2017-2018年山东省临沂市兰山区九年级上学期期中数学试卷及参考答案
- 格式:doc
- 大小:295.50 KB
- 文档页数:20
2018-2019年山东临沂初三上年中数学试卷及解析解析【一】选择题:〔每题3分,此题总分值共36分,〕以下每题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下、1、一元二次方程x〔x﹣2〕=2﹣x的根是〔〕A、﹣1B、2C、1和2D、﹣1和22、以下图形中,中心对称图形有〔〕A、4个B、3个C、2个D、1个3、关于x的方程x2+2kx﹣1=0的根的情况描述正确的选项是〔〕A、k为任何实数,方程都没有实数根B、k为任何实数,方程都有两个不相等的实数根C、k为任何实数,方程都有两个相等的实数根D、k取值不同实数,方程实数根的情况有三种可能4、关于x的方程ax2﹣〔3a+1〕x+2〔a+1〕=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,那么a的值是〔〕A、1B、﹣1C、1或﹣1D、25、如图,将Rt△ABC〔其中∠B=30°,∠C=90°〕绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于〔〕A、115°B、120°C、125°D、145°6、2017年向阳村农民人均收入为7200元,到2018年增长至8712元、这两年中,该村农民人均收入平均每年的增长率为〔〕A、10%B、15%C、20%D、25%7、抛物线y=ax2+bx+c与x轴的两个交点为〔﹣1,0〕,〔3,0〕,其形状与抛物线y=﹣2x2相同,那么y=ax2+bx+c的函数关系式为〔〕A、y=﹣2x2﹣x+3B、y=﹣2x2+4x+5C、y=﹣2x2+4x+8D、y=﹣2x2+4x+68、如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,那么∠A OD等于〔〕A、160°B、150°C、140°D、120°9、如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B、∠A=30°,那么∠C的大小是〔〕A、30°B、45°C、60°D、40°10、对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A、开口向下B、对称轴是x=﹣1C、顶点坐标是〔1,2〕D、与x轴有两个交点11、二次函数y=ax2+bx+c〔a,b,c为常数,且a≠0〕中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3以下结论:〔1〕ac<0;〔2〕当x>1时,y的值随x值的增大而减小、〔3〕3是方程ax2+〔b﹣1〕x+c=0的一个根;〔4〕当﹣1<x<3时,ax2+〔b﹣1〕x+c>0、其中正确的个数为〔〕A、4个B、3个C、2个D、1个12、如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD、PC=PD=BC、以下结论:〔1〕PD与⊙O相切;〔2〕四边形PCBD是菱形;〔3〕PO=AB;〔4〕∠PDB=120°、其中正确的个数为〔〕A、4个B、3个C、2个D、1个【二】填空题:〔每题4分,共24分〕13、假设关于x的一元二次方程x2﹣2x﹣k=0没有实数根,那么k的取值范围是、14、一元二次方程x2﹣3x﹣3=0的两根为a与b,那么的值是、15、如图,点A、B、P在⊙O上,∠APB=50°,假设M是⊙O上的动点,那么等腰△ABM顶角的度数为、16、如下图,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∠BDA=45°,那么∠BDE=、17、如下图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为〔﹣3,0〕,将⊙P沿x轴正方向平移,使⊙P与y轴相切,那么平移的距离为、18、二次函数y=ax2+bx+c〔a≠0〕的图象如下图,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0、其中结论正确的选项是、〔填正确结论的序号〕【三】解答以下各题〔共60分〕19、解方程〔1〕x2﹣2x﹣1=0、〔2〕〔x﹣1〕2+2x〔x﹣1〕=0、20、如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,假设AF=4、AB=7、〔1〕旋转中心为;旋转角度为;〔2〕求DE的长度;〔3〕指出BE与DF的关系如何?并说明理由、21、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF、〔1〕试判断△AEF的形状,并说明理由;〔2〕填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;〔3〕假设BC=8,那么四边形AECF的面积为、〔直接写结果〕22、如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD、〔1〕求证:BD=CD;〔2〕请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由、23、〔10分〕〔2018•新疆〕如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D、〔1〕求证:CD是⊙O的切线;〔2〕假设CD=2,求⊙O的半径、24、某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系、每盆植入3株时,平均单株盈利3元;以同样的栽培条件,假设每盆增加1株,平均单株盈利就减少0、5元、要使每盆的盈利达到10元,每盆应该植多少株?25、〔10分〕〔2018•牡丹江〕如图,抛物线y=x2+bx+c经过点〔1,﹣4〕和〔﹣2,5〕,请解答以下问题:〔1〕求抛物线的解析式;〔2〕假设与x轴的两个交点为A,B,与y轴交于点C、在该抛物线上是否存在点D,使得△ABC与△ABD全等?假设存在,求出D点的坐标;假设不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣、2018-2016学年山东省临沂市九年级〔上〕期中数学试卷参考答案与试题解析【一】选择题:〔每题3分,此题总分值共36分,〕以下每题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下、1、一元二次方程x〔x﹣2〕=2﹣x的根是〔〕A、﹣1B、2C、1和2D、﹣1和2【考点】解一元二次方程-因式分解法、【专题】计算题、【分析】先移项得到x〔x﹣2〕+〔x﹣2〕=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可、【解答】解:x〔x﹣2〕+〔x﹣2〕=0,∴〔x﹣2〕〔x+1〕=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1、应选D、【点评】此题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程、2、以下图形中,中心对称图形有〔〕A、4个B、3个C、2个D、1个【考点】中心对称图形、【分析】根据中心对称图形的定义和各图的特点即可求解、【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形、中心对称图形有3个、应选:B、【点评】此题考查中心对称图形的概念:绕对称中心旋转180度后所得的图形与原图形完全重合、3、关于x的方程x2+2kx﹣1=0的根的情况描述正确的选项是〔〕A、k为任何实数,方程都没有实数根B、k为任何实数,方程都有两个不相等的实数根C、k为任何实数,方程都有两个相等的实数根D、k取值不同实数,方程实数根的情况有三种可能【考点】根的判别式、【分析】先计算判别式的值得到△=4k2+4,根据非负数的性质得△>0,然后根据判别式的意义进行判断、【解答】解:△=4k2﹣4×〔﹣1〕=4k2+4,∵4k2≥0,∴4k2+4>0∴方程有两个不相等的实数根、应选B、【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根、4、关于x的方程ax2﹣〔3a+1〕x+2〔a+1〕=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,那么a的值是〔〕A、1B、﹣1C、1或﹣1D、2【考点】根与系数的关系;根的判别式、【专题】计算题;压轴题、【分析】根据根与系数的关系得出x1+x2=﹣,x1x2=,整理原式即可得出关于a的方程求出即可、【解答】解:依题意△>0,即〔3a+1〕2﹣8a〔a+1〕>0,即a2﹣2a+1>0,〔a﹣1〕2>0,a≠1,∵关于x的方程ax2﹣〔3a+1〕x+2〔a+1〕=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,∴x1﹣x1x2+x2=1﹣a,∴x1+x2﹣x1x2=1﹣a,∴﹣=1﹣a,解得:a=±1,又a≠1,∴a=﹣1、应选:B、【点评】此题主要考查了根与系数的关系,由x1﹣x1x2+x2=1﹣a,得出x1+x2﹣x1x2=1﹣a是解决问题的关键、5、如图,将Rt△ABC〔其中∠B=30°,∠C=90°〕绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于〔〕A、115°B、120°C、125°D、145°【考点】旋转的性质、【专题】计算题、【分析】先利用互余计算出∠BAC=60°,再根据旋转的性质得到∠BAB′等于旋转角,然后利用邻补角计算∠BAB′的度数即可、【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴∠BAB′等于旋转角,且∠BAB′=180°﹣∠BAC=120°,∴旋转角等于120°、应选B、【点评】此题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等、6、2017年向阳村农民人均收入为7200元,到2018年增长至8712元、这两年中,该村农民人均收入平均每年的增长率为〔〕A、10%B、15%C、20%D、25%【考点】一元二次方程的应用、【专题】增长率问题、【分析】设该村人均收入的年平均增长率为x,2017年的人均收入×〔1+平均增长率〕2=2018年人均收入,把相关数值代入求得年平均增长率、【解答】解:设该村人均收入的年平均增长率为x,由题意得:7200〔1+x〕2=8712,解得:x1=﹣2、1〔不合题意舍去〕,x2=0、1=10%、答:该村人均收入的年平均增长率为10%、应选A、【点评】此题考查了一元二次方程的运用,应明确增长的基数,增长的次数,根据公式增长后的人均收入=增长前的人均收入×〔1+增长率〕、7、抛物线y=ax2+bx+c与x轴的两个交点为〔﹣1,0〕,〔3,0〕,其形状与抛物线y=﹣2x2相同,那么y=ax2+bx+c的函数关系式为〔〕A、y=﹣2x2﹣x+3B、y=﹣2x2+4x+5C、y=﹣2x2+4x+8D、y=﹣2x2+4x+6【考点】待定系数法求二次函数解析式、【专题】压轴题、【分析】抛物线y=ax2+bx+c的形状与抛物线y=﹣2x2相同,a=﹣2、y=ax2+bx+c与x轴的两个交点为〔﹣1,0〕,〔3,0〕,利用交点式求表达式即可、【解答】解:根据题意a=﹣2,所以设y=﹣2〔x﹣x1〕〔x﹣x2〕,求出解析式y=﹣2〔x+1〕〔x﹣3〕,即是y=﹣2x2+4x+6、应选D、【点评】此题考查了抛物线的形状系数的关系,此题用交点式比较容易解、8、如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,那么∠AOD等于〔〕A、160°B、150°C、140°D、120°【考点】圆周角定理;垂径定理、【专题】压轴题、【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案、【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°、应选:C、【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键、9、如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B、∠A=30°,那么∠C的大小是〔〕A、30°B、45°C、60°D、40°【考点】切线的性质、【专题】计算题、【分析】根据切线的性质由AB与⊙O相切得到OB⊥AB,那么∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°、【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°、应选:A、【点评】此题考查了切线的性质:圆的切线垂直于经过切点的半径、10、对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A、开口向下B、对称轴是x=﹣1C、顶点坐标是〔1,2〕D、与x轴有两个交点【考点】二次函数的性质、【专题】常规题型、【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为〔1,2〕,对称轴为直线x=1,从而可判断抛物线与x轴没有公共点、【解答】解:二次函数y=〔x﹣1〕2+2的图象开口向上,顶点坐标为〔1,2〕,对称轴为直线x=1,抛物线与x轴没有公共点、应选:C、【点评】此题考查了二次函数的性质:二次函数y=ax2+bx+c〔a≠0〕的顶点式为y=a〔x﹣〕2+,的顶点坐标是〔﹣,〕,对称轴直线x=﹣b2a,当a>0时,抛物线y=ax2+bx+c〔a≠0〕的开口向上,当a<0时,抛物线y=ax2+bx+c〔a≠0〕的开口向下、11、二次函数y=ax2+bx+c〔a,b,c为常数,且a≠0〕中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3以下结论:〔1〕ac<0;〔2〕当x>1时,y的值随x值的增大而减小、〔3〕3是方程ax2+〔b﹣1〕x+c=0的一个根;〔4〕当﹣1<x<3时,ax2+〔b﹣1〕x+c>0、其中正确的个数为〔〕A、4个B、3个C、2个D、1个【考点】二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式〔组〕、【专题】压轴题;图表型、【分析】根据表格数据求出二次函数的对称轴为直线x=1、5,然后根据二次函数的性质对各小题分析判断即可得解、【解答】解:〔1〕由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故〔1〕正确;〔2〕∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1、5,∴当x≥1、5时,y的值随x值的增大而减小,故〔2〕错误;〔3〕∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+〔b ﹣1〕x+c=0的一个根,故〔3〕正确;〔4〕∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+〔b﹣1〕x+c=0,∵x=3时,ax2+〔b﹣1〕x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+〔b﹣1〕x+c>0,故〔4〕正确、应选:B、【点评】此题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度、熟练掌握二次函数图象的性质是解题的关键、12、如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD、PC=PD=BC、以下结论:〔1〕PD与⊙O相切;〔2〕四边形PCBD是菱形;〔3〕PO=AB;〔4〕∠PDB=120°、其中正确的个数为〔〕A、4个B、3个C、2个D、1个【考点】切线的判定与性质;全等三角形的判定与性质;菱形的判定、【专题】几何综合题、【分析】〔1〕利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO〔SSS〕,即可得出∠PCO=∠PDO=90°,得出答案即可;〔2〕利用〔1〕所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB〔SAS〕,即可得出答案;〔3〕利用全等三角形的判定得出△PCO≌△BCA〔ASA〕,进而得出CO=PO=AB;〔4〕利用四边形PCBD是菱形,∠CPO=30°,那么DP=DB,那么∠DPB=∠DBP=30°,求出即可、【解答】解:〔1〕连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO〔SSS〕,∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故〔1〕正确;〔2〕由〔1〕得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB〔SAS〕,∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故〔2〕正确;〔3〕连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA〔ASA〕,∴AC=CO,∴A C=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故〔3〕正确;〔4〕∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,那么∠DPB=∠DBP=30°,∴∠PDB=120°,故〔4〕正确;正确个数有4个,应选:A、【点评】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键、【二】填空题:〔每题4分,共24分〕13、假设关于x的一元二次方程x2﹣2x﹣k=0没有实数根,那么k的取值范围是k<﹣1、【考点】根的判别式、【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可、【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=〔﹣2〕2﹣4×1×〔﹣k〕=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1、【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根、14、一元二次方程x2﹣3x﹣3=0的两根为a与b,那么的值是﹣1、【考点】根与系数的关系、【专题】计算题、【分析】根据根与系数的关系得到a+b=3,ab=﹣3,再把原式变形得到,然后利用整体代入的方法进行计算、【解答】解:根据题意得a+b=3,ab=﹣3,所以原式===﹣1、故答案为﹣1、【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=、15、如图,点A、B、P在⊙O上,∠APB=50°,假设M是⊙O上的动点,那么等腰△ABM顶角的度数为50°或80°或130°、【考点】圆周角定理;等腰三角形的性质、【分析】首先连接AM,BM,分别从假设点M在优弧APB上与假设点M在劣弧AB上,根据圆周角定理与等腰三角形的性质,即可求得等腰△ABM顶角的度数、【解答】解:连接AM,BM,①假设点M在优弧APB上,∴∠M=∠APB=50°,假设AM=BM,那么等腰△ABM顶角的度数为50°;假设AM=AB或BM=AB,那么等腰△ABM顶角的度数为:180°﹣2∠M=80°;②假设点M在劣弧AB上,那么∠M=180°﹣∠APB=130°,此时∠M是顶角、∴等腰△ABM顶角的度数为:50°或80°或130°、故答案为:50°或80°或130°、【点评】此题考查了圆周角定理、等腰三角形的性质以及圆的内接四边形的性质、此题难度适中,注意掌握辅助线的作法,注意数形结合思想与分类讨论思想的应用、16、如下图,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∠BDA=45°,那么∠BDE=85°、【考点】旋转的性质、【专题】计算题、【分析】根据旋转的性质得∠ADE=∠B=40°,然后计算∠BDA+∠ADE即可、【解答】解:∵△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∴∠ADE=∠B=40°,∴∠BDE=∠BDA+∠ADE=45°+40°=85°、故答案为85°、【点评】此题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等、17、如下图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为〔﹣3,0〕,将⊙P沿x轴正方向平移,使⊙P与y轴相切,那么平移的距离为1或5、【考点】直线与圆的位置关系;坐标与图形性质;平移的性质、【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可、【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5、故答案为:1或5、【点评】此题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径、18、二次函数y=ax2+bx+c〔a≠0〕的图象如下图,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0、其中结论正确的选项是①②⑤、〔填正确结论的序号〕【考点】二次函数图象与系数的关系、【专题】压轴题、【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断、【解答】解:①由图知:抛物线与x轴有两个不同的交点,那么△=b2﹣4ac>0,∴b2>4ac,故①正确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③∵抛物线的对称轴为x=﹣=1,b=﹣2a,∴2a+b=0,故2a﹣b=0错误;④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c〔a≠0〕;由函数的图象知:当x=﹣2时,y>0;即4a﹣〔﹣4a〕+c=8a+c>0,故④错误;⑤根据抛物线的对称轴方程可知:〔﹣1,0〕关于对称轴的对称点是〔3,0〕;当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确;所以这结论正确的有①②⑤、故答案为:①②⑤、【点评】此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用、【三】解答以下各题〔共60分〕19、解方程〔1〕x2﹣2x﹣1=0、〔2〕〔x﹣1〕2+2x〔x﹣1〕=0、【考点】解一元二次方程-因式分解法;解一元二次方程-配方法、【分析】〔1〕方程常数项移到右边,两边加上1变形后,开方即可求出解;〔2〕方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解、【解答】解:〔1〕方程移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即〔x﹣1〕2=2,开方得:x﹣1=±,那么x1=1+,x2=1﹣;〔2〕分解因式得:〔x﹣1〕[〔x﹣1〕+2x]=0,可得x﹣1=0或3x﹣1=0,解得:x1=1,x2=、【点评】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解此题的关键、20、如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,假设AF=4、AB=7、〔1〕旋转中心为点A;旋转角度为90°;〔2〕求DE的长度;〔3〕指出BE与DF的关系如何?并说明理由、【考点】旋转的性质;正方形的性质、【分析】〔1〕根据旋转的性质,点A为旋转中心,对应边AB、AD的夹角为旋转角;〔2〕根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;〔3〕根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF、【解答】解:〔1〕旋转中心为点A,旋转角为∠BAD=90°;〔2〕∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;〔3〕BE、DF的关系为:BE=DF,BE⊥DF、理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF、【点评】此题考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键、21、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF、〔1〕试判断△AEF的形状,并说明理由;〔2〕填空:△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;〔3〕假设BC=8,那么四边形AECF的面积为64、〔直接写结果〕【考点】旋转的性质;全等三角形的判定与性质;正方形的性质、【分析】〔1〕根据正方形性质得出AB=AD,∠DAB=∠ABF=∠D=90°,证△ADE≌△ABF,推出AE=AF,∠DAE=∠FAB即可、〔2〕根据全等三角形性质和旋转的性质得出即可、〔3〕求出四边形AECF的面积等于正方形ABCD面积,求出正方形的面积即可、【解答】解:〔1〕△AEF是等腰直角三角形,理由是:∵四边形ABCD是正方形,F是BC延长线上一点,∴AB=AD,∠DAB=∠ABF=∠D=90°,在△ADE和△ABF中,,∴△ADE≌△ABF〔SAS〕∴AE=AF,∠DAE=∠FAB,∵∠DAB=∠DAE+∠BAE=90°,∴∠FAE=∠DAB=90°,即△AE F是等腰直角三角形、〔2〕△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到的,故答案为:A,90、〔3〕∵△ADE≌△ABF,∴S ADE=S△ABF,∴四边形AECF的面积S=S四边形ABCE+S△ABF=S四边形ABCE+S△ADE=S正方形ABCD=8×8=64,故答案为:64、【点评】此题考查了旋转性质,全等三角形的性质和判定,正方形性质的应用,主要考查学生的推理能力、22、如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD、〔1〕求证:BD=CD;〔2〕请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由、【考点】确定圆的条件;圆心角、弧、弦的关系、【专题】证明题;探究型、【分析】〔1〕利用等弧对等弦即可证明、〔2〕利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上、【解答】〔1〕证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD、〔2〕解:B,E,C三点在以D为圆心,以DB为半径的圆上、理由:由〔1〕知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=D E、由〔1〕知:BD=CD∴DB=DE=D C、∴B,E,C三点在以D为圆心,以DB为半径的圆上、〔7分〕【点评】此题主要考查等弧对等弦,及确定一个圆的条件、23、〔10分〕〔2018•新疆〕如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D、〔1〕求证:CD是⊙O的切线;〔2〕假设CD=2,求⊙O的半径、【考点】切线的判定;三角形三边关系;圆周角定理、【专题】几何图形问题、【分析】〔1〕连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,那么∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;〔2〕连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,那么∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=8,所以⊙O的半径为4、【解答】〔1〕证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;〔2〕解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4、【点评】此题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线、也考查了圆周角定理和含30度的直角三角形三边的关系、24、某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系、每盆植入3株时,平均单株盈利3元;以同样的栽培条件,假设每盆增加1株,平均单株盈利就减少0、5元、要使每盆的盈利达到10元,每盆应该植多少株?【考点】一元二次方程的应用、【分析】根据假设每盆花苗增加x株,那么每盆花苗有〔x+3〕株,得出平均单株盈利为〔3﹣0、5x〕元,由题意得〔x+3〕〔3﹣0、5x〕=10求出即可、【解答】解:设每盆花苗增加x株,那么每盆花苗有〔x+3〕株,平均单株盈利为:〔3﹣0、5x〕元,由题意得:〔x+3〕〔3﹣0、5x〕=10、化简,整理,的x2﹣3x+2=0、解这个方程,得x1=1,x2=2,那么3+1=4,2+3=5,答:每盆应植4株或者5株、【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键、25、〔10分〕〔2018•牡丹江〕如图,抛物线y=x2+bx+c经过点〔1,﹣4〕和〔﹣2,5〕,请解答以下问题:〔1〕求抛物线的解析式;〔2〕假设与x轴的两个交点为A,B,与y轴交于点C、在该抛物线上是否存在点D,使得△ABC与△ABD全等?假设存在,求出D点的坐标;假设不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣、【考点】二次函数综合题、【分析】〔1〕由抛物线y=x2+bx+c经过点〔1,﹣4〕和〔﹣2,5〕,利用待定系数法即可求得此抛物线的解析式;〔2〕首先由抛物线y=ax2+bx+c的对称轴是x=﹣,即可求得此抛物线的对称轴,根据轴对称的性质,点C关于x=1的对称点D即为所求,利用SSS即可判定△ABC≌△BAD,又由抛物线的与y轴交于点C,即可求得点C的坐标,由对称性可求得D点的坐标、【解答】解:〔1〕∵抛物线y=x2+bx+c经过点〔1,﹣4〕和〔﹣2,5〕,∴,解得:、故抛物线的解析式为:y=x2﹣2x﹣3、〔2〕存在、∵抛物线y=x2﹣2x﹣3的对称轴为:x=﹣=1,∴根据轴对称的性质,点C关于x=1的对称点D即为所求,此时,AC=BD,BC=AD,在△ABC和△BAD中,∵,∴△ABC≌△BAD〔SSS〕、在y=x2﹣2x﹣3中,令x=0,得y=﹣3,那么C〔0,﹣3〕,D〔2,﹣3〕、【点评】此题考查了待定系数法求二次函数的解析式、二次函数的性质、全等三角形的判定与二次函数的对称性、此题难度适中,注意掌握数形结合思想与方程思想的应用、。
