生物技术制药复习资料[优秀范文5篇]
- 格式:docx
- 大小:60.29 KB
- 文档页数:39
第一章绪论生物技术:(Biotechnology)以生命科学为基础,利用生物体(或生物组织、细胞及其组分)的特性和功能,设计构建具有预期性状的新物种或新品系,并与工程相结合,利用这样的新物种(品系)进行加工生产,为社会提供商品和服务的一个综合性技术体系。
生物技术药物:采用DNA重组技术、单克隆抗体技术或其它生物新技术研制的蛋白质、治疗性抗体或核酸类药物。
生物技术制药:就是利用基因工程技术、细胞工程技术、微生物工程技术、酶工程技术、蛋白质工程技术、分子生物学技术等来研究和开发药物,用来诊断、治疗和预防疾病的发生。
生物技术制药的特征:⑴高技术⑵高投入⑶长周期⑷高风险⑸高收益1.生物技术发展的不同阶段的技术特征和代表产品(1)传统生物技术的技术特征是酿造技术,所得产品的结构较为简单,属于微生物的初级代谢产物。
代表产品如酒、醋、乙醇,乳酸,柠檬酸等。
(2)近代生物技术阶段的技术特征是微生物发酵技术,所得产品的类型多,不但有菌体的初级代谢产物、次级代谢产物,还有生物转化和酶反应等的产品,生产技术要求高、规模巨大,技术发展速度快。
代表产品有青霉素,链霉素,红霉素等抗生素,氨基酸,工业酶制剂等。
(3)现代生物技术阶段的技术特征是DNA重组技术。
所得的产品结构复杂,治疗针对性强,疗效高,不足之处是稳定性差,分离纯化工艺更复杂。
代表产品有胰岛素,干扰素和疫苗等。
2.生物技术制药分为哪些类型?生物技术制药分为四大类:a应用重组DNA技术(包括基因工程技术、蛋白质工程技术)制造的基因重组多肽,蛋白质类治疗剂。
b基因药物,如基因治疗剂,基因疫苗,反义药物和核酶等c来自动物、植物和微生物的天然生物药物d合成与部分合成的生物药物3.生物技术制药具有什么特征?(1)分子结构复杂(2)具有种属特异性(3)治疗针对性强,疗效高(4)稳定性差(5)基因稳定性(6)免疫原性(7)体内的半衰期短(8)受体效应(9)多效性(10)检验的特殊性生物药物功能用途分类:⑴治疗药物,⑵预防药物⑶诊断药物。
1. 利用基因工程技术生产药物的优点:1)大量生产过去难以获得的生理活性蛋白和多肽,为临床使用提供有效的保障;2)可以提供足够数量的生理活性物质,以便对其生理、生化和结构进行深入的研究,从而扩大这些物质的应用范围; 3)可以发现、挖掘更多的内源性生理活性物质; 4)内源生理活性物质在作为药物使用时存在的不足之处,可通过基因工程和蛋白质工程进行改造和去除; 5)可获得新型化合物,扩大药物筛选来源。
2. 抗体导向酶-前药疗法中酶和前药的要求:对酶的要求:活化酶最好来自非哺乳动物,而人体内不存在相应的类似物,以保证高度的特异性。
酶还能通过化学交联与单抗结合,在较长的一段时间内保持稳定性和活性。
对前药的要求:前药本身应无活性或活性很低,只能被相应的酶活化为高度扩散性的小分子,以实现在肿瘤组织内的广泛分布和杀伤肿瘤细胞。
而且前药还应具有极短的生物半衰期,避免重新进入循环产生非特异性毒性。
3. 克隆抗生素生物合成基因的策略有:阻断变株法,突变克隆法,在标准宿主菌中克隆检测单基因产物,直接克隆法,克隆抗性基因法,寡核苷酸探针法,同源基因杂交法。
4.基因工程菌在发酵过程中对发酵罐要求为:要提供菌体生长的最适宜条件;培养过程不得污染,保证纯菌培养;培养及消毒过程中不得游离出异物;不能干扰细菌代谢活动。
5. 动物生物反应器类型有:搅拌罐式反应器、气升式生物反应器、中空纤维式生物反应器、透析袋或膜式生物反应器和固定床或流化床式生物反应器。
