2、控制系统的数学描述
- 格式:ppt
- 大小:1.92 MB
- 文档页数:60
控制系统数学模型
控制系统数学模型是指用数学方法对控制系统进行建模和分析
的过程。
控制系统是指对一些物理过程进行控制的系统,包括机电控制系统、化工控制系统、航空航天控制系统等。
数学模型是指对一个系统或过程进行描述的数学式子或方程组。
建立控制系统的数学模型是控制工程的重要基础之一。
通过建立数学模型,可以更加深入地理解系统的特性,优化控制策略,提高系统的效率和稳定性。
在建立控制系统数学模型时,需要先对被控系统进行分析,确定系统的物理特性和运动规律。
然后,根据控制对象的特性,选择适当的数学模型进行建立。
常用的控制系统数学模型包括线性时不变系统模型、非线性系统模型、时变系统模型等。
线性时不变系统模型是指系统的输出与输入之间满足线性关系,且系统的特性不随时间变化。
非线性系统模型是指系统的输出与输入之间不满足线性关系。
时变系统模型是指系统的特性随时间变化。
除了建立数学模型外,还需要对模型进行分析和仿真。
常用的分析方法包括传递函数法、状态空间法等。
仿真可以通过计算机模拟系统运动过程,验证控制策略的有效性。
总之,控制系统数学模型是控制工程的重要基础之一,对于提高控制系统的性能和稳定性具有重要意义。
- 1 -。
843 自动控制原理复习大纲一.总体要求本课程要求学生深刻领会控制系统的基本原理,掌握单输入单输出、线性定常连续控制系统的常用分析与综合方法。
能够建立线性定常控制系统的数学模型,对简单的线性定常系统能够分别采用时域分析法、频率响应法和根轨迹法进行分析与综合。
能够进行采样控制系统的建模和性能分析。
掌握非线性控制系统的基本分析方法。
二.考试范围、要点1.自动控制的基本概念(1)自动控制的基本概念;开环、闭环(反馈)控制系统的原理及特点;(2)自动控制系统的分类;自动控制系统的构成;对自动控制系统的基本要求。
2.控制系统的数学描述(1)控制系统的数学模型及建立方法;非线性数学模型的微偏线性化;(2)传递函数、典型环节、控制系统的动态结构图;(3)反馈控制系统的传递函数;(4)控制系统的频率响应特性及表示法,如频率特性函数、伯德(Bode)图和奈奎斯特(Nyquist)图。
3.控制系统的稳定性分析(1)稳定性的定义;(2)劳斯(Routh)判据,Nyquist判据,Bode判据;(3)非最小相位系统的稳定性分析。
4.线性定常连续控制系统的运动分析(1)时域分析法:控制系统的稳态误差,典型信号作用下的稳态误差分析,扰动信号作用下的稳态误差分析及抑制;控制系统的动态性能指标;一阶、二阶系统的动态响应分析;主导极点和高阶系统的动态响应分析;闭环传递函数零极点分布对动态响应的影响。
(2)根轨迹法:常规根轨迹及广义根轨迹(零度根轨迹、参量根轨迹);基于根轨迹图的系统性能分析与估算;根轨迹法校正。
(3)频率响应法:稳定裕度的计算;从开环频率特性计算闭环系统的动态性能;二阶系统时域与频域性能的对应关系;开环对数频率特性低、中、高频段特征与闭环系统性能的关系。
5.线性定常连续控制系统的校正1。
第二章自动控制系统的数学模型本章要点系统的数学模型是对系统进行定量分析的基础和出发点。
本章主要介绍从微分方程、传递函数和系统框图去建立自动控制系统的数学模型。
内容包括系统微分方程的建立步骤、传递函数的定义与性质、系统框图的建立、等效变换及化简、系统各种传递函数的求取以及典型环节的数学模型。
为了对自动控制系统性能进行深入的分析和设计,须定量计算系统的动、静态性能指标。
而要完成此项任务,就必须掌握其变化规律,用一个反映其运动状态的数学表达式描述系统的动态过程。
这种描述系统各变量之间关系的数学表达式称为系统的数学模型。
系统数学模型的建立主要有解析法和实验法。
解析法是从系统元件所遵循的一些基本规律出发去推导系统的数学模型。
如果不了解系统的结构和运动规律,则应采用实验法建立数学模型,即在系统的输入端加上测试信号,在根据测试出的输出响应信号建立其数学模型。