2017-2018学年山东省临沂市莒南县九年级(上)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=192.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠03.(3分)如图,A、B、C是⊙O上的三点,∠BOC=70°,则∠A的度数为()A.70°B.45°C.40°D.35°4.(3分)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.5.(3分)PA,PB分别切⊙O于A,B两点,点C为⊙O上不同于AB的任意一点,已知∠P=40°,则∠ACB的度数是()A.70°B.110°C.70°或110°D.不确定6.(3分)如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.117.(3分)已知二次函数y=x2﹣2x+m(m为常数)的图象与x轴的一个交点为(﹣1,0),则关于x的一元二次方程x2﹣2x+m=0的两个实数根是()A.x1=1,x2=2 B.x1=1,x2=3 C.x1=﹣1,x2=2 D.x1=﹣1,x2=38.(3分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°9.(3分)在同一直角坐标系中,函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.10.(3分)如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3 B.6 C.3πD.6π11.(3分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.12.(3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米 B.3米 C.2米 D.1米13.(3分)已知α、β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为()A.0 B.1 C.2 D.314.(3分)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①abc<0;②a+c>b;③3a+c<0;④a+b>m(am+b)(其中m≠1),其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)方程x2=x的解是.16.(3分)用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:根据表格中的信息回答问题,该二次函数y=ax2+bx+c在x=3时,函数值y=.17.(3分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.18.(3分)若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC是等径三角形,则等径角的度数为.19.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(﹣2,y1),点B(,y2),点C(,y3)在该函数图象上,则y1<y3<y2;(5)若m≠2,则m(am+b)<2(2a+b),其中正确的结论的序号是.三、解答题(本大题共7小题,共63分)20.(7分)已知关于x的方程x2﹣2(k﹣2)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2,求k的值.21.(7分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.22.(7分)如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC 的延长线上.已知∠A=27°,∠B=40°,求则∠ACB′的度数.23.(8分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).24.(10分)某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?25.(10分)阅读资料:我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角,如图1中∠ABC所示.同学们研究发现:P为圆上任意一点,当弦AC经过圆心O时,且AB切⊙O于点A,此时弦切角∠CAB=∠P(图2).证明:∵AB切⊙O于点A,∴∠CAB=90°,又∵AC是直径,∴∠P=90°,∴∠CAB=∠P问题拓展:若AC不经过圆心O(如图3),该结论:弦切角∠CAB=∠P还成立吗?请说明理由.知识运用:如图4,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.26.(14分)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.2017-2018学年山东省临沂市莒南县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选:D.2.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选:C.3.(3分)如图,A、B、C是⊙O上的三点,∠BOC=70°,则∠A的度数为()A.70°B.45°C.40°D.35°【解答】解:∵A、B、C是⊙O上的三点,∠BOC=70°,∴∠A=∠BOC=35°.故选:D.4.(3分)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.【解答】解:∵直径所对的圆周角等于直角,∴从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选:B.5.(3分)PA,PB分别切⊙O于A,B两点,点C为⊙O上不同于AB的任意一点,已知∠P=40°,则∠ACB的度数是()A.70°B.110°C.70°或110°D.不确定【解答】解:如图,连接OA、OB,∵PA,PB分别切⊙O于A,B两点,∴∠PAO=∠PBO=90°,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,当点C1在上时,则∠AC1B=∠AOB=70°,当点C2在上时,则∠AC2B+∠AC1B=180°,∴∠AC2B=110°,故选:C.6.(3分)如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.11【解答】解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,故选:A.7.(3分)已知二次函数y=x2﹣2x+m(m为常数)的图象与x轴的一个交点为(﹣1,0),则关于x的一元二次方程x2﹣2x+m=0的两个实数根是()A.x1=1,x2=2 B.x1=1,x2=3 C.x1=﹣1,x2=2 D.x1=﹣1,x2=3【解答】解:二次函数y=x2﹣2x+m(m为常数)的对称轴是x=1,(﹣1,0)关于x=1的对称点是(3,0).则一元二次方程x2﹣2x+m=0的两个实数根是x1=﹣1,x2=3.故选:D.8.(3分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选:C.9.(3分)在同一直角坐标系中,函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.【解答】解:A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x=﹣=﹣=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=﹣=<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;故选:D.10.(3分)如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3 B.6 C.3πD.6π【解答】解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr=×2π×10,解得r=6.故选:B.11.(3分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是=,故选:B.12.(3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米 B.3米 C.2米 D.1米【解答】解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故选:A.13.(3分)已知α、β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为()A.0 B.1 C.2 D.3【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故选:A.14.(3分)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①abc<0;②a+c>b;③3a+c<0;④a+b>m(am+b)(其中m≠1),其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:①由图象可知:a<0,c>0,∵﹣>0,∴b>0,∴abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c=0,故a+c=b,错误;③当x=3时函数值小于0,y=9a+3b+c=0,且x=﹣=1,即b=﹣2a,代入得9a﹣6a+c=0,得3a+c=0,故此选项错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项正确.故①④正确.故选:B.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)方程x2=x的解是x1=0,x2=1.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=116.(3分)用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:根据表格中的信息回答问题,该二次函数y=ax2+bx+c在x=3时,函数值y=﹣4..【解答】解:由表格可知当x=0和x=2时,y=﹣2.5,∴抛物线的对称轴为x=1,∴x=3和x=﹣1时的函数值相等,为﹣4,故答案为:﹣4.17.(3分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,=.∴MN最大故答案为:.18.(3分)若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC是等径三角形,则等径角的度数为30°或150°.【解答】解:如图边AB与半径相等时,则∠AOB=60°,当等径角顶点为C时,∠C=∠AOB=30°,当等径角顶点为D时,∠C+∠D=180°,∠D=150°,故答案为:30°或150°.19.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(﹣2,y1),点B(,y2),点C(,y3)在该函数图象上,则y1<y3<y2;(5)若m≠2,则m(am+b)<2(2a+b),其中正确的结论的序号是(1)(3)(5).【解答】解:∵称轴为直线x=2,∴,∴b=﹣4a,∴4a+b=0,故(1)正确,∵二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,∴当x=﹣2时,y=4a﹣2b+c<0,∴4a+c<2b,故(2)错误,∵图象过点(﹣1,0),b=﹣4a,c>0,∴a﹣b+c=0,∴5a+c=0,∴5a+c+2c>0,∴5a+3c>0,故(3)正确,∵点A(﹣2,y1),点B(,y2),点C(,y3)在该函数图象上,对称轴为直线x=2,图象开口向下,∴y1<y2<y3,故(4)错误,∵当x=2时,y取得最大值,∴当x=m≠2时,am2+bm+c<4a+2b+c,∴m(am+b)<2(2a+b),故(5)正确,故答案为:(1)(3)(5).三、解答题(本大题共7小题,共63分)20.(7分)已知关于x的方程x2﹣2(k﹣2)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2,求k的值.【解答】解:(1)由题意△≥0,∴4(k﹣2)2﹣4k2≥0,∴k≤1.(2)∵x1+x2=2(k﹣2),x1x2=k2,∴2(k﹣2)=1﹣k2,解得k=﹣1+或﹣1﹣,∵k≤1,∴k=﹣1﹣.21.