一元二次方程根的定义
- 格式:doc
- 大小:55.00 KB
- 文档页数:2
一元二次方程求根虚根公式
一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为实数,且a不等于0。
求解一元二次方程的根可以使用虚根公式(也称为根的判别式)。
一元二次方程的判别式Δ(delta)定义为:Δ = b^2 - 4ac
根据判别式Δ的值,可以得出以下结论:
1. 当Δ > 0时,方程有两个不相等的实根:
x1 = (-b + √Δ) / (2a)
x2 = (-b - √Δ) / (2a)
2. 当Δ = 0时,方程有两个相等的实根(即重根):
x1 = x2 = -b / (2a)
3. 当Δ < 0时,方程没有实根,但存在两个共轭复根:
x1 = (-b + i√(-Δ)) / (2a)
x2 = (-b - i√(-Δ)) / (2a)
其中,i是虚数单位,满足i^2 = -1。
通过使用上述公式,可以计算一元二次方程的根,具体取决于判别式Δ的值。
请注意,在实际计算过程中,应该先计算Δ的值,然后根据Δ的结果选择相应的公式计算根。
一元二次方程的虚根求根公式在数学中,一元二次方程是一种形式为ax^2 + bx + c = 0的方程,其中a、b和c都是已知的常数,而x是未知数。
一元二次方程的求根公式是一个重要的数学工具,可以帮助我们找到方程的解。
虚根是指方程的解不是实数,而是虚数。
虚数是数学概念中的一种特殊数,它可以用i来表示,其中i是虚数单位,定义为i^2 = -1。
一元二次方程的求根公式是根据方程的系数a、b和c来计算方程的解的。
根据求根公式,一元二次方程的解可以分为以下三种情况:1. 当b^2 - 4ac > 0时,方程有两个不同的实根。
这种情况下,方程的解可以用以下公式来计算:x1 = (-b + √(b^2 - 4ac)) / (2a)x2 = (-b - √(b^2 - 4ac)) / (2a)其中,x1和x2分别表示方程的两个实根。
2. 当b^2 - 4ac = 0时,方程有两个相同的实根。
这种情况下,方程的解可以用以下公式来计算:x = -b / (2a)其中,x表示方程的实根。
3. 当b^2 - 4ac < 0时,方程没有实根,而是有两个虚根。
这种情况下,方程的解可以用以下公式来计算:x1 = (-b + √(4ac - b^2)i) / (2a)x2 = (-b - √(4ac - b^2)i) / (2a)其中,x1和x2分别表示方程的两个虚根,i表示虚数单位。
通过这个求根公式,我们可以轻松地求解一元二次方程,无论方程有实根还是虚根。
这个公式的推导过程相对复杂,但在实际使用中,我们只需要记住这个公式,并将方程的系数代入即可。
需要注意的是,一元二次方程的解可能是实数,也可能是虚数。
当方程的判别式b^2 - 4ac大于等于0时,方程有实根;当判别式小于0时,方程有虚根。
虚根一般用来描述一些抽象的数学概念或者物理现象。
在实际应用中,我们常常遇到一些需要使用虚根的情况,比如在电路分析中,计算交流电路中电压和电流的相位差。
一元二次方程求根公式△小于0x = (-b ± √(b² - 4ac)) / (2a)在△公式中,√表示平方根,±表示两个不同的解,-b表示系数b 的相反数,并且a、b、c的值是根据方程的系数决定的。
当我们计算求根公式时,首先需要计算△,△被定义为b² - 4ac。
然后,根据△的值,我们可以确定方程的解的性质。
1.当△>0时,方程有两个不同的实数根。
这意味着方程在x轴上将插入两个不同的点,也就是存在两个解。
2.当△=0时,方程有且仅有一个实数根。
这表明方程在x轴上插入一个重复的点,即仅存在一个解。
3.当△<0时,方程没有实数根。
这意味着方程在x轴上没有交点,也即没有实数解。
下面我们来详细讨论△<0的情况。
当△<0时,可记作△=-D,其中D表示一个正数。
将△=-D带入求根公式,我们有:x=(-b±√(-D))/(2a)由于√(-D)并没有实数解,我们需要将其转换为虚数形式。
复数可以写成a + bi的形式,其中a和b分别是实数部分和虚数部分。
我们知道i是一个虚数单位,满足i²=-1、在这种情况下,我们将√(-D)写成√D*i的形式,其中√D是一个正数。
所以,我们可以将求根公式重新写为:x=(-b±√D*i)/(2a)接下来,我们可以将±√D*i除以2a,得到:x=-b/(2a)±(√D*i)/(2a)通过上述步骤,我们将求根公式转换为了虚数形式。
这表明方程没有实数解,而是有两个共轭虚数解。
共轭虚数解的形式是a + bi和a - bi,其中a是实数部分,b是虚数部分。
总之,在一元二次方程的求根公式中,如果△小于0,那么方程没有实数解,而是有两个共轭虚数解。
这种情况下,方程在x轴上没有交点。
请注意,虽然共轭虚数解在实数范围内没有意义,但它们在许多科学和工程应用中具有重要的数学意义,例如在电路分析和信号处理中。
初中数学一元二次方程知识点汇总,基础全面考前必掌握一、一元二次方程的定义及一般形式:只含有一个未知数x,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程。
一元二次方程的一般形式:ax^{2}+bx+c =0 (a≠0),其中a 为二次项系数,b为一次项系数,c为常数项。
因此,一元二次方程必须满足以下3个条件:① 方程两边都是关于未知数的等式② 只含有一个未知数③ 未知数的最高次数为2如: 2x^{2}-4x+3=0 , 3x^{2}=5 为一元二次方程,而像就不是一元二次方程。
