非线性分析和半线性椭圆型问题
- 格式:docx
- 大小:14.01 KB
- 文档页数:2
非线性偏微分方程偏微分方程数值方法非线性偏微分方程偏微分方程数值方法非线性偏微分方程定义:各阶微分项有次数高于一的,该微分方程即为非线性微分方程(一)主要研究内容非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。
利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。
本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。
1.非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。
2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。
3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。
首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。
引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。
(二)研究方向的特色1.变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。
matlab 拟合椭圆拟合椭圆是指通过给定的数据点,利用数学模型来确定一个最佳的椭圆曲线,使得这个曲线能够最好地拟合这些数据点。
在Matlab中,可以使用最小二乘法来拟合椭圆,通过最小化数据点与拟合曲线之间的误差来确定椭圆的参数。
拟合椭圆在很多领域中都有着广泛的应用,比如图像处理、计算机视觉、遥感等。
在这些领域中,往往需要对椭圆进行精确的描述和拟合,以便进行进一步的分析和处理。
我们需要了解椭圆的数学模型。
椭圆可以由以下方程表示:(x-h)^2/a^2 + (y-k)^2/b^2 = 1其中,(h,k)表示椭圆的中心坐标,a和b分别表示椭圆在x轴和y 轴上的半轴长度。
在Matlab中,可以使用非线性最小二乘法来拟合椭圆。
首先,我们需要准备一组数据点,这些数据点应该尽可能地分布在椭圆上。
然后,通过调用Matlab的拟合函数,传入数据点和椭圆模型,即可得到拟合后的椭圆参数。
具体操作如下:1. 导入数据:首先,我们需要将准备好的数据点导入Matlab中。
可以使用csvread函数或者直接将数据点赋值给一个矩阵。
2. 定义拟合函数:在Matlab中,可以使用自定义函数来描述椭圆模型。
定义一个函数,输入为椭圆参数和数据点,输出为拟合误差。
3. 调用拟合函数:通过调用Matlab的拟合函数,传入数据点和自定义的椭圆模型函数,即可得到拟合后的椭圆参数。
4. 绘制拟合结果:最后,可以使用Matlab的绘图函数将拟合结果显示出来,以便观察拟合效果。
需要注意的是,在拟合椭圆的过程中,可能会遇到一些问题。
比如,数据点不够或者分布不均匀,可能会导致拟合结果不准确。
此时,可以尝试增加数据点或者调整数据分布,以获得更好的拟合效果。
总结起来,拟合椭圆是一种常用的数学建模方法,它可以通过最小二乘法来确定椭圆的参数,使得拟合曲线与给定的数据点最为接近。
在Matlab中,可以使用自定义函数和拟合函数来实现椭圆的拟合,并通过绘图函数将拟合结果可视化。
第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。
本质非线性和非本质非线性。
典型非线性特性。
非线性系统的特点。
两种分析非线性系统的方法——描述函数法和相平面法。
(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。
谐波线性化的概念。
描述函数定义和求取方法。
描述函数法的适用条件。
(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。
借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。
(5)相平面法的基本概念非线性系统的数学模型。
相平面法的概念和内容。
相轨迹的定义。
(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。
(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。
(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。
用相平面法分析非线性系统,非线性系统相轨迹的组成。
改变非线性特性的参量及线性部分的参量对系统稳定性的影响。
2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。
8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。
应用线性系统控制理论,能够方便地分析和设计线性控制系统。
如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。
线性系统控制理论不能很好地分析非线性系统。
因非线性特性千差万别,无统一普遍使用的处理方法。
非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。
非线性系统:含有非线性环节的系统。
非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。
非线性分析和半线性椭圆型问题
科学中的许多问题是通过非线性偏微分方程来描述的,然而这些微分方程是很难求解的,利用拓扑和变分形成的非线性分析方法却能够解决这些问题。
本书就是由拓扑方法和变分方法组成的求解半线性椭圆型问题的非线性分析方法。
书中论述了分岔理论、界点理论和椭圆型偏微分方程等基本问题,给出了偏微分方程研究领域的最新研究成果。
全书由五大部分组成。
第一部分预备,主要有微分学、函数空间、Nemitski算子和椭圆型方程;第二部分拓扑方法,主要内容有分岔理论、分岔的定义和必要条件、Lyapunov-Schmidt约化、单特征值的分岔、Brouwer拓扑度及其属性、Brouwer不动点定理、Leray-Schauder拓扑度及其在椭圆型方程中的应用、Leray-Schauder不动点定理、Krasnoselski分岔定理、拓扑度的全局性质、同伦不变性的改进及其在具有下解和上解的边值问题中的应用、Rabinowitz全局分岔定理、渐近线性椭圆型问题的正解和分岔;第三部分变分方法之一,主要叙述了Hilbert空间和Banach空间上的泛函极值点的存在性、梯度、线性特征值、约束临界点、微分流形、余维数为1的流形、自然约束、次水平集变形、最速下降流、变形与紧性、Palais-Smale条件、约束极小值的存在性及其在超线性Dirichlet问题中的应用、鞍点和极小一极大方法、山路定理及其应用、环绕定理、Pohozaev恒等式;第四部分变分方法之二,包含的内容有Lusternik-Schnirelman类、Lustemik-Schnirelman定理、对称流形偶泛函的临界点、Krasnoselski亏格、临界点的存在性、偶无界泛函的多重临界点及其在Dirichlet边值问题中的应用、上的半线性椭圆型方程的径向解、具有临界指数的边值问题、具有凹凸非线性项的椭圆型问题、Morse理论、代数拓扑的基本内容、Morse不等式、变分算
子的分岔和山路界点的Morse指数;第五部分是五个附录,第一个附录给出了椭圆型问题解的对称结果、分类和先验性估计;第二个附录是集中紧支性原理,给出了P.L.Lions在无紧支性的情况下所得到的结果及其在半线性椭圆型问题的应用;第三个附录是R上的分岔问题,叙述了R上在特征值存在的条件下的分岔问题、本质谱产生的分岔;第四个附录是理想流体中涡流环,给出了问题的描述和全局存在性结果;第五个附录是扰动方法,了扰动法在椭圆型问题中的应用、非线性SchrtMinger方程的半典型状态、奇异扰动Neumann问题和偶泛函的扰动。
第六个附录是微分几何中的一些问题,了Yamable问题和数量曲率问题。
该书论述严谨,层次清晰,内容丰富,对从事非线性椭圆型偏微分方程、分岔理论、变分学等方向的科研人员和研究生具有重要的参考价值。