(7分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.【解答】解:(1)设袋中蓝球的个数为x个,∵从中任意摸出一个是白球的概率为,∴=,解得:x=1,∴袋中蓝球的个数为1;(2)画树状图得:∵共有12种等可能的结果,两次都是摸到白球的有2种情况,∴两次都是摸到白球的概率为:=.22.(7分)如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC 的延长线上.已知∠A=27°,∠B=40°,求则∠ACB′的度数.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°﹣∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°.23.(8分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).【解答】解:(1)∵∠B=60°,∴△BOC是等边三角形,∴∠1=∠2=60°,∵OC平分∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90°,∴∠OAM=90°,∴AM是⊙O的切线;(2)∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∵∠OAM=90°,∴∠CAD=30°,∵CD=2,∴AC=2CD=4,∴AD=2,∴S阴影=S梯形OADC﹣S扇形OAC=(4+2)×2﹣=6﹣.24.(10分)某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?【解答】解:(1)根据题意得,解得:,∴一次函数的表达式为y=﹣x+110;(2)W=(x﹣50)(﹣x+100)=﹣x2+160x﹣5500,∵销售单价不低于成本单价,且获利不得高于40%,即50≤x≤50×(1+40%),∴50≤x≤70,∵当x=﹣=80时不在范围内,=800元,∴当x=70时,W最大答:销售单价定为70元时,商场可获得最大利润,最大利润是800元.25.(10分)阅读资料:我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角,如图1中∠ABC所示.同学们研究发现:P为圆上任意一点,当弦AC经过圆心O时,且AB切⊙O于点A,此时弦切角∠CAB=∠P(图2).证明:∵AB切⊙O于点A,∴∠CAB=90°,又∵AC是直径,∴∠P=90°,∴∠CAB=∠P问题拓展:若AC不经过圆心O(如图3),该结论:弦切角∠CAB=∠P还成立吗?请说明理由.知识运用:如图4,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.【解答】解:问题拓展:∠CAB=∠P成立.理由如下:作直径AD,连接CD,如图3,则∠D=∠P,∵AD为直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵AB切⊙O于点A,∴AD⊥AB,∴∠CAB+∠CAD=90°,∴∠CAB=∠P;知识运用:如图4,连接DF,∵AD是△ABC中∠BAC的平分线,∴∠BAD=∠CAD,∵经过点A的⊙O与BC切于点D,∴∠CDF=∠CAD,∴∠BAD=∠CDF,∵∠BAD=∠DFE,∴∠CDF=∠DFE,∴EF∥BC.26.(14分)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.【解答】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3﹣1)2+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3;(2)设P点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|﹣x2+3x|=4,当﹣x2+3x=4时,△=9﹣16<0,方程无实数根,当﹣x2+3x=﹣4时,解得x=﹣1或x=4,∴Q(﹣1,0)或(4,﹣5),综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5).。
山东省临沂市兰山区2017-2018年初中学生结业性考试试题九年级数学2018.4一、选择题(共14道小题,每小题3分,共42分)在每小题所给出的四个选项,其中只有一个..是符合题意的. 1.下列四个数:0,﹣√3,﹣π,1,其中最小的数是( )A .﹣πB .0C .1D .﹣√32.下列运算中,正确的是( )A.1)1(22+=+x x B.532)(x x =C.824632x x x =⋅D.)0(2≠=÷x x x x3.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×1084. 下列图形中,是中心对称图形的是( )A.B. C. D.5. 如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )A .B .C .D .6.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s 2如表所示:甲 乙 丙 丁7 8 8 7 s 211.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A .甲B .乙C .丙D .丁7.不等式组⎪⎩⎪⎨⎧<-≤+-014101x x 的所有整数解的和是( )A.6B.7C.8D.98. 已知2111=-b a ,则b a ab-的值是( )A.21B.21- C.2 D.-29.如图,△ABC 内接于△O ,若△A=α,则△OBC 等于( ) A .180°﹣2αB .2αC .90°+αD .90°﹣α10.如图,正方形ABCD 中,M 为BC 上一点,ME△AM ,ME 交AD 的延长线于点E .若AB=12,BM=5,则DE 的长为( )A .18B .5109C .596 D .325 11.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组⎩⎨⎧+=+=2211b x k y b x k y 的解为( )A .⎩⎨⎧==42y xB .⎩⎨⎧==24y xC .⎩⎨⎧=-=04y xD .⎩⎨⎧==03y x12.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为( )A.αsin 1B.αcos 1C.sinαD.1xy24-4y=k 1x+b 1y=k 2x+b 23O 第11题图第12题图第9题图第10题图13.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程0122=+-k x x 的两个根,则k 的值是( )A.27B.36C.27或36D.1814.规定:如果关于x 的一元二次方程)0(02≠=++a c bx ax 有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: △方程0822=-+x x 是倍根方程;△若关于x 的方程022=++ax x 是倍根方程,则a =±3;△若关于x 的方程)0(062≠=+-a c ax ax 是倍根方程,则抛物线y =ax2−6ax +c 与x 轴的公共点的坐标是(2,0)和(4,0);△若点)(n m ,在反比例函数xy 4=的图象上,则关于x 的方程052=++n x mx 是倍根方程.上述结论中正确的有( )A.△△B.△△C.△△D.△△二、填空题(共5道小题,每小题3分,共15分) 15.因式分解:=-2732x . 16.方程111122=---x x 的解为x = . 17.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=11,则线段MN 的长为 . 18.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为1a ,第2幅图形中“●”的个数为2a ,第3幅图形中“●”的个数为3a ,…,以此类推,第n 幅图形中“●”的个数n a 的值为 .19.如图,在菱形纸片ABCD 中,AB=2,△A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos△EFG 的值为 .第19题图第17题图三、解答题(共7题,共63分)20.(本小题满分7分)计算:()o 60sin 22322101-+-+--⎪⎭⎫ ⎝⎛π.21.(本小题满分7分)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.22.(本小题满分7分)如图,在直角坐标系中,直线m x y +=与xmy =在第一象限交于点A ,且与x 轴交于点C ,AB ⊥x 轴,垂足为B ,且S △AOB =1. (1)求m 的值; (2)求△ABC 的面积.23.(本小题满分9分)如图,AB 为半圆O 的直径,AC 是△O 的一条弦,D 为的中点,作DE△AC ,交AB 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线; (2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)第22题图第23题图24.(本小题满分9分)某电子厂商设计了一款制造成本为18元新型电子厂品,投放市场进行试销.经过调查,得到每月销售量y (万件)与销售单价x (元)之间的部分数据如下: 销售单价x (元/件) … 20 25 30 35 … 每月销售量y (万件)…60504030…(1)求出每月销售量y (万件)与销售单价x (元)之间的函数关系式. (2)求出每月的利润z (万元)与销售单x (元)之间的函数关系式.(3)根据相关部门规定,这种电子产品的销售利润率不能高于50%,而且该电子厂制造出这种产品每月的制造成本不能超过900万元.那么并求出当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?(利润=售价﹣制造成本)25.(本小题满分11分)在矩形ABCD 中,点P 在AD 上,AB =2,AP =1.将直角尺的顶点放在P 处,直角尺的两边分别交AB ,BC 于点E ,F ,连接EF (如图①). (1)当点E 与点B 重合时,点F 恰好与点C 重合(如图②),求PC 的长;(2)探究:将直尺从图②中的位置开始,绕点P 顺时针旋转,当点E 和点A 重合时停止.在这个过程中(如图①是该过程的某个时刻),请你观察、猜想,并解答: ①PEF tan 的值是否发生变化?请说明理由; ②直接写出从开始到停止,线段EF 的中点经过的路线长.第25题图26.(本小题满分13分)如图,是将抛物线2x y -=平移后得到的抛物线,其对称轴为x =1,与x 轴的一个交点为A (﹣1,0),另一个交点为B ,与y 轴的交点为C . (1)求抛物线的函数表达式;(2)若点N 为抛物线上一点,且BC△NC ,求点N 的坐标; (3)点P 是抛物线上一点,点Q 是一次函数2323+=x y 的图象上一点,若四边形OAPQ 为平行四边形,这样的点P 、Q 是否存在?若存在,分别求出点P ,Q 的坐标;若不存在,说明理由.第26题图 第26题备用图。
山东省临沂市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2015八下·农安期中) 下面的函数是反比例函数的是()A . y=3x+lB . y=x2+2xC . y=D . y=2. (2分)(2018·本溪) 反比例函数的图象经过点(-2,3),则该反比例函数图象在()A . 第一、三象限B . 第二、四象限C . 第二、三象限D . 第一、二象限3. (2分) (2016九上·呼和浩特期中) 下列方程中,关于x的一元二次方程有()①x2=0;②ax2+bx+c=0;③ x2﹣3= x;④a2+a﹣x=0;⑤(m﹣1)x2+4x+ =0;⑥ + =;⑦ =2;⑧(x+1)2=x2﹣9.A . 2个B . 3个C . 4个D . 5个4. (2分)设一元二次方程7x2-x-5=0的两个根分别是x1、x2 ,则下列等式正确的是()A . x1+x2=B . x1+x2=-C . x1+x2=D . x1+x2=5. (2分)已知关于x的方程:(1)ax2+bx+c=0;(2)x2﹣4x=8+x2;(3)1+(x﹣1)(x+1)=0;(4)(k2+1)x2+kx+1=0中,一元二次方程的个数为()个.A . 1C . 3D . 46. (2分)某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A . 19%B . 20%C . 21%D . 22%7. (2分)关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1 , x2 ,且x1+x2>0,x1x2>0,则m的取值范围是()A . m≤B . m≤ 且m≠0C . m<1D . m<1且m≠08. (2分)关于x的一元二次方程x2+(k2-4)x+k+1=0的两实数根互为相反数,则k的值()A . -1B . ±2C . 2D . -29. (2分)方程3x2-x=2的两根之和与两根之积分别是()A . 1和2B . -1和-2C . 和D . 和10. (2分)若,则的值等于().A .B .C .11. (2分)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若 = ,则 =()A .B .C .D . 112. (2分)如图,E为平行四边形ABCD的边CB的延长线上一点,DE交AB于点F,则图中与△ADF相似的三角形共有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分) (2020九上·息县期末) 若点,在反比例函数的图象上,则________ .(填“>”“<”或“=”)14. (1分)如图,点P在△ABC的边AC上,请你添加一个条件,使得△ABP∽△ACB,这个条件可以是________ .15. (1分) (2020九上·覃塘期末) 若,则的值是________.16. (1分)长度为2cm、3cm、6cm、7cm、8cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有________个.17. (1分)已知方程x2﹣2x﹣1=0的两根为m和n,则代数式m3﹣2m2﹣n+ ﹣mn2=________.18. (1分) (2017九上·十堰期末) 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC-S△BAD为________.