弹性力学试题参考答案
- 格式:doc
- 大小:660.00 KB
- 文档页数:12
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
1 —1.选择题a. 下列材料中,_D_属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
b. 关于弹性力学的正确认识是_A_。
A•计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
c. 弹性力学与材料力学的主要不同之处在于_B_。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
d. 所谓完全弹性体”是指_B_。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
2—1.选择题a. 所谓应力状态”是指_B_。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。
2—2.梯形横截面墙体完全置于水中,如图所示。
已知水的比重为,试写出墙体横截面边界AA', AB, BB'的面力边界条件。
在AA1,叭=一砂卫*刁0,在AB ±3 aaj十z趴豹=-jy sin. a、在2—3.作用均匀分布载荷q的矩形横截面简支梁,如图所示。
根据材料力学分析结果,该梁er, = —y r^.=—横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。
由此,只有当仃卩确罡.材料力学中所得轲的解答才能满足平衡方程和边界 条件’即芮満足弹性力学基本方程的解. 2 - 4.单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。
试~ a x cos os - sin a,~ cos tz - tr^ sin tz y^y sin a 0 cos /? - sm 0=6 厂期cos 』一 cr 尸血厅=0.2- 5.已知球体的半径为r ,材料的密度为 1,球体在密度为 i ( 1 > 1)的液体中漂浮,如沉入複体割分 yj 面力F = -p 3g (z 0 - z ) 1边界条件为舌匕一卩”严严+ @ 一厂)% = 0-X% 十丁〔巧-51) +(z-f )r v = 0.肚迄+严疋*("尸)(务一耳)a 也来沉人液郎中的部分(珂 < 立< 2尸),边畀条件为开T ■*■尸欣斗仗一町% = °, f 十十住-尸打中=①6 +y^ 十仗“门口丁 550*写出楔形体的边界条件。
弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。
2. 在弹性碰撞中,两个物体的速度满足_________定律。
3. 弹簧的弹簧常数_________,表示弹簧的_________。
4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。
5. 弹性模量是衡量材料_________的物理量。
四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。
(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。
求物体滑到斜面底部时的速度。
(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。
它们从静止开始相互碰撞,求碰撞后A和B的速度。
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中:平衡微分方程, 应力边界条件。
2.一组可能的应力分量应满足:平衡微分方程,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中,的物理意义是杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M.4.平面问题的应力函数解法中,Airy应力函数在边界上值的物理意义为边界上某一点(基准点)到任一点外力的矩。
5.弹性力学平衡微分方程、几何方程的张量表示为:,。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。
题二(2)图(a)(b)3.图示矩形弹性薄板,沿对角线方向作用一对拉力P,板的几何尺寸如图,材料的弹性模量E、泊松比 已知.试求薄板面积的改变量.题二(3)图设当各边界受均布压力q时,两力作用点的相对位移为。
由得,设板在力P作用下的面积改变为,由功的互等定理有:将代入得:显然,与板的形状无关,仅与E、、l有关。
4.图示曲杆,在边界上作用有均布拉应力q,在自由端作用有水平集中力P.试写出其边界条件(除固定端外)。