植物细胞培养的生物反应器类型:1)机械搅拌生物反应器;2)鼓泡塔生物反应器;3)气升式生物反应器;4) 转鼓式生物反应器;5) 固定化生物反应器。
6.一个理想的载体应具备的条件是:至少有一个复制起点,有克隆位点,具备转化的功能,遗传标记基因,具有较高的载装能力。
7. 固定化细胞:将细胞限制或定位于特定空间位置的方法称为细胞固定化技术,被限制或定位于特定空间位置的细胞称为固定化细胞。
8.除了骨髓造血干细胞外,已知的其他具有应用前景的成体干细胞还有:上皮干细胞、神经干细胞、胰腺干细胞。
生物技术制药复习题第一章绪论第一节生物技术的发展史1、生物技术:以生命科学为基础,利用生物体的特性和功能,设计构建具有与其性状的新物种或新品系,并与工程结合,利用这样的新物种进行加工生产,为社会提供商品服务的一个综合性技术体系。
它的范畴:基因工程、细胞工程、酶工程、发酵工程、生化工程。
基因工程是生物技术的核心。
P12、蛋白质工程----第二代基因工程;海洋生物技术-----第三代生物技术P13、生物技术发展史:传统、近代(抗生素、发酵罐)、现代(DNA重组)P31974年,Boyer和Cohen建立了DNA重组技术1975年,Koher 和Milstein 建立了单克隆抗体技术1982年,第一个基因工程药物重组人胰岛素被批准上市1989年,我国第一个基因工程药物干扰素批准上市2003年,中国的重组腺病毒-p53注射液成为石阶上第一个正式批准的基因治疗药物。
第二节生物技术药物1、生物技术制药:生物技术制药:采用现代生物技术人为地创造一些条件,借助某些微生物、植物或动物来生产所需的医药品。
P42、生物技术药物:采用DNA重组技术活其他生物技术研制的蛋白质或核酸类药物。
它与天然生化药物、微生物药物、海洋药物和生物制品共同归为生物药物。
3、现代生物药物分为4类:重组DNA技术制造的基因重组多肽、蛋白质类治疗剂;基因药物;天然药物;合成与部分合成药物。
4、生物药物按用途分为:治疗药物;预防药物;诊断药物。
5、生物技术药物的特征:(1)分子结构复杂;(2)具有种属特异性;(3)治疗针对性强、疗效高;(4)稳定性差(5)基因稳定性;(6)免疫原性;(7)体内半衰期短;(8)受体效应;(9)多效性和网络性效应;(10)检验的特殊性。
第三节生物技术制药1、生物技术制药的特征:高技术、高投入、长周期、高风险、高收益。
P52、生物技术在制药中的应用有哪些?P7(1)基因工程制药:① 开发基因工程药物,如干扰素(IFN)、红细胞生成素(EPO)等②基因工程疫苗,如乙肝基因工程疫苗③基因工程抗体,它可以作为导向药物的载体④基因诊断与基因治疗⑤应用基因工程技术建立新药的筛选模型⑥应用极影工程激活素改良菌种,产生新的微生物药物⑦改进药物生产工艺⑧利用转基因动、植物生产蛋白质类药物。
生物技术制药复习知识点第一章绪论1.生物制药的研究内容包括基因工程制药,细胞工程制药,酶工程制药和发酵工程制药。
2.生物技术制药,是采用现代生物技术人为地创造一些条件,借助某些微生物、植物或动物来生产所需的医药品。
3.生物技术药物,是采用DNA 重组技术、单克隆抗体技术或其它生物新技术研制的蛋白质、治疗性抗体或核酸类药物。
4.生物药物,指包括生物制品在内的生物体的初级和次级代谢产物或生物体的某一组成部分,甚至整个生物体用作诊断和治疗的医药品。
5.现代生物药物四种类型:①应用DNA重组技术制造的基因重组多肽、蛋白质类治疗剂。
②基因药物,如基因治疗剂、基因疫苗、反义药物和核酶等。