三、解答题 (共8题;共91分)19. (5分) (2017九上·江门月考) 解方程:x2+4x﹣5=020. (10分)(2014·台州) 已知反比例函数y= ,当x=2时,y=3.(1)求m的值;(2)当3≤x≤6时,求函数值y的取值范围.21. (15分)(2016·内江) 已知抛物线C:y=x2﹣3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.(1)求m的值;(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=﹣3x+b交于点P,且 + = ,求b的值;(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否在实数k使S△APQ=S△BPQ?若存在,求k的值,若不存在,说明理由.22. (15分) (2019九上·浦东期中) 已知:在梯形ABCD中,AD//BC , AC=BC=10,,点E在对角线AC上,且CE=AD , BE的延长线与射线AD、射线CD分别相交于点F、G .设AD=x ,△AEF的面积为y .(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.23. (15分) (2017九上·滦县期末) 如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y= (k>0,x>0)于点P,且OA•MP=12.(1)求k的值;(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.24. (6分) (2017九上·平舆期末) 如图①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交边AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止.(1)特殊情形:如图②,发现当PM过点A时,PN也恰巧过点D,此时,△ABP________△PCD(填“≌”或“~”);(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.25. (15分) (2016九上·威海期中) 已知:抛物线的对称轴为x=﹣1,与x轴交于A,B两点,与y轴交于点C,其中A(﹣3,0)、C(0,﹣2).(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.26. (10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共91分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
临沂市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)式子中x的取值范围是()A . x≥1 且X≠﹣2B . x>1且x≠﹣2C . x≠﹣2D . x≥12. (2分)一元二次方程3x2-4x-7=0的二次项系数、一次项系数、常数项分别是()A . 3,-4,-7B . 3,-4,7C . 3,4,7D . 3,4,-73. (2分)下列二次根式中与是同类二次根式的是()A .B .C .D .4. (2分)(2017·海曙模拟) 已知x=1是方程ax2+bx﹣6=0(a≠0)的一个解,若a≠b,则的值为()A . ﹣3B . 3C . ﹣6D . 65. (2分)下列四个命题中,属于真命题的是()A . 若,则a=mB . 若a>b,则am>bmC . 两个等腰三角形必定相似D . 位似图形一定是相似图形6. (2分)下列各组线段中,能成比例的是()A . 3,6,7,9B . 2,5,6,8C . 3,6,9,18D . 1,2,3,47. (2分)如图,DE∥FG∥BC,且DE、FG把△ABC的面积三等分,若BC=12,则FG的长是().A . 8B . 6C .D .8. (2分)如图,△A′B′C′和△ABC是以点O为位似中心的位似图形,若位似比A′O:AO=3:1,且△A′B′C′的周长是12,则△ABC的周长是()A . 4B . 36C . 9D .二、填空题 (共6题;共6分)9. (1分)化简:的结果是________。
10. (1分)(2018·荆州) 如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y= 上,实数a满足a3﹣a=1,则四边形DEBF的面积是________.11. (1分)方程(x+2)(x﹣3)=x+2的解是________.12. (1分)(2016·聊城) 如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是________.13. (1分)已知,那么=________14. (1分) (2019九上·东台月考) 直角三角形斜边长为6,那么这个三角形的重心到斜边中点的距离为________.三、解答题 (共11题;共80分)15. (5分) (2015九上·阿拉善左旗期末) 计算:﹣2sin45°+(2﹣π)0﹣()﹣2 .16. (5分) (2019七下·番禺期中) 计算:(1) + +| -2|;【答案】解:,(1) - +17. (5分)(2017·广水模拟) 2x2+1=4x(配方法)18. (10分)解下列方程(1) x2+4x+3=0;(2) 3x2+10x+5=0.19. (5分)某商店9月份的利润是2500元,要使11月的利润达到3600元,平均每月增长的百分率是多少?20. (5分) (2018九上·顺义期末) 已知:如图,在△ABC的中,AD是角平分线,E是AD上一点,且AB :AC = AE :AD.求证:BE=BD.21. (5分)我们在学习三角形相似时,往往是添加平行线构造相似三角形的基本图形.有一学生根据这一理论猜想三角形内角平分线有这样一个性质:如图,在△ABC中,AD平分∠BAC,则=.如果你认为这个猜想是正确的,请写出一个完整的推理过程.22. (15分) (2015九上·宁海月考) 网格中每个小正方形的边长都是1.(1)将图①中的格点三角形ABC平移,使点A平移至点A`,画出平移后的三角形;(2)在图②中画一个格点三角形DEF,使△DEF∽△ABC,且相似比为2∶1;(3)在图③中画一个格点三角形PQR,使△PQR∽△ABC,且相似比为∶1.23. (10分) (2015八下·嵊州期中) 关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1 , x2 .(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.24. (5分)如图,已知在四边形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3.在线段AB上是否存在一点P,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似?若不存在,请说明理由;若存在,这样的点P有几个?25. (10分) (2016八上·富宁期中) 某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共11题;共80分)15-1、16-1、17-1、18-1、18-2、19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、。
九年级(上)期中数学试卷一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和12.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=06.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.48.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.914.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣216.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是,顶点坐标.三、解答题20.解方程:x2﹣2x=x﹣2.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.九年级(上)期中数学试卷参考答案与试题解析一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和1【考点】一元二次方程的一般形式.【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案.【解答】解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选B.2.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)【考点】二次函数的性质.【分析】根据顶点坐标公式,可得答案.【解答】解:y=x2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x2﹣2x+2的顶点坐标是(1,1).故选:A.3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°【考点】旋转的性质.【分析】先根据题意画出图形,利用旋转的性质得出OA=OA1,OB=OB1,AB=A1B1,那么根据SSS证明长△OAB≌△OA1B1,得到∠OAB=∠OA1B1,由等角的补角相等得出∠OAM=∠OA1M.设A1M与OA交于点D,在△OA1D与△MAD中,根据三角形内角和定理即可求出∠M=∠A1OD=50°.【解答】解:如图,△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则∠A1OA=50°,OA=OA1,OB=OB1,AB=A1B1.设直线AB与直线A1B1交于点M.由SSS易得△OAB≌△OA1B1,∴∠OAB=∠OA1B1,∴∠OAM=∠OA1M,设A1M与OA交于点D,在△OA1D与△MAD中,∵∠DAM=∠DA1O,∠ODA1=∠MDA,∴∠M=∠A1OD=50°.故选B.4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±【考点】解一元二次方程﹣配方法.【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案.【解答】解:∵x2+6x+4=0,∴x2+6x=﹣4,∴x2+6x+9=5,即(x+3)2=5.故选:C.5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=0【考点】根的判别式.【分析】分别求出各个选项中一元二次方程根的判别式,进而作出判断.【解答】解:A、x2﹣x﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C、2015x2+11x﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确;故选D.6.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)【考点】关于原点对称的点的坐标.【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3),故选:C.7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.8.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF【考点】旋转的性质.【分析】旋转后任意一对对应点与旋转中心的连线所成的角都是旋转角.【解答】解:∵点B与点E是一对对应点,点C与点F是一对对应点.∴旋转角为∠BAE或∠CAF.故选:A.9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等【考点】旋转的性质.【分析】根据旋转的性质对各选项进行判断.【解答】解:A、旋转不改变图形的大小和形状,所以A选项错误;B、旋转中,图形的每个点移动的距离不一定相同,所以B选项错误;C、经过旋转,图形的对应线段、对应角分别相等,所以C选项正确;D、经过旋转,图形的对应点的连线不一定平行或相等,所以D选项错误.故选C.10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)【考点】坐标与图形变化﹣旋转.【分析】先根据旋转的性质得到点A的对应点为点D,点B的对应点为点E,再根据旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选C.11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°【考点】旋转的性质.【分析】由∠B=∠D′=90°,可知:∠2+∠D′AB=180°,从而可求得∠D′AB=70°,∠α=∠DAD′=90°﹣∠D′AB.【解答】解:如图所示:∵∠B=∠D′=90°,∴∠2+∠D′AB=180°.∴∠D′AB=180°﹣∠2=180°﹣110°=70°.∵∠α=∠DAD′,∴∠α=90°﹣∠D′AB=90°﹣70°=20°.故选:B.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.9【考点】抛物线与x轴的交点.【分析】根据二次函数y=ax2+bx的图象可知,开口向下,a<0,二次函数有最大值y=3,知,一元二次方程ax2+bx+m=0有实数根,知b2﹣4am≥0,从而可以解答本题.【解答】解:∵由二次函数y=ax2+bx的图象可知,二次函数y=ax2+bx的最大值为:y=3,∴.∴.∵一元二次方程ax2+bx+m=0有实数根,∴b2﹣4am≥0.∵二次函数y=ax2+bx的图象开口向下,∴a<0.∴m≥.∴m≥﹣3.即m的最小值为﹣3.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.14.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,能与原来图形重合,故错误;B、不是中心对称图形,不能与原来图形重合,故正确;C、是中心对称图形,能与原来图形重合,故错误;D、是中心对称图形,能与原来图形重合,故错误.故选B.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣2【考点】二次函数图象上点的坐标特征.