二、一元二次方程的特殊形式(1)当b=0,c=0时,有: ax^{2} =0,∴ x^{2} =0,∴x=0(2)当b=0,0≠0时,有: ax^{2}+c=0 ,∵a≠0,此方程可转化为:①当a与c异号时, -\frac{c}{a}>0 ,根据平方根的定义可知,x=±\sqrt{-\frac{c}{a}} ,即当b=0,c≠0,且a与c 异号时,一元二次方程有两个不相等的实数根,这两个实数根互为相反数。
②当a与c同号时, -\frac{c}{a}<0 ,∵负数没有平方根,∴方程没有实数根。
(3)当b≠0,c=0时,有 ax^{2}+bx=0 ,此方程左边可以因式分解,使方程转化为x(ax+b)=0,即x=0或ax+b=0,所以x1=0,x2=-b/a。
由此可见,当b≠0,c=0时,一元二次方程 ax^{2}+bx=0 有两个不相等的实数根,且两实数根中必有一个为0。
三、一元二次方程解法:1.第一步:解一元二次方程时,如果没有给出一元二次方程的通式,先将其化为一元二次方程的通式,再确定求解的方法。
2. 解一元二次方程的常用方法:(1)直接开方法:把一元二次方程化为一般式后,如果方程中缺少一次项,是一个形如ax2+c=0的方程时,可以用此方法求解。
解法步骤:①把常数项移到等号右边, ax^{2}=-c ;②方程中每项都除以二次项系数, x^{2}=-\frac{c}{a} ;③开平方求出未知数的值:x=±\sqrt{-\frac{c}{a}}(2)因式分解法:将一元二次方程化为通式后,如果方程左边的多项式可以因式分解,就可以用这种方法求解。
元二次方程及根的定义〔曲思路点拨:从一元二次方程的解的概念入手,将根代入原方程解 程,解方程求出另一个根即可解:将=-代入原方程,得''-解方程,得 」_ 1当'1 ■ -—时,原方程都可化为存-6^+8= 0解方程,得・二0 - 4 . 所以方程的另一个根为 4,-’•或-1.总结升华:以方程的根为载点•综合考查解方程的问题是一个常考问题,解这类问题关 键是要抓住 根”的概念,并以此为突破口•举一反三:【变式i 】已知一元二次方程•「 m -:的一个根是:,求代数式思路点拨:抓住二为方程的一个根这一关键,运用根的概念解题 解:因为住是方程…」二二--的一个根,所以-I 一 _-L_:u1 一 故 J ■一 J 二匚_、2004tS = — 1 + 曲2005所以-2004a -h r/十1“ 2005 -1 + 应■+ ---.已知关于一的方程■!■■- / -- 1的一个根为2,求另一个根及°的的值,再代回原方—2004c +2丽■-的值.总结升华:方程”即是一个等式”在 等式”中,根据题目的需要,合理地变形,是一 种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验类型二、一元二次方程的解法临2.用直接开平方法解下列方程: 2 2(1)3-27x =0 ; (2)4(1-x) -9=0.2解: (1)27x=3宀丄 $2(2) 4(1-x) =93.用配方法解下列方程:圖 (1) J 「r ; ;(2) / - -J.'. 工 L解: (1)由叮 r ,,得-■ :■,x a -H67 + 31 -32 十?=2004.1— x =-畠±3—4盘-2士屈-1±屈-罷土愿所以A' + ?:==-,故•一 -亠.(2) 由,亠一' :-i - - -得厂- ■:- -F +2屈+ (歼=(励+4(工1②2 = 6?所以'■ 1 :J故T 二・、:I _ / -C»4.用公式法解下列方程:解:⑴这里'-■L - •并且1屮一[丨:■ - 1(.-_ g ± J&2 _斗舲1 ± VsX = ------------------------ =:----- 所以二-,1+75 冈i—工1二所以 2 , ___________ .(2)将原方程变形为■'■':-,.-;■2^ -r-4=0(3)将原方程展开并整理得?这里"-1并且•.“ I - - ■:- - ■:-_ £±_4舲 1 ±V33X = _______ : ________ 二_______所以L S -总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握, 我们的运算能力有较高要求,也是提高我们运算能力训练的好素材5. 用因式分解法解下列方程:曲(3)| 凶].I | 上l・”rc\ j r■一T解:(1)将原方程变形为______________________________ ,提取公因式,得—,因为上「,所以- 1所以:=•或T — 1二-,⑵直接提取公因式,得肚-现更所以I 1 _|-或Z'i 厂、,(即T " A(3)直接用平方差公式因式分解得[(x 十&) + 2口][(工 + 总)-加=0所以•或上■■ _ - 它对所以1|—右土 J 带_ 4游 2昉土应x=X 2=l -'(3) x(x-8)=0x i =0, X 2=8. (4) 配方,得2x +12x+32+4=0+4 (x+6)2=4 x+6=2 或 x+6=-2 X 1=-4, X 2=-8.点评:要根据方程的特点灵活选用方法解方程6. 若「 「L ' 一 7 ,求丄匚的值孟思路点拨:观察,把握关键:换元,即把 -I ::看成一个 整体 解:由':'-|:,得L..!■ I - P〔/+,)-呼=16所以計-举一反三:【变式1】用适当方法解下列方程.