题二(4)图(1);(2)(3)5.试简述拉甫(Love)位移函数法、伽辽金(Galerkin)位移函数法求解空间弹性力学问题的基本思想,并指出各自的适用性Love、Galerkin位移函数法求解空间弹性力学问题的基本思想:(1)变求多个位移函数或为求一些特殊函数,如调和函数、重调和函数。
(2)变求多个函数为求单个函数(特殊函数)。
弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。
A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。
A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。
答案:内2. 弹性力学的基本假设之一是______连续性假设。
答案:材料3. 弹性力学中,应变的量纲是______。
答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。
答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。
答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。
2. 解释弹性力学中的杨氏模量和剪切模量。
答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。
3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。
四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。
弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中的胡克定律描述的是:A. 应力与位移的关系B. 应力与应变的关系C. 应变与位移的关系D. 位移与力的关系2. 以下哪个不是弹性力学的基本假设?A. 连续性假设B. 均匀性假设C. 各向同性假设D. 各向异性假设3. 弹性模量和泊松比的关系是:A. E = 2G(1+ν)B. E = 3K(1-2ν)C. E = 3K(1+ν)D. E = 2G(1-ν)4. 以下哪种材料可以看作是各向同性材料?A. 木材B. 钢筋混凝土C. 单晶硅D. 多晶硅5. 应力集中现象通常发生在:A. 均匀受力区域B. 材料的中间区域C. 材料的边缘或孔洞附近D. 材料的内部二、简答题(每题10分,共30分)6. 简述平面应力和平面应变的区别。
7. 解释什么是圣维南原理,并简述其应用。
8. 描述弹性力学中的主应力和主应变的概念及其意义。
三、计算题(每题25分,共50分)9. 一个长方体材料块,尺寸为L×W×H,受到均匀压力p作用于其顶面,求其内部任意一点处的应力状态。
10. 已知某材料的弹性模量E=200 GPa,泊松比ν=0.3,求其剪切模量G。
答案一、选择题1. 答案:B(应力与应变的关系)2. 答案:D(各向异性假设)3. 答案:A(E = 2G(1+ν))4. 答案:D(多晶硅)5. 答案:C(材料的边缘或孔洞附近)二、简答题6. 答案:平面应力是指材料的一个方向(通常是厚度方向)的应力为零,而平面应变是指材料的一个方向(通常是厚度方向)的应变为零。
平面应力通常用于薄板或薄膜,而平面应变用于长厚比很大的结构。
7. 答案:圣维南原理指出,在远离力作用区域的地方,局部应力分布对整个结构的应力状态影响很小。
这个原理常用于简化复杂结构的应力分析。
8. 答案:主应力是材料内部某一点应力张量的最大值,主应变是材料内部某一点应变张量的最大值。
大学课程考试《弹性力学》作业考核试题试卷总分:100 得分:100一、单选题 (共 30 道试题,共 60 分)1.应力函数必须是()A.多项式函数B.三角函数C.重调和函数D.二元函数正确答案 :C2.在平面应力问题中(取中面作xy平面)则()A.σz=0,w=0B.σz≠0,w≠0C.σz=0,w≠0D.σz≠0,w=0正确答案 :C3.弹性力学研究()由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移A.弹性体B.刚体C.粘性体D.塑性体正确答案 :A4.在弹性力学中规定,线应变(),与正应力的正负号规定相适应。
A.伸长时为负,缩短时为负B.伸长时为正,缩短时为正C.伸长时为正,缩短时为负D.伸长时为负,缩短时为正正确答案 :C5.所谓“完全弹性体”是指()A.材料应力应变关系满足虎克定律B.材料的应力应变关系与加载时间.历史无关C.本构关系为非线性弹性关系D.应力应变关系满足线性弹性关系6.用应变分量表示的相容方程等价于()A.平衡微分方程B.几何方程C.物理方程D.几何方程和物理方程7.A.AB.BC.CD.D8.下列材料中,()属于各向同性材料。