③来自动植物和微生物的天然生物药物。
④合成与部分合成的生物药物。
6.生物药物按功能用途分为三类:治疗药物,预防药物和诊断药物。
7.生物技术药物的特性:分子结构复杂,具种属特异性,治疗针对性强、疗效高,稳定性差,基因稳定性,免疫原性、重复给药会产生抗体,体内半衰期短,受体效应,多效性和网络效应,质量控制的特殊性,生产系统的复杂性。
8.生物技术制药特征:高技术,高投入,长周期,高风险,高收益。
9.基因诊断:指采用分子生物学的方法在DNA水平或RNA水平对基因的结构和功能进行分析从而对特定的疾病进行诊断。
第二章基因工程制药1.利用基因工程技术生产药品的优点:(1)可以大量生产过去难以获得的生理活性蛋白和多肽(如胰岛素、干扰素、细胞因子等),为临床使用提供有效的保障;(2)可以提供足够数量的生理活性物质,以便对其生理、生化和结构进行深入的研究,从而扩大这些物质的应用范围;(3)利用基因工程技术可以发现、挖掘更多的内源性生理活性物质;(4)内源性生理活性物质在作为药物使用时存在的不足之处,可通过基因工程和蛋白质工程进行改造和去除;(5)利用基因工程技术可获得新型化合物,扩大药物筛选来源。
2.基因工程技术就是将目的基因插入载体,拼接后转入新的宿主细胞,构建工程菌(或细胞),实现遗传物质的重新组合,并使目的基因在工程菌内进行复制和表达的技术。
生物技术制药重点一、名解1、载体:携带外源目的基因或DNA进入宿主细胞,实现外源基因或DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子,主要有粒载体和入噬菌甾体。
2、铁壁培养:大多数动物细胞进行培养时需要贴附因子,内细胞自身分泌或认为在培养基中加入,使细胞在支持物表面贴附伸展和生长繁殖的培养方法。
3、基因工程制造:利用基因重组技术将外源基因导入宿主菌或细胞进行大规模培养以获得蛋白质药物的过程。
4、人鼠嵌合抗体:利用DNA重组技术,将鼠抗体轻、重链可变区基因插入含有人体抗体恒定的表达载体中,转化哺乳动物细胞表达的抗体。
5、转化细胞系:正常的细胞经过某个轻化过程,失去正常细胞的转点而获得无限增殖的能力,得到的细胞系称为轻化细胞系。
6、离子交换层析:利用蛋白质等电点的差异来实现不同蛋白质间的分离和纯化。
7、生物技术制药:指利用基因工程、细胞工程、发酵工程、蛋白质工程等生物技术来研究、开发和生产用于预防、治疗和诊断疾病的药物。
8、人源化抗体:CDR移植即把鼠抗体的CDR移植到人抗体的可变区内,所得到的抗体称CDR移植抗体或改型抗体,也就是人源化抗体。
9、前体:在药物的生物合成过程中,被菌体直接用于药物合成而自身结构无显著改变的物质。
10、接种量:移种的种子液体和接种后发酵罐培养夜体积之比。
11、次级代谢产物:微生物从合成代谢的中间产物出发合成一些生理功能不明确,化学结构特殊,且对细胞生命并非必须的产物。
12、固定化酶,是将具有一定的胜利功能的酶或生物细胞,用物理或化学方法将其固定,作用固定生物催化而加以利用的一种技术。
13、凝胶过滤层析:凝胶是一种惰性的不带电荷具有三维结构的多孔网状物质,当样品随流动相经过凝胶柱时大分子不能进入凝胶微孔而被洗脱出来,小分子能进入微孔流出速度慢,从而实现分离纯化的目的。
二、问答题1、疏水层析的原理是什么?需要进行几步操作?洗脱顺序是什么?答:原理:利用蛋白质分子表面上的疏水区域(非极性氨基酸残基的侧链)和介质的疏水基因之间的相互作用。
生物技术制药期末复习提纲
一、分子生物学
1.克隆技术:反应机理、克隆流程以及克隆技术的应用