(1)2(x+3) 2=X (X +3) ;(2)x 2-2 x+2=0 ;2 2⑶X -8x=0 ;(4)x +12x+32=0.2解: (1)2(x+3) =x(x+3)22(x+3) -x(x+3)=0 (x+3)[2(x+3)-x]=0 (x+3)(x+6)=0 x i =-3, X 2=-6.(2)x 2-2 J x+2=0这里a=1, b=-2宀,c=2b-4ac=(-2-4 >1 X2=12>0故亠L 「或门〕-(舍去),所以-:'-■-.总结升华:把某一式子”看成一个整体”用换元的思想转化为方程求解,这种转化与化归的意识要建立起来.类型三、一元二次方程根的判别式的应用7. (武汉)一元二次方程4X2+3X-2=0的根的情况是()訓A.有两个相等的实数根;B.有两个不相等的实数根C.只有一个实数根;D.没有实数根解析:因为△ =3 -4 >4*2)>0,所以该方程有两个不相等的实数根答案:B.丰宀卄*十孙一一轴2 *8. (重庆)右关于X的一兀一次方程x+x-3m=0有两个不相等的实数根,则m的取值范围是()^3丄丄丄丄A.m >1-B.m v 1二C.m >-匸D.m v」-思路点拨:因为该方程有两个不相等的实数根,所以应满足-'「.2解:由题意,得△ =1-4 > >-3m)> 0,解得m > -I_.答案:C.举一反三:【变式1】当m为什么值时,关于X的方程,1;'1;;•有实根.思路点拨:题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分仁」、—• |和二 .,两种情形讨论.解:当厂「 4 - °即滋一土乙时,「仪+ 1) - 0,方程为一元一次方程,总有实根;2 __当;」4 / :即T工±2时,方程有根的条件是:△二2佃十1)『一4佃?一4)二尿+ 20工0—• ••当:且记工11时,方程有实根综上所述:当[时,方程有实根•【变式2】若关于x的一兀二次方程(a-2)x-2ax+a+1=0没有实数解,求ax+3 > 0的解集(用含a的式子表示).思路点拨:要求ax+3> 0的解集,就是求ax> -3的解集,那么就转化为要判定a的值. _2 2是正、负或0 •因为一兀二次方程(a-2)x -2ax+a+1=0没有实数根,即(-2a)-4(a-2)(a+1) v 0就可求出a的取值范围.解:•• •关于x的一兀二次方程(a-2)x -2ax+a+1=0没有实数根. (-2a^-4(a-2)(a+1)=4a2-4^+4a+8 v 0一满足-丁.■/ ax+3 > 0 即ax> -3.所求不等式的解集为•类型四、根据与系数的关系,求与方程的根有关的代数式的值____ 9.(河北)若x i, X2是一元二次方程2X〔3X+仁0的两个根,则x^+x^的值是()§,,!A.〜B.「C.二D.7思路点拨:本题解法不唯一,可先解方程求出两根,然后代入x i2+x;,求得其值•但一般不解方程,只要将所求代数式转化成含有X计X2和X1X2的代数式,再整体代入.解:由根与系数关系可得X i+X2=二,X i X2=t , X i2+X22=(x i+X2)2-2x i X2=(二)2-2 X =" 答案:A.总结升华:公式之间的恒等变换要熟练掌握•类型五、一元二次方程的应用临考点讲解:1. 构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体问题中的数量关系,是构建数学模型,解决实际问题的关键.2. 注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.10. (陕西)在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图•如果要使整个挂图的面积是 5400cm 2,设金色纸边的宽为 xcm ,那么x 满足的方程是(危解析:在矩形挂图的四周镶一条宽为 xcm 的金边,那么挂图的长为 (80+2x )cm ,?宽为2(50+2x )cm ,由题意,可得(80+2x )(50+2x )=5400,整理得 x +65x-350=0.答案:B.11. (海口)某水果批发商场经销一种高档水果, 如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价 1元,日销售量将减少 20千克,现该商场要保证每天盈利 6000元,同时又要使顾客得到实惠,那么每千克应涨价 多少元庄解:设每千克水果应涨价 x 元,依题意,得(500-20x )(10+x )=6000 .2整理,得x -15x + 50=0 .解这个方程,x 1=5, X 2=10 . 要使顾客得到实惠,应取 x=5 . 答:每千克应涨价5元.总结升华:应抓住要使顾客得到实惠”这句话来取舍根的情况.12. (深圳南山区)课外植物小组准备利用学校仓库旁的一块空地,开辟一个面积为130平方米的花圃(如图),打算一面利用长为 15米的仓库墙面,三面利用长为33米的旧围栏,求花圃的长和宽.蹴-33^+130= 0 x 1 = 10.帀=〒:不合题意,舍去.答:花圃的长为13米,宽为10米.A.x +130x-1400=0C.X 2-130X -1400=0B.x +65x-350=0 D.x -64x-1350=0解:设与墙垂直的两边长都为::米,则另一边长13又•••当'1。
一元二次方程的定义和根一、一元二次方程的定义和根1、一元二次方程等号两边都是整式,只含有一个未知数(一元)。