A.竹材B.纤维增强复合材料C.玻璃钢D.沥青9.关于薄膜比拟,下列错误的是()。
A.通过薄膜比拟试验, 可求解扭转问题。
B.通过薄膜比拟, 直接求解薄壁杆件的扭转问题。
C.通过薄膜比拟, 提出扭转应力函数的假设。
D.薄膜可承受弯矩,扭矩,剪力和压力。
10.在平面应变问题中(取纵向作z轴)A.AB.BC.CD.D11.所谓“应力状态”是指A.斜截面应力矢量与横截面应力矢量不同;B.一点不同截面的应力随着截面方位变化而改变;C.3个主应力作用平面相互垂直;D.不同截面的应力不同,因此应力矢量是不可确定的。
12.下列力不是体力的是:()A.重力B.惯性力C.电磁力D.静水压力13.下面不属于边界条件的是()。
A.位移边界条件B.流量边界条件C.应力边界条件D.混合边界条件14.应力状态分析是建立在静力学基础上的,这是因为()A.没有考虑面力边界条件B.没有讨论多连域的变形C.没有涉及材料本构关系D.没有考虑材料的变形对于应力状态的影响15.将两块不同材料的金属板焊在一起,便成为一块()A.连续均匀的板B.不连续也不均匀的板C.不连续但均匀的板D.连续但不均匀的板16.应力不变量说明()A.应力状态特征方程的根是不确定的B.一点的应力分量不变C.主应力的方向不变D.应力随着截面方位改变,但是应力状态不变17.在常体力情况下,用应力函数表示的相容方程等价于()A.平衡微分方程B.几何方程C.物理关系D.平衡微分方程、几何方程和物理关系18.下列外力不属于体力的是()A.重力B.磁力C.惯性力D.静水压力19.关于差分法,下列叙述错误的是()。
弹性力学期末考试试题及答案一、选择题(每题2分,共20分)1. 下列哪种材料不具有弹性特性?A. 钢材B. 橡胶C. 水泥D. 玻璃答案:C2. 弹性力学中的胡克定律描述了什么关系?A. 应力与应变的关系B. 应力与位移的关系C. 应变与位移的关系D. 应力与应变能的关系答案:A3. 在弹性力学中,下列哪个物理量表示单位体积内的应变能?A. 应力B. 应变C. 应变能密度D. 弹性模量答案:C4. 下列哪个物理量表示材料的抗拉强度?A. 弹性模量B. 泊松比C. 屈服强度D. 抗拉强度答案:D5. 在弹性力学中,下列哪个物理量表示单位长度上的位移?A. 应变B. 位移C. 位移梯度D. 位移矢量答案:C二、填空题(每题2分,共20分)1. 胡克定律表达式为:σ = Eε,其中σ表示____,E 表示____,ε表示____。
答案:应力、弹性模量、应变2. 在三维应力状态下,应力张量的分解表达式为:σ = σ_0 + σ_1 + σ_2,其中σ_0表示____,σ_1表示____,σ_2表示____。
答案:平均应力、最大切应力、最小切应力3. 下列物理量中,表示单位体积内应变能的物理量为____。
答案:应变能密度4. 在弹性力学中,泊松比μ表示____与____的比值。
答案:横向应变、纵向应变5. 在弹性力学中,下列物理量中与应力状态无关的是____。
答案:位移三、计算题(每题20分,共60分)1. 已知一矩形截面梁,截面尺寸为10cm×20cm,受到均匀分布载荷q=10kN/m,求梁的弯曲应力σ和挠度w。
答案:σ = 5MPa,w = 0.0025m2. 一根长为2m的杆件,弹性模量E=200GPa,泊松比μ=0.3,两端受到轴向拉力F=100kN,求杆件的伸长量Δl。
答案:Δl = 0.005m3. 一圆形截面杆,直径d=10cm,受到扭矩M=2kN·m,弹性模量E=200GPa,泊松比μ=0.3,求杆件的扭转角φ。
1 / 12 《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, MdxdyD 2的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy应力函数在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:
0,ijijX ,)(21,,ijjiijuu。
二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。
题二(2)图 (a) )(),(),(222frrcybxyaxyx (b) )(),(),(33223frrdycxyybxaxyx
3.图示矩形弹性薄板,沿对角线方向作用一对拉力P,板的几何尺寸如图,材料的弹性模量E、泊松比 已知。试求薄板面积的改变量S。
题二(3)图 2 / 12
设当各边界受均布压力q时,两力作用点的相对位移为l。由qE)1(1得, )1(2222Ebaqbal 设板在力P作用下的面积改变为S,由功的互等定理有: lPSq
将l代入得: 221baPES
显然,S与板的形状无关,仅与E、、l有关。 4.图示曲杆,在br边界上作用有均布拉应力q,在自由端作用有水平集中力P。试写出其边界条件(除固定端外)。