2.基因工程:基因分子的识别、基因突变以及基因工程的应用
3.基因转录与转译:基因转录反应的步骤、转录末端修饰以及基因转录和转译的应用
4.基因表达:基因表达技术的基本原理、转录组研究方法以及应用
二、制药技术
1.生物技术制药:生物技术制药的优势、研发流程以及生物技术制药的应用
2.双孢制药:双孢药物的原理、双孢药物的药动学以及双孢药物的应用
3.化学合成制药:化学合成制药的优势、合成流程以及化学合成制药的应用
4.生物制药:生物制药的优势、研发流程以及生物制药的应用
三、制药公司
1.实验室:实验室设备、实验室运行方式以及实验室的重要性
2.生物制造:生物制造原理、生物制造过程以及应用
3.GMP质量控制:GMP质量控制的基本原则、GMP系统的运行原理以及GMP的应用
四、再生医学
1.再生植入物:再生植入物的分类、再生植入物的研发过程以及再生植入物的应用
2.细胞培养:细胞培养技术的基本原理、细胞培养的研究方法以及细胞培养的应用
3.细胞治疗:细胞治疗的优势、细胞治疗的产品开发过程以及细胞治疗的应用
五、细胞分子生物学。
生物技术药物期末复习总结题型: 看英文写全称, 名解, 填空, 问答1、生物技术药物就是利用生物工程技术制造的药物, 它和传统的化学药物以及从动、植物中提取药物的最大区别在于生产过程。
国家药品监督管理局将其列入新生物制品药物(以DNA重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体和细胞因子类药物, 及用蛋白质工程技术制造的上述产品及其修饰物)。
反义药物、基因药物和核酶也属于生物技术药物的发展领域。
2、受体(receptor): 是一类介导细胞信号转导的功能蛋白质, 是一些能与生物活性分子如神经递质,激素,药物等相互作用的分子.3、新药( New Drugs) 新药系指未曾在中国境内上市销售的药品。
对已上市药品改变剂型、改变给药途径、增加新适应症的药品注册按照新药申请的程序申报, 但改变剂型但不改变给药途径, 以及增加新适应症的注册申请获得批准后不发给新药证书( 靶向制剂、缓释、控释制剂等特殊剂型除外) 。
定义包含以下三种类型:1.中国未上市, 国外也未上市的创新药物2.中国未上市销售生产, 国外也未销售但已有文献报道过的药物;3.国外已上市销售的, 但未在国内销售过对已上市药品改变剂型但不改变给药途径的注册申请, 应当采用新技术以提高药品的质量和安全性, 且与原剂型比较有明显的临床应用优势。
改变剂型但不改变给药途径, 以及增加新适应症的注册申请, 应当由具备生产条件的企业提出。
改变剂型但不改变给药途径, 以及增加新适应症的注册申请获得批准后不发给新药证书。
4、竞争性拮抗剂: ( competitive antagonists)药物与受体有较强的亲和力, 但缺乏内在活性, 本身不能引起效应, 但能占据一定量的受体, 拮抗作用是可逆的。
非竞争性拮抗药: 不与激动剂争夺同一位点, 其与受体的结合可引起构型改变, 妨碍激动剂与受体的结合, 或使激动剂与受体结合后不产生生物效应。
其结合相对不可逆, 能改变激动剂的量效曲线, 使量效曲线抑制, 斜率降低。
第一章绪论1.生物技术的概念,基因工程、细胞工程、发酵与酶工程、蛋白质及抗体工程及生物转化的概念。
P1生物技术biotechnology又称生物工程bioengineering,指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,按照预先的设计改造生物体或加工生物原料,为人类生产出所需产品或达到某种目的的技术。