并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2、一元二次方程的一般形式一元二次方程的一般形式是$ax^2$+$bx$+$c$=0($a$≠0)。
其中$ax^2$是二次项,$a$是二次项系数;$bx$是一次项,$b$是一次项系数;$c$是常数项。
对于方程$ax^2$+$bx$+$c$=0,只有当$a$≠0时才是一元二次方程。
反过来,如果说$ax^2$+$bx$+$c$=0是一元二次方程,则必须含着$a$≠0这个条件。
3、一元二次方程的根使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
利用方程的根求待定系数时,只需将方程的根代入原方程,再解关于待定系数的方程。
4、解一元二次方程(1)直接开平方法我们知道如果$x^2$=25,则$x$=$土\sqrt{25}$,即$x$=±5,像这种利用平方根的定义通过直接开平方求一元二次方程的解的方法叫做直接开平方法。
一般地,对于方程$x^2$=$p$,① 当$p$>0时,方程有两个不等的实数根$x_1$=$\sqrt{p}$ ,$x_2$=$-\sqrt{p}$。
② 当$p$=0时,方程有两个相等的实数根$x_1$=$x_2$=0。
③ 当$p$<0时,因为对任意实数$x$ ,都有$x^2\geqslant$0,所以方程无实数根。
(2)配方法通过配成完全平方的形式来解一元二次方程的方法,叫做配方法。
用配方法解方程是以配方为手段,以直接开平方法为基础的一种解一元二次方程的方法。
用配方法解一元二次方程的一般步骤:① 化二次项系数为1。
② 移项:使方程左边为二次项和一次项,右边为常数项。
③ 配方:方程两边都加上一次项系数一半的平方,原方程变为$(x+n)^2$=$p$的形式。
④ 直接开平方:如果右边是非负数,就可用直接开平方法求出方程的解。
一元二次方程根的判别式一、一元二次方程根的判别式的定义运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:2b x a += 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.二、判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根1,2x =.②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.若a ,b ,c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时b -±2a 的整数倍,则方程的根为整数根. 说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有 两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,0∆<.⑵在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ∆=-判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ∆=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当0a >时⇔抛物线开口向上⇔顶点为其最低点; ②当0a <时⇔抛物线开口向下⇔顶点为其最高点.三、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用: ⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围; ⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.一、一元二次方程实数根个数的判定【例1】 不解方程,判断下列方程的根的情况:⑴22340x x +-=;⑵20ax bx +=(0a ≠)【例2】 若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x mx m +-+-=( ).A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定【例3】 已知:方程()22250mx m x m -+++=没有实数根,且5m ≠,求证:()()25220m x m x m --++=有两个实数根.【例4】 对任意实数m ,求证:关于x 的方程222(1)240m x mx m +-++=无实数根.【例5】 求证:关于x 的一元二次方程2(2)10x m x m -+++=有两个实数根.【例6】 已知关于x 的方程2(1)10n x mx -++=①有两个相等的实数根.求证:关于y 的一元二次方程222440m y my m n --+=②必有两个相等的实数根.【例7】 当m 为何值时,关于x 的方程22(4)2(1)10m x m x -+++=有实根.【例8】 k 为何值时,方程2(1)(23)(3)0k x k x k --+++=有实数根.【例9】 当a 、b 为何值时,方程2222(1)34420x a x a ab b ++++++=有实根?二、一元二次方程中字母参数的确定【例10】 k 的何值时?关于x 的一元二次方程2450x x k -+-=:⑴有两个不相等的实数根;⑵有两个相等的实数根;⑶没有实数根.