系统的数学模型有多种,经典控制理论中常用的数学模型有:微分方程(时域数学模型)、传递函数(复域数学模型)、频率特性(频域数学模型)和动态结构图(几何模型)。
第一节系统的微分方程微分方程是描述系统的输入量和输出量之间关系最直接的方法。
当系统的输入量和输出量都是时间t的函数时,其微分方程可以确切描述系统的运动过程。
一、系统微分方程的建立步骤1.根据系统的组成结构、工作原理和运动规律,确定系统的输入量和输出量。
2.从输入端开始,根据各环节所遵循的运动规律,依次列写微分方程。
联立方程,消去中间变量,求取一个只包含系统输入量和输出量的微分方程。
3.将方程整理成标准形式。
即把含输出量的各项放在方程的左边,把含输入量的各项放在方程的右边,方程两边各导数按降幂排列,并将有关系数化为具有一定物理意义的表示形式,如时间常数等。
二、举例说明例2-1求图2-1所示RC网络的微分方程。
解:由图可知,输入量为u i(t) , 输出量为u o(t) ,根据电路遵循的基尔霍夫电压定律,有dtt du Ct i t u R t i t u o o i )()()()()(=+=消去上式中的中间变量i(t) ,得)()()(t u dtt du RCt u o o i += 整理得 ()()()o o i du t RCu t u t dt+= 例2-2 求直流电动机的微分方程。
第三十八章线性定常控制系统的数学模型第一节控制系统模型的构成一、控制系统的模型描述控制系统动态特性的数学表达式称为系统的数学模型,它是分析和设计系统的依据。
数学模型应当既能足够准确地反映系统的动态特性,又具有较简单的形式。
实际系统都程度不同地存在非线性和分布参数特性,如果这些因素影响不大,则可忽略不计。
在正常工作点附近变化时,可以用线性化模型来处理;但当系统在大范围内变化时采用线性化的模型就会带来较大误差。
可以根据系统内部的变化机理写出有关的运动方程,或者通过实验测取系统的输入!输出数据,然后对这些数据进行处理,从而建立系统的数学模型。
前者是机理法,后者是测试法,又称系统辨识。
二、微分方和差分方程微分方程是连续系统最基本的数学模型,可按下列步骤建立:"!将系统划分为单向环节,并确定各个环节的输入量、输出量。
单向环节是指后面的环节无负载效应,即后面的环节存在与否对该环节的动态特性没有影响。
#!根据系统内部机理,通过简化、线性化、增量化建立各个环节的微分方程。
$!消去中间变量,保留系统的输入量、输出量,得出系统的微分方程。
%!整理成标准形式,将含输出量的项写在方程左端,含输入量的项写在右端,并将各导数项按降阶排列。
设&!’,则单输入!单输出系统的微分方程的一般形式为((")())*+"((&!")())*…*+&!"(!())*+&(()),-./(’)())*-"/(’!")())*…*-’!"/!())*-’/())($0!")离散系统在某一时刻12的输出((1),可能既与同一时刻的输入与同一时刻的输入/(1)有关,又与过去时刻的输入((1!"),…,/(1!’)有关;而且还与过去时刻的输出/(1!"),…,((1!&)有关。
因此,&!’时,输入和输出之间的关系可表示为#($)*%"#($!")*…*%"#($!"),&.’($)*&"’($!")*…*&(’($!()($0!#)不失一般性,可以假定/(1),.,((1),.,13.。
第二章控制系统的数学基础和数学模型基本要求1.掌握拉氏变换、拉氏反变换的定义、定理。
2.了解数学模型的基本概念。
能够运用动力学、电学及专业知识,列写机械系统、电网络系统的微分方程。
3.掌握传递函数的概念、特点,会求传递函数的零、极点。
4.掌握各个典型环节的特点,传递函数的基本形式及相关参数的物理意义。
5.掌握闭环系统中前向通道传递函数、开环传递函数、闭环传递函数的定义及求法。
掌握干扰作用下,系统传递函数的求法和特点。
6.了解传递函数框图的组成及意义;能够根据系统的微分方程,绘制系统传递函数框图,并实现简化,从而求出系统的传递函数。
7.了解相似原理的概念。