基因工程genetic engineering也称遗传工程,是现在生物技术的核心和主导。
主要原理是应用人工方法将生物的遗传物质,通常是DNA分离出来,在体外进行切割、拼接和重组,然后将重组了的DNA导入某种宿主细胞或个体,从而改变它们的遗传品性;有时还使新的遗传信息在新的宿主细胞或个体中大量表达,以获得基因产物(多肽或蛋白质)。
(DNA重组技术,分子杂交技术,基因操作)细胞工程cell engineering指以细胞为基本单位,在体外条件下进行培养、繁殖,或人为地使细胞某些生物学特性按人们的意愿发生改变,从而达到改良生物品种和创造新品种,加速繁育动植物个体,或获得某种有用的物质的过程。
发酵工程fermentation engineering是通过现代技术手段,利用微生物的特殊功能生产有用的物质,或直接将微生物应用于工业生产的一种技术体系。
酶工程enzyme engineering 是利用酶或细胞所具有的特异催化功能,或对酶进行修饰改造,并借助生物反应器和工艺过程来生产人类所需产品的一项技术。
抗体工程antibody engineering是利用细胞生物学或分子生物学手段在体外进行遗传学操作,改变抗体的遗传特性和生物学特性,以获得具有适合人们需要的、有特定生物学特性和功能的新抗体,或建立能稳定获得高质量和产量抗体的技术。
生物转化biotransformation也称生物催化biocatalysis是利用酶或有机体(细胞、细胞器)作为催化剂实现化学转化的过程,是生物体系的酶制剂对外源性底物进行结构性修饰所发生的化学反应。
第一章药品有三大药源:化学药物、生物药物、中草药(药材、饮片、中成药)生物药物:是利用生物体、生物组织、细胞或其成分,综合应用生物学与医学、生物化学与分子生物学、微生物学与免疫学、物理化学与工程学和药学的原理与方法加工制造而成的一大类用于预防、诊断、治疗和康复保健的制品。
现代生物药物的4大类型:(1)基因重组多肽、蛋白类治疗剂(2)基因药物(3)天然生物药物(4)合成与部分合成的药物。
生物制品:一般指用微生物、微生物代谢产物、动物毒素、人或动物的血液或组织等加工制成的预防、治疗和诊断特定传染病或其他相关疾病的免疫制剂,主要指菌苗、疫苗、毒素、应变原与血液制品等。
DNA重组药物(基因工程药物)和基因药物的区别:DNA重组药物即应用重组DNA技术(包括基因工程技术和蛋白质工程技术)制造的重组多肽、蛋白质类药物和疫苗、单克隆抗体与细胞因子等;基因药物即以基因物质(DNA或RNA)为基础,研究而成的基因治疗剂、基因疫苗、反义药物和核酶等。
现代生物制药的发展阶段:第一代重组药物是其结构与天然产物完全一致的药物,第二代生物技术药物是应用蛋白质工程技术制造的自然界不存在的新重组药物。
生物药物的药理学特性:(1)药理活性高(2)治疗的针对性强,治疗的生理、生化机制合理,疗效可靠。
(3)毒副作用较少,营养价值高。
(4)生理副作用常用发生。
生物技术药物的研究发展前景?①研究发展新型疫苗;②治疗性抗体成为生物制药的发展引擎;③重组治疗蛋白;④开发新的表达系统;⑤将基因组学和蛋白质组学的研究成果转化为生物技术新药的研究与开发;⑥生物技术药物新剂型研究迅速发展。
第二章溶剂萃取的注意事项:①PH(萃取具有酸、碱基团的物质时,酸性物质在酸性条件下萃取,碱性物质在碱性条件下萃取,对氨基酸等两性电解质,则采用PH在等电点时进行提取比较好。
)②盐析(在提取液中加入中性盐,可以促使生化物质转入有机相从而提高萃取率。
盐析作用也能减少有机溶剂在水中的溶解度,使提取液中的水分含量减少。