【分析】根据图象开口向下可知a<0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.【解答】解:由图可知,函数图象开口向下,∴a<0,又∵函数图象经过坐标原点(0,0),∴a2﹣2=0,解得a1=(舍去),a2=﹣.故选C.16.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数图象与系数的关系.【分析】只需运用顶点坐标公式求出顶点坐标,然后根据b<0就可确定顶点所在的象限.【解答】解:二次函数y=x2﹣bx﹣1的图象的顶点为(﹣,),即(,),∵b<0,∴<0,<0,∴(,)在第三象限.故选C.二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是﹣2.【考点】一元二次方程的一般形式.【分析】根据题意可得m2﹣4=0,且m﹣2≠0,再解即可.【解答】解:由题意得:m2﹣4=0,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是直线x=1,顶点坐标(1,3).【考点】二次函数的性质.【分析】把抛物线解析式化为顶点式可求得答案.【解答】解:∵y=﹣x2+2x+2=﹣(x﹣1)2+3,∴抛物线对称轴为x=1,顶点坐标为(1,3),故答案为:直线x=1;(1,3).三、解答题20.解方程:x2﹣2x=x﹣2.【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.【考点】抛物线与x轴的交点;二次函数的最值.【分析】(1)先计算判别式的值得到△=m2﹣4m+8,然后配方得△=(m﹣2)2+4,利用非负数的性质得△>0,于是根据抛物线与x轴的交点问题即可得到结论;(2)根据二次函数的最值问题得到=﹣,解方程得m1=1,m2=3,然后把m的值分别代入原解析式即可.【解答】(1)证明:y=x2﹣mx+m﹣2,△=(﹣m)2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)=﹣,整理得m2﹣4m+3=0,解得m1=1,m2=3,当m=1时,函数解析式为y=x2﹣x﹣1;当m=3时,函数解析式为y=x2﹣3x+1.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.【考点】旋转的性质.【分析】①将正方形绕顶点B旋转,故旋转中心为B点;②由正方形的性质可知∠ABD=45°,由旋转角为45°可知∠ABA′=45°,从而可知点B、A′、D三点在一条直线上,先利用勾股定理求得BD的长,从而可求得A′D的长,在Rt△A′DF中利用勾股定理可求得DF的长度.【解答】解:①旋转中心为B点.②如图所示:∵旋转角为45°,∴∠ABA′=45°.∵四边形ABCD为正方形,∴∠ABD=45°,∠A′DF=45°.∴∠ABA′=∠ABD.∴点B、A′、D三点在一条直线上.在Rt△ABD中,BD===2.∵A′D=BD﹣BA′,∴A′D=2﹣2.在Rt△A′DF中,DF==4﹣2.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.【考点】二次函数的三种形式.【分析】(1)运用配方法把一般式化为顶点式,根据二次函数的性质求出对称轴和顶点坐标;(2)根据题意得到一元二次方程,解方程得到答案.【解答】解:(1)∵y=﹣0.5x2+4x﹣3.5,∴y=﹣0.5(x﹣4)2+4.5,对称轴是直线x=4,顶点坐标为(4,4.5);(2)﹣0.5x2+4x﹣3.5=0,解得,x1=7,x2=1,则函数图象与x轴的交点坐标是(7,0)、(1,0).24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?【考点】二次函数的应用.【分析】根据题意列出二次函数,将函数化简为顶点式,便可知当x=14时,所获得的利润最大.【解答】解:设销售单价定为x元(x≥10),每天所获利润为y元,则y=[100﹣10(x﹣10)]•(x﹣8)=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360所以将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程﹣因式分解法;根与系数的关系.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.【考点】二次函数的性质.【分析】(1)由当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,可知m+3<0,进一步求得m的取值范围即可;(2)二次函数有最小值,说明抛物线开口向上,即2m﹣1>0,进一步求得m 的取值范围即可;(3)两个抛物线的形状相同,说明二次项系数相同,即m+2=﹣,求得m的数值即可.【解答】解:(1)∵函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x <0时,y随x的增大而增大,∴m+3<0,解得m<﹣3;(2)∵函数y=(2m﹣1)x2有最小值,∴2m﹣1>0,解得:m>;(3)∵抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同,∴m+2=﹣,解得:m=﹣.2017年3月1日。
2018年山东临沂中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)(2018•临沂)在实数﹣3,﹣1,0,1中,最小的数是( )A .﹣3B .﹣1C .0D .12.(3分)(2018•临沂)自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )A .1.1×103人B .1.1×107人C .1.1×108人D .11×106人3.(3分)(2018•临沂)如图,AB ∥CD ,∠D=42°,∠CBA=64°,则∠CBD 的度数是( )A .42°B .64°C .74°D .106°4.(3分)(2018•临沂)一元二次方程y 2﹣y ﹣34=0配方后可化为( ) A .(y +12)2=1 B .(y ﹣12)2=1 C .(y +12)2=34 D .(y ﹣12)2=345.(3分)(2018•临沂)不等式组{1−2x <3x+12≤2的正整数解的个数是( ) A .5 B .4 C .3 D .26.(3分)(2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m7.(3分)(2018•临沂)如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.(3分)(2018•临沂)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .13B .14C .16D .199.(3分)(2018•临沂)如表是某公司员工月收入的资料. 月收入/元45000 18000 10000 5500 5000 3400 3300 1000 人数 1 1 1 3 6 1 11 1 能够反映该公司全体员工月收入水平的统计量是( )A .平均数和众数B .平均数和中位数C .中位数和众数D .平均数和方差10.(3分)(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .5000x+1=5000(1−20%)xB .5000x+1=5000(1+20%)xC .5000x−1=5000(1−20%)xD .5000x−1=5000(1+20%)x11.(3分)(2018•临沂)如图,∠ACB=90°,AC=BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .32B .2C .2√2D .√1012.(3分)(2018•临沂)如图,正比例函y 1=k 1x 与反比例函数y 2=k 2x 的图象相交于A 、B 两点,其中点A 的横坐标为1.当y 1<y 2时,x 的取值范围是( )A .x <﹣1或x >1B .﹣1<x <0或x >1C .﹣1<x <0或0<x <1D .x <﹣1或0<x <l13.(3分)(2018•临沂)如图,点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC=BD ,则四边形EFGH 为矩形;②若AC ⊥BD ,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .414.(3分)(2018•临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)(2018•襄阳)计算:|1﹣√2|= .16.(3分)(2018•临沂)已知m +n=mn ,则(m ﹣1)(n ﹣1)= .17.(3分)(2018•临沂)如图,在▱ABCD 中,AB=10,AD=6,AC ⊥BC .则BD= .18.(3分)(2018•临沂)如图.在△ABC 中,∠A=60°,BC=5cm .能够将△ABC 完全覆盖的最小圆形纸片的直径是 cm .19.(3分)(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7⋅为例进行说明:设0.7⋅=x ,由0.7⋅=0.7777…可知,l0x=7.7777…,所以l0x ﹣x=7,解方程,得x=79,于是.得0.7⋅=79.将0.36⋅⋅写成分数的形式是 .三、解答题(本大题共7小题,共63分)20.(7分)(2018•临沂)计算:(x+2x2−2x﹣x−1x2−4x+4)÷x−4x.21.(7分)(2018•临沂)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17317≤x<2222≤x<2727≤x<322(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.22.(7分)(2018•临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(√3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m 的圆形门?23.(9分)(2018•临沂)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=√3,BE=1.求阴影部分的面积.24.(9分)(2018•临沂)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.25.(11分)(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.26.(13分)(2018•临沂)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE . ①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.2018年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
2017-2018学年山东省临沂市河东区九年级(上)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)3.(3分)已知m是方程x2﹣x﹣=0的一个根,则m2﹣m的值是()A.0 B.1 C.D.﹣4.(3分)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位5.(3分)如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A.B.3 C.2 D.46.(3分)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128 B.168(1﹣x)2=128 C.168(1﹣2x)=128 D.168(1﹣x2)=128 7.(3分)若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=1 B.x=2 C.x=3 D.x=48.(3分)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O 的位置关系是()A.相交B.相切C.相离D.无法判断9.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠010.(3分)边长为a的正六边形的内切圆的半径为()A.2a B.a C.D.11.(3分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.212.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.120°B.140°C.150° D.160°13.(3分)如图:在△ABC中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC绕点C逆时针旋转至△EFC,使点E恰巧落在AB上,连接BF,则BF的长度为()A.B.2 C.1 D.14.(3分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),下列结论:①b2>4ac;②ax2+bx+c≥﹣6;③若点(﹣2,m),(﹣5,n)在抛物线上,则m>n;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)点A(﹣2,3)与点B(a,b)关于坐标原点对称,则b a的值为.16.(3分)已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离为.17.(3分)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1).则代数式1﹣a﹣b的值为.18.(3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围.19.(3分)该试题已被管理员删除三、简答题(本大题共6小题,共63分)20.(10分)用适当的方法解下列方程①x2﹣4x﹣3=0;②(x+3)2=﹣2(x+3)21.(9分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为;(3)在(2)中的旋转过程中,线段OA扫过的图形的面积.22.(9分)已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE ⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.23.