题二(4)图 (1)0 ,brrbrrq;
(2)0 ,0arrarr (3) sin cosPdrPdrbarba 2cosbaPrdrba
5.试简述拉甫(Love)位移函数法、伽辽金(Galerkin)位移函数法求解空间弹性力学问题的基本思想,并指出各自的适用性 Love、Galerkin位移函数法求解空间弹性力学问题的基本思想: (1)变求多个位移函数),(),,(),,(yxwyxvyxu或),(),,(rurur为求一些特殊函数,如调和函数、重调和函数。 (2)变求多个函数为求单个函数(特殊函数)。 适用性:Love位移函数法适用于求解轴对称的空间问题; Galerkin位移函数法适用于求解非轴对称的空间问题。
三、计算题 1.图示半无限平面体在边界上受有两等值反向,间距为d的集中力作用,单位宽度上集中力的值为P,设间距d很小。3 / 12
试求其应力分量,并讨论所求解的适用范围。(提示:取应力函数为 BA2sin) (13分)
题三(1)图 解:d很小,PdM,可近似视为半平面体边界受一集中力偶M的情形。 将应力函数),(r代入,可求得应力分量:
2sin4112222Arrrrr; 022
r
;
)2cos2(112BArrrr
边界条件: (1)0 ,00000rrr; 0 ,000rrr
代入应力分量式,有 0)2(12BAr 或 02BA (1)
(2)取一半径为r 的半圆为脱离体,边界上受有:rr,,和M = Pd 由该脱离体的平衡,得 0222Mdrr
将r代入并积分,有 0)2cos2(12222MdrBAr
02sin22MBA 得 0MB (2)
联立式(1)、(2)求得: PdMB,2PdA
代入应力分量式,得 4 / 12
22sin2rPdr
; 0; 22sin2rPdr。
结果的适用性:由于在原点附近应用了圣维南原理,故此结果在原点附近误差较大,离原点较远处可适用。 2.图示悬臂梁,受三角形分布载荷作用,若梁的正应力x由材料力学公式给出,试由平衡微分方程求出yxy,,并检验该应力分量能否满足应力表示的相容方程。 (12分)
题三(2)图 解:(1)求横截面上正应力x 任意截面的弯矩为306xlqM,截面惯性矩为123hI,由材料力学计算公式有
yxlhqIMyx3302 (1)
(2)由平衡微分方程求xy、y
平衡微分方程: (3) 0(2) 0YyxXyxyyxxyx 其中,0,0YX。将式(1)代入式(2),有 yxlhqyxy2306
积分上式,得 )(312230xfyxlhqxy
利用边界条件:02hyxy,有 0)(4312230xfhxlhq 即 2230143)(hxlhqxf 5 / 12
)41(322230hyxlhqxy (4)
将式(4)代入式(3),有 0)41(62230yhyxlhqy 或 )41(62230hyxlhqyy
积分得 )()4133(62230xfyhyxlhqy 利用边界条件: xlqhyy02
,02hyy
得:
0)()8124(6)()8124(623330023330xfhhxlh
q
xlqxfhhxlh
q
由第二式,得 xlqxf2)(02 将其代入第一式,得 xlqxlqxlq00022 自然成立。
将)(2xf代入y的表达式,有
xlqyhyxlhqy2)413(602330 (5)
所求应力分量的结果: yxlhqIMyx3302
)41(322230hyxlhqxy (6)
xlqyhyxlhqy2)413(602330 校核梁端部的边界条件: (1)梁左端的边界(x = 0): 6 / 12
0220hhxxdy,0220hhxxydy 代入后可见:自然满足。
(2)梁右端的边界(x = l): 022233022hhlxhhlxxdyylhxqdy
2)4(30222232022lqdyhylhxqdyhhlxhhlxxy
Mlqylhlqdyylhxqydyhhhhlxhhlxx
63
22202233302223302
2
可见,所有边界条件均满足。 检验应力分量yxyx,,是否满足应力相容方程: 常体力下的应力相容方程为 0))(()(22222yxyxyx
将应力分量yxyx,,式(6)代入应力相容方程,有 xylhqxyx302212)(
,xylhqyyx302212)(
024))(()(3022222xylhqyxyxyx
显然,应力分量yxyx,,不满足应力相容方程,因而式(6)并不是该该问题的正确解。 3.一端固定,另一端弹性支承的梁,其跨度为l,抗弯刚度EI为常数,梁端支承弹簧的刚度系数为k。梁受有均匀分布载荷q作用,如图所示。试: (1)构造两种形式(多项式、三角函数)的梁挠度试函数)(xw; (2)用最小势能原理或Ritz法求其多项式形式的挠度近似解(取1项待定系数)。 (13分)
题二(3)图