本章重点1.拉氏变换定理。
2.列写系统的微分方程。
3.传递函数的概念、特点及求法。
4.典型环节的传递函数。
5.系统的方框图及其化简。
本章难点1.列写系统微分方程。
2.系统的方框图及其化简。
∞ 2.1 拉普拉斯(L a p l a c e )变换2.1.1 拉氏变换概述1.拉氏变换的定义F (s ) = L [ f (t )] = ⎰0f (t )e -std tf (t ):原函数(实域、时间域) F (s ):象函数(s 域、复数域) s :复变量,s=σ+j ωe - st: 拉氏算子j ω[s]σδ ( t )e -atsin ωtcos ωt2.基本函数的拉氏变换1tkttttu ( t ) r ( t )x i ( t ) k 序号原函数 f (t ) 象函数F (s )1 单位脉冲函数 δ (t ) 12单位阶跃函数 1(t ) 1 s 3 K常数k s4t 单位斜坡函数1 s2 5 tnn ! s n +16 e- at1 s + a7sin ωtω s 2 + ω 28cos ωts s 2 + ω 22.1.2 拉氏变换的主要性质1.线性性质设L [f 1(t )]=F 1(s ),L [f 2(t )]=F 2(s ),k 1,k 2为常数 ,则L [k 1 f 1 (t ) + k 2 f 2 (t )] = k 1L [ f 1 (t )] + k 2 L [ f 2 (t )]= k 1F 1 (s ) + k 2 F 2 (s )2.微分性质若L [f (t )]=F (s ),且f (0)=0,(初始条件为零)则L [ df (t )] =sF (s ) dt3.积分定理若L[f(t)]=F(s),且初始条件为零,则L[⎰ f (t )dt ]= 1 F (s)s4.平移定理若L[[f(t)]=F(s),]则L ⎰e-a t f (t)dt =F (s +a)5.初值定理若L[f(t)]=F(s),则f (0+) = limt →0 f (t) = lim s ⋅F (s)s→∞∞6.终值定理若L [f (t )]=F (s ),则有f (∞) = lim t →∞f (t ) = lim s ⋅ F (s )s →07.延迟定理若L [f (t )]=F (s ),对任一正实数a ,则有L [ f (t - a )]= ⎰0f (t - a )e -st d t = e -as F (s )2.1.2 拉氏变换的主要性质1.线性性质设L [f 1(t )]=F 1(s ),L [f 2(t )]=F 2(s ),k 1,k 2为常数 ,则L [k 1 f 1 (t ) + k 2 f 2 (t )] = k 1L [ f 1 (t )] + k 2 L [ f 2 (t )]= k 1F 1 (s ) + k 2 F 2 (s )2.微分性质若L [f (t )]=F (s ),且f (0)=0,(初始条件为零)则L [ df (t )] =sF (s ) dt3.积分定理若L[f(t)]=F(s),且初始条件为零,则L[⎰ f (t )dt ]= 1 F (s)s4.平移定理若L[[f(t)]=F(s),]则L ⎰e-a t f (t)dt =F (s +a)5.初值定理若L[f(t)]=F(s),则f (0+) = limt →0 f (t) = lim s ⋅F (s)s→∞∞6.终值定理若L [f (t )]=F (s ),则有f (∞) = lim t →∞f (t ) = lim s ⋅ F (s )s →07.延迟定理若L [f (t )]=F (s ),对任一正实数a ,则有L [ f (t - a )]= ⎰0f (t - a )e -st d t = e -as F (s )2.1.3拉氏反变换定义:f(t)=L-1[F(s)],将象函数变换成原函数s:复变量F(s):象函数(s 域、复数域)f(t):原函数(实域、时间域)2.2系统的数学模型数学模型就是描述系统的输出、输入与系统本身结构与参数之间的数学表达式。