【例11】 m 为给定的有理数,k 为何值时,方程()22413240x m x m m k +-+-+=的根为有理数?【例12】 已知方程22(21)10m x m x +++=有实数根,求m 的范围.【例13】 关于x 的方程()26860a x x --+=有实数根,则整数a 的最大值是 .【例14】 若方程222(1)450x a x a a ++++-=有实数根,求:正整数a .【例15】 k 为何值时,方程2(1)(23)(3)0k x k x k --+++=有实数根.【例16】 已知关于x 的方程()()2212102x a b x b b -+--+=有两个相等的实数根,且a 、b 为实数,则32a b +=________.【例17】 关于x 的一元二次方程2(12)10k x ---=有两个不相等的实数根,求k 的取值范围.【例18】 如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是( )A . 1k <B . 0k ≠C .10k k <≠且D . 1k >【例19】 已知一元二次方程22(42)40x k x k --+=有两个不相等的实数根.则k 的最大整数值为【例20】 已知关于x 的方程22(21)10k x k x +-+=有两个不相等的实数根12x x ,.⑴求k 的取值范围;⑵是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.【例21】 已知关于x 的方程22()210m m x mx --+=有两个不相等的实数根.⑴求m 的取值范围;⑵若m 为整数,且3m <,a 是上述方程的一个根,求代数式22212334a a a +--+的值.【例22】 使得关于x 的一元二次方程22(4)60x kx x --+=无实数根的最小整数k ( )A .-1B .2C .3D .4【例23】 已知:m 、n 为整数,关于x 的二次方程2(7)30x m x n +-++=有两个不相等的实数解,2(4)60x m x n ++++=有两个相等的实数根,2(4)10x m x n --++=没有实数根,求m 、n 的值.【例24】 已知关于x 的方程22()210m m x mx --+=有两个不相等的实数根.⑴求m 的取值范围;⑵若m 为整数,且3m <,a 是上述方程的一个根,求代数式22212334a a a +--+的值.三、一元二次方程与三角形三边关系的综合【例25】 三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 .【例26】 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为 .【例27】 已知a ,3是直角三角形的两边,第三边的长满足方程29200x x -+=,则a 的值为 .这样的直角三角形有 个.【例28】 在等腰ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知3a =,b 和c 是关于x 的方程21202x mx m ++-=的两个实数根,求ABC ∆的周长.【例29】 已知:a 、b 、c 分别是ABC ∆的三边长,当0m >时,关于x 的一元二次方程22()()20c x m b x m ++--=有两个相等的实数根,求证:ABC ∆是直角三角形.【例30】 关于x 的一元二次方程()204a ca c x bx -+++=有两个相等的实数根,则以a ,b ,c 为三边的三角形的形状是______.【例31】 已知a 、b 、c 是ABC ∆的三边的长,且方程22()()()0x b c x a b c a +-+--=有两个相等的实数根,试判断这个三角形的形状.【例32】 已知a 、b 、c 是ABC ∆的三边,其中1a =,4c =,且关于x 的方程240x x b -+=有两个相等的实数根,试判断ABC ∆的形状.。
初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.(1990年泉州市初二数学双基赛题)证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.(1989年全国初中数学联赛题)解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值. (1986年泉州市初二数学双基赛题)解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42-依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1). (1983年福建省初中数学竞赛题)证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k abcd b a d c ==++. ∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k . 由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________. (1986年全国初中数学联赛题)6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.