(10分)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?24.(12分)边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)25.(13分)如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N点,若点M 的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,当m为何值时,△BNC的面积最大.2017-2018学年山东省临沂市河东区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)ADCB1.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.2.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.3.(3分)已知m是方程x2﹣x﹣=0的一个根,则m2﹣m的值是()A.0 B.1 C.D.﹣【解答】解:把m代入方程x2﹣x﹣=0,得到m2﹣m﹣=0,所以m2﹣m=.故选C.4.(3分)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.5.(3分)如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A.B.3 C.2 D.4【解答】解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.6.(3分)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128 B.168(1﹣x)2=128 C.168(1﹣2x)=128 D.168(1﹣x2)=128【解答】解:根据题意得:168(1﹣x)2=128,故选B.7.(3分)若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=1 B.x=2 C.x=3 D.x=4【解答】解:因为点(2,5)、(4,5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;故选C.8.(3分)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O 的位置关系是()A.相交B.相切C.相离D.无法判断【解答】解:设圆的半径为r,点O到直线l的距离为d,∵d=5,r=6,∴d<r,∴直线l与圆相交.故选:A.9.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0【解答】解:∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0,解得:k>﹣1且k≠0.故选D10.(3分)边长为a的正六边形的内切圆的半径为()A.2a B.a C.D.【解答】解:边长为a的正六边形可以分成六个边长为a的正三角形,而正多边形的内切圆的半径即为每个边长为a的正三角形的高,所以正多边形的内切圆的半径等于.故选C.11.(3分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2【解答】解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.12.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.120°B.140°C.150° D.160°【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:B.13.(3分)如图:在△ABC中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC绕点C逆时针旋转至△EFC,使点E恰巧落在AB上,连接BF,则BF的长度为()A.B.2 C.1 D.【解答】解:∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,∴A′C=AC=1,AB=2,BC=,∵∠A=60°,∴△AA′C是等边三角形,∴AA′=AB=1,∴A′C=A′B,∴∠A′CB=∠A′BC=30°,∵△A′FC是△ABC旋转而成,∴∠A′CF=90°,BC=FC,∴∠B′CB=90°﹣30°=60°,∴△BCF是等边三角形,∴BF=BC=.故选A.14.(3分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),下列结论:①b2>4ac;②ax2+bx+c≥﹣6;③若点(﹣2,m),(﹣5,n)在抛物线上,则m>n;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,即b2>4ac,所以①正确;∵抛物线的顶点坐标为(﹣3,﹣6),即x=﹣3时,函数有最小值,∴ax2+bx+c≥﹣6,所以②正确;∵抛物线的对称轴为直线x=﹣3,而点(﹣2,m),(﹣5,n)在抛物线上,∴m<n,所以③错误;∵抛物线y=ax2+bx+c经过点(﹣1,﹣4),而抛物线的对称轴为直线x=﹣3,∴点(﹣1,﹣4)关于直线x=﹣3的对称点(﹣5,﹣4)在抛物线上,∴关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,所以④正确.故选C.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)点A(﹣2,3)与点B(a,b)关于坐标原点对称,则b a的值为9.【解答】解:由题意,得a=2,b=﹣3,b a=(﹣3)2=9,故答案为:9.16.(3分)已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离为1cm 或7cm.【解答】解:如图所示,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE﹣OF=4﹣3=1cm;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,反向延长OE交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE+OF=4+3=7cm.故答案为:1cm或7cm.17.(3分)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1).则代数式1﹣a﹣b的值为﹣1.【解答】解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故答案为﹣1.18.(3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围b≥﹣8.【解答】解:由题意得:平移后得到的二次函数的解析式为:y=(x﹣3)2﹣1,则,(x﹣3)2﹣1=2x+b,x2﹣8x+8﹣b=0,△=(﹣8)2﹣4×1×(8﹣b)≥0,b≥﹣8,故答案是:b≥﹣8.19.(3分)该试题已被管理员删除三、简答题(本大题共6小题,共63分)20.(10分)用适当的方法解下列方程①x2﹣4x﹣3=0;②(x+3)2=﹣2(x+3)【解答】解:(1)x2﹣4x﹣3=0,(x﹣2)2=7,x﹣2=±,x1=2﹣,x2=2+;(2)(x+3)2=﹣2(x+3),(x+3)(x+5)=0,x+3=0,x+5=0,x1=﹣3,x2=﹣5.21.(9分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为(1,0);(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为(﹣2,3);(3)在(2)中的旋转过程中,线段OA扫过的图形的面积.【解答】解:(1)由题意,得B1(1,3﹣3),∴B1(1,0).故答案为:(1,0);(2)如图,①,过点O作OA的垂线,在上面取一点A2使OA2=OA,②,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,∴△A2OB2是所求作的图形.由作图得A2(﹣2,3).故答案为:(﹣2,3);(3)由勾股定理,得OA=,∴线段OA扫过的图形的面积为:=.故答案为:.22.(9分)已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE ⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.【解答】证明:(1)连接CD,∵BC为⊙O的直径,∴CD⊥AB.∵AC=BC,∴AD=BD.(2)连接OD;∵AD=BD,OB=OC,∴OD是△BCA的中位线,∴OD∥AC.∵DE⊥AC,∴DF⊥OD.∵OD为半径,∴DF是⊙O的切线.23.(10分)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?【解答】解:(1)由题意可得:w=(x﹣20)[250﹣10(x﹣25)]=﹣10(x﹣20)(x﹣50)=﹣10x2+700x﹣10000;(2)∵w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∴当x=35时,w取到最大值2250,即销售单价为35元时,每天销售利润最大,最大利润为2250元.24.(12分)边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)【解答】解:(1)当CC'=时,四边形MCND'是菱形.理由:由平移的性质得,CD∥C'D',DE∥D'E',∵△ABC是等边三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°﹣∠ACB=120°,∵CN是∠ACC'的角平分线,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四边形MCND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四边形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',当α=180°时,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',综上可知:AD'=BE'.②如图连接CP,在△ACP中,由三角形三边关系得,AP<AC+CP,∴当点A,C,P三点共线时,AP最大,如图1,在△D'CE'中,由P为D'E的中点,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'==2.25.(13分)如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N点,若点M 的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,当m为何值时,△BNC的面积最大.【解答】解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图,由(2)知,MN=﹣m2+3m(0<m<3).∴S△BNC =S△MNC+S△MNB=MN(OD+DB)=MN•OB,=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.。
山东省临沂市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共8分)1. (1分) (2019七上·北京期中) 下列等式变形不一定正确的是()A . 若,则B . 若,则C . 若,则D . 若,则2. (1分)四边形ABCD相似四边形A'B'C'D',且AB:A'B'=1:2,已知BC=8,则B'C'的长是A . 4B . 16C . 24D . 643. (1分)下列函数中①y=3x+1;②y=4x2﹣3x;③y=+x2;④y=5﹣2x2 ,是二次函数的有()A . ②B .②③④C .②③D .②④B . ②③④C . ②③D . ②④4. (1分)(2016·兰州) 已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A .B .C .D .5. (1分)(2016·铜仁) 如图,在同一直角坐标系中,函数y= 与y=kx+k2的大致图象是()A .B .C .D .6. (1分)已知反比例函数y=的图象如图所示,则一次函数y=kx+k的图象经过()A . 第一、二、三象限B . 第二、三、四象限C . 第一、二、四象限D . 第一、三、四象限7. (1分)(2013·资阳) 如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()A . ﹣4<P<0B . ﹣4<P<﹣2C . ﹣2<P<0D . ﹣1<P<08. (1分) (2018九上·重庆月考) 若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A .B .C .D .二、填空题 (共8题;共8分)9. (1分)(2017·东海模拟) 如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x ﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是________.10. (1分) (2019八上·海淀期中) 对于任意实数,规定 =ad-bc.则当2x2-6x+2=0时,=________.11. (1分)在平面直角坐标系中,将解析式为y=2x2的图象沿着x轴方向向左平移4个单位,再沿着y轴方向向下平移3个单位,此时图象的解析式为________.12. (1分) (2016九上·重庆期中) 已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=________.13. (1分) (2019九上·瑞安月考) 已知两个相似三角形△ABC与△DEF的相似比为3,则△ABC与△DEF的面积之比为________。