生物技术制药复习资料[优秀范文5篇]第一篇:生物技术制药复习资料《生物技术制药》复习资料(Biotechnological Pharmaceutics)第一章绪论一、概述1.概念:生物药物(生物制药)是泛指包括生物制品在内的生物体的初级和次级代谢产物或生物体的某一组成部分,甚至整个生物体用作诊断和治疗疾病的医药品。
|采用现代生物技术人为地创造一些条件,借助某些微生物、植物或动物来生产所需的医药品,叫做生物技术制药。
2.技术范畴:基因工程、细胞工程、酶工程、发酵工程、生化工程以及后来衍生出来的第二代、第三代的蛋白质工程、抗体工程、糖链工程和海洋生物技术等。
3.相关学科:有生物学(含微生物学、分子生物学、遗传学等)、化学、工程学(化学工程、电子工程等)、医学、药学、农学等。
但从基础学科来讲,生物学、化学和工程学是其主要的学科。
4.应用范围:(1)医药;(2)农业;(3)食品;(4)工业;(5)环境净化;(6)能源。
二、生物技术的发展简史 1.传统生物技术阶段主要产品:乳酸、酒精、丙酮、丁酸、柠檬酸、淀粉酶。
生产的特点:过程简单,大多属兼气发酵或表面培养,生产设备要求不高,产品化学结构简单,属初级代谢产物。
2.近代生物技术阶段主要产品:抗生素、维生素、甾体、氨基酸;食品工业的工业酶制剂、食用氨基酸、酵母、啤酒;化工业的酒精、丙酮、丁醇、沼气;农林业的农药;环境保护业的生物治理污染。
生物技术的特点:(1)产品类型多,初级(氨基酸、酶、有机酸)、次级(抗生素)、生物转化(甾体);(2)生物技术要求高,纯种、无菌、通气,产品质量要求也高;(3)生产设备规模大;(4)技术发展速度快。
3.现代生物技术主要产品:胰岛素、干扰素、生长激素等。
生物技术的内容包括:(1)重组DNA技术及其它转基因技术(基因工程);(2)细胞和原生质体融合技术(细胞工程);(3)酶或细胞的固定化技术(酶工程);(4)植物脱毒和快速繁殖技术;(5)动物细胞大量培养技术;(6)动物胚胎工程技术;(7)现代发酵技术;(8)现代生物反应工程和分离工程技术;(9)蛋白质工程技术;(10)海洋生物技术。
三、医药生物技术的新进展1.基础研究不断深入2.新产品不断出现 3.新试剂、新技术不断出现4.新型生物反应器和新分离技术不断出现四、我国的医药生物技术五、医药生物技术的新进展1.利用新发现的人类基因,开发新型药剂。
2.新型疫苗的研制。
3.基因工程活性肽。
4.其他。
如疾病早期诊断,PCR,单克隆抗体。
第二章生物药物概论第一节生物药物的来源、特性、分类与制备一、生物药物的来源1.生物药物是指运用生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等,综合利用物理学、化学、生物化学、生物技术和药学等学科的原理和方法制造的一类用于预防、治疗和诊断的制品。
2.生物药物的原料来源天然的生物材料:人体、动植物、微生物和各种海洋生物。
人工制得的生物原料如基因工程技术制得的微生物或细胞。
二、生物药物的特性 1.药理学特性(优点)(1)治疗的针对性强。
细胞色素C用于治疗组织缺氧所引起的一系列疾病;(2)药理活性高。
注射用的纯ATP可以直接供给机体能量;(3)毒副作用小,营养价值高。
蛋白质、核酸、糖类、脂类等生物药物本身就直接取自体内;(4)生理副作用常有发生。
生物体之间的种属差异及个体差异,用药时会发生免疫反应和过敏反应。
2.生产、设备中的特殊性(1)原料中的有效物含量低。
激素、酶在体内含量极低;(2)稳定性差。
