序排列,可以得到X1≤X2≤X3≤Xi....≤Xn,Ri为Xi在这⼀列数据中的位置,称为秩,R1,R2,R3...Rn为样本数据的秩统计量3.结如果样本数据中存在相同的值,那么在排序时就会出现秩相同的情况,这样的情况称为结,结的取值是对应的秩的均值。
注意是秩的均值⽽不是数据本⾝的均值。
⾮参数检验的统计理论都是根据上述概念计算⽽来,此外,和参数检验⼀样,当我们得到分析数据的时候,最先做的⼯作还是先通过图表和⼀些描述性统计量对数据整体进⾏探索性分析,掌握数据⼤致分布情况、有⽆极端值等,为后续正确选择分析⽅法打下基础。
================================================ ====⾮参数检验主要应⽤在以下场合:1.不满⾜参数检验的条件,且⽆适当的变换⽅法进⾏变换2.分布类型⽆法获知的⼩样本数据3.⼀端或两端存在不确定值,如>10004.有序分类变量求各等级之间的强度差别更进⼀步来讲,⾮参数检验可以做以下分析:⼀、单样本总体分布检验⼆、两独⽴样本差异性检验三、两配对样本差异性检验四、多个独⽴样本差异性检验五、多个相关样本差异性检验可以看出,以上应⽤除了第⼀点之外,其他都有对应的参数检验⽅法,这就要根据样本数据的实际情况来进⾏选择了:适合使⽤参数检验的优先使⽤参数检验,否则使⽤⾮参数检验。
================================================ =下⾯我们分别介绍⼀下上述应⽤对应的⾮参数检验⽅法⼀、单样本总体分布检验单样本总体分布检验主要⽤来检验某样本所在总体分布和某⼀理论分布是否存在显著差异,主要涉及的⾮参数检验⽅法有:1.卡⽅检验卡⽅检验可以检验样本数据是否符合某⼀期望分布或理论分布,这在卡⽅检验中有所介绍,在此不再多说2.⼆项分布检验⼆项分布检验主要⽤来检验样本数据是否符合某个指定的⼆项分布,该检验只适合⼆分类变量样本。
第九章非参数检验(医学统计之星)上次更新日期:非参数统计是统计分析的重要组成部分。
可是与之很不相称的是它的理论发展远远不及参数检验完善,因而比较完善的可供使用的方法也不多。
在SAS中,非参数统计主要由UNIVARIATE过程、MEANS过程和NPAR1WAY过程来实现,前两者在前面的章节中已经介绍,它们可以进行配对设计差值的符号秩和检验(WILCOXON配对法);后者是一个单因素的非参数方差分析过程,可进行成组设计的两样本(WILCOXON法)或多样本比较(KRUSKAL-WALLIS法)的秩和检验。
本章将主要介绍NPAR1WAY过程。
由于在理论上还有争议,作为权威性的统计软件,SAS不提供非参检验两两比较的方法。
据我所知,其余统计软件里也只有PEMS提供这一功能(因为她是医统·医百的配套软件,而非参两两比较是写入了该书的)。
如果你需要这一结果,那么恐怕只有手算了。
9.0.1 语法格式NPAR1WAY过程不能处理按频数输入的资料。
这意味着如果你的数据是以频数方式输入的,那么除非你将资料想办法转换成按例记录的资料,否则SAS 无法处理。
有的同学将“NPAR1WAY”打成了“NPARLWAY”,可以这样来记:“NPAR”即“非参”的英文缩写,“WAY”是维数,更明确的说是因素的意思,而“1WAY”就代表一个因素,合起来“NPAR1WAY”说的是“单因素的非参数检验”。
怎么样,明白这个过程在做什么了吧!9.0.2 语法说明【过程选项】NPAR1WAY过程常用的选项有:∙MISSING 将缺失值也用于统计分析∙ANOV A 同时进行方差分析∙MEDIAN 要求进行中位数检验∙NOPRINT 禁止统计结果在OUTPUT视窗内输出∙SA V AGE 要求对样本进行SA V AGE得分分析∙WILCOXON 要求进行WILCOXON秩和检验我们常用的秩和检验就是WILCOXON秩和检验,对于其它方法,有兴趣的读者可参阅有关统计书籍。
非参数检验第九章非参数检验知识引入比较两个总体间的差异,我们比较熟悉的是可依据总体方差是否已知,选择使用正态Z检验或t检验法。
但如果有明显的证据表明,这些参数型检验法不能使用时又该如何呢?非参数检验法对此提供了解决方案。
作为参数检验的一种推广,非参数检验有何特点?它的使用有什么样的要求?本章首先对非参数检验进行概述,接着按照和参数检验对应的原则分别介绍用于两组比较的非参数检验法和用于多组比较的非参数检验法。
第一节非参数检验概述假设检验分为参数检验和非参数检验。
参数检验是在已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验,有时还要求某些总体参数满足一定条件。
如独立样本的T检验和方差分析不仅要求总体符合正态分布,还要求各总体方差齐性。
教材第八章之前所介绍的统计方法都是参数检验法。
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一般性假设(如总体分布的位置是否相同,总体分布是否正态)进行检验。
非参数检验方法简便,不依赖于总体分布的具体形式因而适用性强,但灵敏度和精确度不如参数检验。
一般而言,非参数检验适用于以下三种情况:①顺序类型的数据资料,这类数据的分布形态一般是未知的;②虽然是连续数据,但总体分布形态未知或者非正态,这和卡方检验一样,称自由分布检验;③总体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下(虽然T检验被称为小样本统计方法,但样本容量太小时,代表性毕竟很差,最好不要用要求较严格的参数检验法)。
因为这些特点,加上非参数检验法一般原理和计算比较简单,因此常用于一些为正式研究进行探路的预备性研究的数据统计中。
当然,由于非参数检验许多牵涉不到参数计算,对数据中的信息利用不够,因而其统计检验力相对参数检验也差得多。
前面所学到的参数检验法在非参数法中都能找到替代的方法,因此按照和参数检验法相对应的原则可对非参数检验法进行如下分类:第二节非参数两组比较法该类方法实际上对应两总体比较的t检验法。