2017—2018学年度上学期期中学业水平质量调研试题九年级数学2017.11(时间:120分钟 总分120分)注意事项:1.答题前,请先将自己的姓名、考号、座号在答题纸的相应位置填写清楚;2.选择题答案用2B 铅笔涂在答题纸的答题卡上,非选择题用0.5mm 黑色中性笔直接写在答题纸相应题号上.一、选择题(本大题共14小题,每小题3分,共42分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )2.抛物线2234y x=-+()顶点坐标是( ) A .(3,4) B .(﹣3,4) C .(3,﹣4) D .(2,4)3.已知m 是方程20x x -的一个根,则2m m -的值是( )4.抛物线223y x =+()-可以由抛物线2y x =平移得到,则下列平移过程正确的( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5.如图,⊙O 是△ABC 的外接圆,∠AOB=60°,AB=AC=2,则弦BC 的长为( )A B .3C .D .46.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同, 每次降价的百分率为x ,根据题意列方程得( )A .168(1+x)2=128B .168(1﹣x)2=128C .168(1﹣2x)=128D .168(1﹣x 2)=1287.若(2,5),(4,5)是抛物线y =ax 2+bx +c 上的两个点,则抛物线的对称轴是( )A .x =1B .x =2C .x =3D .x =48.已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法判断9.若关于x 的一元二次方程2210kx x =--有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k ≠ 0C .k ≥﹣1且k ≠ 0D .k >﹣1且k ≠ 0 10.边长为a 的正六边形的内切圆的半径为( )A .2aB .a CD .12a 11.如图,⊙O 的半径OD⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为( )A..8 C. D.12. 如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于( )A. 120°B. 140°C. 150°D. 160°13.如图,在△ABC 中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC 绕点C 逆时针旋转至△EFC,使点E 恰巧落在AB 上,连接BF ,则BF 的长度为( )AB .2C .1 D14. 如图,已知顶点为(-3,-6)的抛物线2y ax bx c =++经过点(-1,-4),下列结论:①b 2>4ac ;②ax 2+bx+c≥-6;③若点(-2,m ),(-5,n )在抛物线上,则m >n ;④关于x 的一元二次方程24ax bx c ++=-的两根为﹣5和﹣1,其中正确的有( )A .1个B .2个C .3个D .4个3分,共15分)15.(1)点A (-2,3)与点B (a , b )关于坐标原点对称,则a b 的值为 .(2)已知⊙O 的半径为5cm ,弦AB ∥CD ,AB=8cm ,CD=6cm ,则AB 和CD 的距离为 .(3)二次函数210y ax bx a =+≠-()的图象经过点(1, 1),则代数式1a b --的值 为 .(4)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数2y x b =+的图象有公共点,则实数b 的取值范围 .(5)如图,⊙O 的半径为2,C 1是函数22y x =的图象,C 2是函数22y x =-的图象,则图中阴影部分的面积为 .三、简答题(本大题共6小题,共63分)16.(本题10分)用适当的方法解下列方程①2430x x =--; ②2323x x +=+()-()17.(本题9分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB 的顶点均在格点上,点O 为原点,点A 、B 的坐标分别是A (3,2)、B (1,3).(1)将△AOB 向下平移3个单位后得到△A 1O 1B 1,则点B 1的坐标为 ;(2)将△AOB 绕点O 逆时针旋转90°后得到△A 2OB 2,请在图中作出△A 2OB 2,并求出这时点A 2的坐标为 ;(3)在(2)中的旋转过程中,线段OA 扫过的图形的面积为 .18.(本题9分)已知:如图,△ABC 中,AC=BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE⊥AC 于点E ,交BC 的延长线于点F .求证:(1)AD=BD ;(2)DF 是⊙O 的切线.19. (本题10分)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价为25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少时,该文具每天的销售利润最大?最大利润是多少?20.(本题12分)边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=(1)如图20-1,将△DEC沿射线BC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图20-2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边 D′E′的中点为P .①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)21. (本题13分)如图,已知抛物线经过点A (-1,0),B (3,0),C(0,3)三点。
第1页(共20页) 2017-2018学年山东省临沂市兰山区九年级(上)期中数学试卷 一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)下列方程中,关于x的一元二次方程是( ) A.ax2+bx+c=0 B.2x2﹣y﹣1=0 C.x2﹣x(x+7)=0 D.﹣2x+x2﹣3=0 2.(3分)一元二次方程x(x﹣1)=0的解是( ) A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=1 3.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( ) A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9 4.(3分)若关于x的方程kx2﹣6x+9=0有两个实数根,则k的取值范围( ) A.k≠0 B.k≤1且k≠0 C.k≤1 D.k≥1 5.(3分)下列二次函数的图象中,开口最大的是( ) A.y=x2 B.y=2x2 C.y=x2 D.y=﹣x2
6.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是( ) A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182 C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182 7.(3分)二次函数y=x2+ax+b,若a+b=0,则其图象经过点( ) A.(﹣1,1) B.(1,﹣1) C.(1,1) D.(﹣1,﹣1) 8.(3分)抛物线y=﹣x2+2kx+2与x轴交点的个数为( ) A.0个 B.1个 C.2个 D.以上都不对 9.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是( )
A. B. C. D. 10.(3分)在半径为5cm的⊙O中,若弦AB与弦CD平行,且AB=6cm,CD=8cm,则AB与CD之间的距离为( ) 第2页(共20页)
A.1cm B.7cm C.8cm D.1cm或7cm 11.(3分)矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( ) A.点B、C均在圆P外 B.点B在圆P外、点C在圆P内 C.点B在圆P内、点C在圆P外 D.点B、C均在圆P内 12.(3分)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.若∠DAB=70°,则∠DCA的度数为( )
A.55° B.45° C.35° D.70° 二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)一元二次方程x2+2x=﹣1的根是 . 14.(3分)二次函数y=的顶点坐标是 . 15.(3分)试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为 . 16.(3分)如图,△ABC是等边三角形,D是BC上一点,点△ABD经过旋转后到达△ACE的位置,则旋转中心是点 ,逆时针旋转了 度,BD= .
17.(3分)如图所示,AB是⊙O的一条弦,∠ACB=30°,AB=6,则⊙O的直径为 . 第3页(共20页)
18.(3分)在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:s=v0t﹣gt2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面 m.
三、解答题(本大题共5小题,共46分) 19.(10分)选择适当的方法解下列一元二次方程. (1)x2﹣2x+1=25; (2)3x(x+1)=3x+3. 20.(9分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度) (1)画出△ABC向下平移4个单位,再向左平移1个单位得到的△A1B1C1,并直接写出C1点的坐标; (2)作出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出C2
点的坐标;
(3)作出△ABC关于原点O成中心对称的△A3B3C3,并直接写出B3的坐标.
21.(8分)已知抛物线与y轴交点C的纵坐标为﹣,且过点A(1,﹣6)和点B(﹣1,0). (1)求该抛物线的表达式及顶点D的坐标; 第4页(共20页)
(2)写出点B关于抛物线对称轴的对称点E的坐标. 22.(9分)如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE交切线DE于点C,连接AC. (1)求证:AC是⊙O的切线; (2)若BD=OB=4,求弦AE的长.
23.(10分)某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥50),一周的销售量为y件. (1)写出y与x的函数关系式.(标明x的取值范围) (2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大? (3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为多少? 第5页(共20页)
2017-2018学年山东省临沂市兰山区九年级(上)期中数学试卷 参考答案与试题解析
一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)下列方程中,关于x的一元二次方程是( ) A.ax2+bx+c=0 B.2x2﹣y﹣1=0 C.x2﹣x(x+7)=0 D.﹣2x+x2﹣3=0 【解答】解:A、a=0时,不是一元二次方程,故此选项错误; B、不是一元二次方程,故此选项错误; C、不是一元二次方程,故此选项错误; D、是一元二次方程,故此选项正确; 故选:D.
2.(3分)一元二次方程x(x﹣1)=0的解是( ) A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=1 【解答】解:方程x(x﹣1)=0, 可得x=0或x﹣1=0, 解得:x=0或x=1. 故选:D.
3.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( ) A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9 【解答】解:由原方程移项,得 x2﹣2x=5, 方程的两边同时加上一次项系数﹣2的一半的平方1,得 x2﹣2x+1=6 ∴(x﹣1)2=6. 故选:C. 第6页(共20页)
4.(3分)若关于x的方程kx2﹣6x+9=0有两个实数根,则k的取值范围( ) A.k≠0 B.k≤1且k≠0 C.k≤1 D.k≥1 【解答】解:∵关于x的方程kx2﹣6x+9=0有两个实数根,
∴, 解得:k≤1且k≠0. 故选:B.
5.(3分)下列二次函数的图象中,开口最大的是( ) A.y=x2 B.y=2x2 C.y=x2 D.y=﹣x2
【解答】解: 在y=ax2(a≠0)中,当|a|的绝对值越大时其开口越小, ∵||<|﹣1|=|1|<|2|,
∴二次函数y=x2的开口最大, 故选:C.
6.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是( ) A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182 C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182 【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2, ∴50+50(1+x)+50(1+x)2=182. 故选:B.
7.(3分)二次函数y=x2+ax+b,若a+b=0,则其图象经过点( ) A.(﹣1,1) B.(1,﹣1) C.(1,1) D.(﹣1,﹣1) 【解答】解:∵当x=1时,y=a+b+1, 而a+b=0, ∴x=1时,y=1, 第7页(共20页)
∴二次函数y=x2+ax+b的图象经过点(1,1). 8.(3分)抛物线y=﹣x2+2kx+2与x轴交点的个数为( ) A.0个 B.1个 C.2个 D.以上都不对 【解答】解:当与x轴相交时,函数值为0. 0=﹣x2+2kx+2, △=b2﹣4ac=4k2+8>0, ∴方程有2个不相等的实数根, ∴抛物线y=﹣x2+2kx+2与x轴交点的个数为2个, 故选:C.
9.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是( )
A. B. C. D. 【解答】解:∵y=ax+b的图象经过二、三、四象限, ∴a<0,b<0, ∴抛物线开口方向向下, ∵抛物线对称轴为直线x=﹣<0, ∴对称轴在y轴的左边, 纵观各选项,只有C选项符合. 故选:C.
10.(3分)在半径为5cm的⊙O中,若弦AB与弦CD平行,且AB=6cm,CD=8cm,则AB与CD之间的距离为( ) A.1cm B.7cm C.8cm D.1cm或7cm 【解答】解:过点O作OE⊥AB于E,交CD于F, ∵AB∥CD, ∴OF⊥CD,