生物药物的分子结构中具有特定的活性部位,该部位有严格的空间结构,一旦结构破坏,生物活性也就随着消失;(3)易腐败。
生物药物营养价值高,易染菌、腐败。
生产过程中应低温、无菌;(4)注射用药有特殊要求。
均一性、安全性、稳定性、有效性。
3.检验上的特殊性由于生物药物具有生理功能,故生物药物不仅要有理化检验指标,更要有生理活性检验指标。
三、生物药物的分类1.(生物制药的研究内容)按生物工程学科范围分为四类分类:(1)发酵工程制药;(2)基因工程制药:(3)细胞工程制药;(4)酶工程制药。
2.按药物的结构分类:(1)氨基酸及其衍生物类药物;(2)多肽和蛋白质类药物;(3)酶和辅酶类药物;(4)核酸及其降解物和衍生物类药物;(5)糖类药物;(6)脂类药物;(7)细胞生长因子;(8)生物制品类。
3.按来源分类:(1)人体组织来源。
疗效好、无副作用、来源有限。
(2)动物组织来源。
动物脏器,来源丰富、价格低廉、可以批量生产。
(3)植物组织来源。
中草药,酶、蛋白质、核酸。
(4)微生物来源。
抗生素、氨基酸、维生素、酶。
(5)海洋生物来源。
动植物、微生物。
4.按生理功能和用途分类:(1)治疗药物。
肿瘤、艾滋病、心脑血管疾病等。
(2)预防药物。
传染性强的疾病,疫苗、菌苗、类毒素。
(3)诊断药物。
速度快、灵敏度高、特异性强。
免疫诊断、酶诊断、基因诊断试剂。
(4)其它。
生化试剂、保健品、化妆品、食品、医用材料。
四、生物药物的制备过程1.生物药物原料的选择、预处理与保存方法(1)原料选择原则有效成分含量高,原料新鲜,来源丰富、易得,产地较近,原料中杂质含量少,成本低。
(原料→ 粗提→ 精提)生物技术单元操作(2)预处理与保存预处理:就地采集后去除结缔组织、脂肪组织等不用的成分,将有用成分保鲜处理,收集微生物原料时,要及时将菌体与培养液分开,进行保鲜处理。
保存方法:①冷冻法,适用于所有生物材料,-40℃;②有机溶剂脱水法,丙酮,适用于原料少、价值高,有机溶剂对原料生物活性无影响;③防腐剂保鲜,常用乙醇、苯酚等,适用于液体原料,如发酵液、提取液。
第二节人体来源的药物一、人体来源药物的特点与研究意义 1.人体来源的药物的特点(1)安全性好。
不易产生副反应。
(2)效价高、疗效可靠。
质量好、效价高。
(3)稳定性好。
冻干制剂10度以下可保存2年以上。
3.研究意义(1)资源的有限性;(2)意义。
3.蛋白质类药物分离提取方法(1)沉淀法(盐析、有机溶剂、等电点);(2)按分子大小分离(超滤、透析、层析、离心);(3)电荷(离子交换、层析、电泳、等电聚焦);(4)亲和层析法(酶与底物、抗原与抗体)。
二、人体来源药物的种类和用途 1.人血液成分制品(1)红细胞制剂;(2)白细胞浓缩液;(3)血小板制剂;(4)新鲜冰冻血浆(FFP)。
2.血浆的综合利用(1)传输蛋白质;(2)免疫球蛋白;(3)凝血系统蛋白;(4)补体系统蛋白;(5)蛋白酶抑制物类。
3.人体液细胞中的活性物质体液细胞包括红细胞、白细胞、淋巴细胞、血小板、成纤维细胞等。
活性物质主要是干扰素α、白介素-2、超氧化物歧化酶等。
4.人类来源的其他原料的利用5.细胞因子6.人体激素激素是调节机体正常发育和活动的重要物质,是由一类动物体内腺体细胞和非腺体组织细胞所分泌的化学信息分子。
激素主要有:蛋白质激素、多肽激素、氨基酸衍生物激素、脂类激素。
激素在体内含量很低,研究目的不是用生物体来提取,而是用于指导用其他原料进行生产和如何正确使用激素药物进行治疗。
现在的生产方法有:用动物提取,半合成法,基因工程法。