(1987年泉州市初二数学双基赛题)7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定 (1989年全国初中数学联赛题)8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?(1987年全国初中数学联赛题)9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-1 (1990年泉州市初二数学双基赛题)10. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是:___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围. (1997年泉州市初二数学双基赛题)13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________. (1990年泉州市初二数学双基赛题)17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 (1995年全国初中数学联赛题)18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解(1990年全国初中数学联赛题)练习题参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1, m>1)15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。
一元二次方程及其根的定义-- 导学案班级:____________ 姓名:_________________ 日期:____________一、问题情境:问题⑴ 要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,求雕像的下部应设计为高多少米?问题⑵ 有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?问题(3)要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件赛程计划安排7 天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?归纳:以上三个方程的特点是:①②_______________________________________③_______________________________________& 已知2y 2 y 3的值为2,则4y 22y 1的值为 _____________________________ 。
9、关于x 的一元二次方程 x bx c 0的两个实数根分别为 1和2,贝U b= __________________ ; c=二、探究新知:1、 只含有 ________ 个未知数,并且未知数的最高次数是 ______________ ,这样的方程,叫做一元二次方程。
2、 一元二次方程的一般形式: __________________ , ______________ 其中 _________ 二次项,是一次项, ___________ 是常数项, ________ 二次项系数, __________ 一次项系数。
(1)2x 1x 23320 ()(2) 2x 2y 50 () (3) ax 2 bx c 0 ()(4) 4x 21 x 7 0()例2、将卜列方程化为一兀二 二次方程的 -般形式,并分别指出它们的二次项系数一次项系数和常数项:x(1) 3x 2x 2 ;(2) 7x3 2x 2;(3) 2x 1 3x x 2 0 (4) 2x x 1 3 x 5 4.例1、判断下列方程是否是一元二次方程;三、 「元二次方程的根:问题1.下面哪些数是方程2x 210x 12 0 的根?-4, -3, -2, -1 , 0, 1, 2,3, 4.问题2?你能用以前所学的知识求出下列方程的根吗?2 2(1) x 64 0 (2) 3x 6 0 (3) x 2 3x 02已知方程x kx6有一根是7,则5、 方程8x 2 7的一次项系数是 ________________ ,常数项是 ___________6、若方程m 1 x 2.m ?x 1是关于x 的一元二次方程,则 m 的取值范围是 ________________7、关于x 的一元二次方程 a 2 x 2x a 24 0的一个根为0,贝U a 的值为10、已知关于x 的一元二次方程ax bx c 0 a有一根为 ° 11、根据题意列方程: ① 两个正方形面积和为 106,它们的周长的差是 16,求这两个正方形的边长 ② 一个直角三角形三条边的长是三个连续的整数,求这三条边的长。
一元二次方程的根是使这个一元二次方程两边相等的未知数的值。
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。
其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
用配方法解一元二次方程的步骤:
①把原方程化为一般形式。
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。
③方程两边同时加上一次项系数一半的平方。
④把左边配成一个完全平方式,右边化为一个常数。
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。