第三节动物来源的药物三、动物来源药物的种类与用途 1.动物多肽与蛋白质类药物(1)动物多肽药物的重要性与种类重要性:脑垂体所分泌的多肽激素,药效显著,且毒副作用小,通过对这些活性物质的结构和功能的研究,有助于我们设计和研制新型药物。
(2)动物蛋白类药物 2.动物酶与辅酶类药物种类:促消化酶类(胃酶可口服,蛋白酶,胰酶);消炎酶类(溶菌酶、胰蛋白酶、糜蛋白酶等可提高毛细血管通透性,消退浮肿);治疗心血管疾病(纤溶酶、尿激酶、凝血酶);抗肿瘤的酶(天冬氨酰酶、谷氨酰胺酶、半胱氨酸酶、组氨酸酶)。
3.动物核酸类药物4.动物糖类药物5.动物脂类药物:脂肪酸及其衍生物、磷脂类、胆酸类、卟啉和衍生物。
第四节植物来源的药物一、糖类——单糖、多糖、寡糖。
二、脂类、类脂、固醇及其衍生物三、蛋白质、多肽及其活性物质四、化合物——特别小分子化合物及其衍生物。
是近几年来研究最为活跃的领域。
实例:超氧化物歧化酶的制备、精油、南瓜多糖等。
第五节海洋生物药物一、取得重要进展的领域(1)海洋生物抗癌活性物质;(2)海洋生物抗菌活性物质;(3)海洋生物抗心血管疾病活性物质;(4)海洋生物抗放射性活性物质及酶类;(5)海洋前列腺素;(6)海洋保健品、螺旋藻;(7)海洋医用生物材料。
鲎试剂、河豚毒素试剂、甲壳素、珊瑚。
二、我国发展海洋药物的主攻方向 1.海洋生物活性物质的研究2.大力促进海洋生物技术在开发海洋药物上的应用3.开发新的海洋中成药和新剂型4.充分利用海洋资源,开发海洋保健品5.开发新的海洋医用生物材料第三章生物技术制药单元操作与药物生产的质量控制第一节生物技术制药单元操作一、概述生物药物的提取和纯化可分为5个主要步骤:预处理、固液分离、浓缩、纯化和产品定型(干燥,制丸,挤压,造粒,制片),每一步骤都可采用各种单元操作。
在提取纯化过程中,要尽可能减少操作步骤,因为每一操作步骤都不可避免带来损失。
操作步骤多,总收率就会下降。
二、提取纯化的工艺论证工艺验证,就是通过系统的方法得到关于生产工艺的书面材料,证明并保证生产过程能始终如一地生产出特定的高质量的产品。
工艺验证的范围:厂房设施、工程仪表、机械设施、生产环境、工艺条件、计算机软件、介质、原材料、半成品、成品、操作人员素质和测试方法等。
以上各个部分都要有验证材料或试验数据,根据这些材料和数据写出验证报告。
当工艺的某一部分有较大变动时(如大修、工艺条件变化),要进行重新验证,即再验证。
再验证是针对某一部分的行动,而不是整个工艺过程的验证,因而比较简单、快速、易行。
验证的实施过程包括以下步骤:提出验证要求,组织验证小组,制定验证方案,实施验证试验,写出验证报告,再验证等。
三、原料选择、预处理与固液分离技术(一)原料选择的基本准则1.在大量的信息资料和实践经验的基础上,选择目标原料;2.选择有效成分含量高的新鲜材料;3.来源丰富易得;4.制造工艺简单易行;利用不同蛋白质在不同浓度的有机溶剂中的溶解度差异而分离目的蛋白质的方法。
蛋白质的沉淀与溶解,与溶剂的介电常数有关。
降低溶液的介电常数,使其溶解度变小,同时,还破坏蛋白质的水化膜而使蛋白质沉淀析出。
有机沉淀法应注意的问题:(1)控制工艺过程的温度:整个操作规程应在低温下进行,而且最好是同一温度。
(2)防止溶剂局部温度过高:加入有机溶剂时搅拌要均匀,速度要适当,避免局部浓度过高,引起沉淀物的破坏、变性或失活。
(3)及时处理沉淀物:沉淀物经过滤或离心后,要立即用水或缓冲液溶解,降低有机溶剂的浓度。
(4)pH的选择:在待沉淀蛋白质的pI附近(,蛋白质在pI时的溶解度最小)。