随机变量及其分布试题
- 格式:doc
- 大小:96.50 KB
- 文档页数:3
第三章 多维随机变量及其分布答案 一、填空题(每空3分)1.设二维随机变量(X,Y)的联合分布函数为22213,0,0(1)(1)(1)(,)0,A x y x y x y F x y ⎧+-≥≥⎪++++=⎨⎪⎩其他,则A=_____1____. 2.若二维随机变量(X,Y)的分布函数为F(x,y)则随机点落在矩形区域[x 1《<x<x 2,y 1<y<y 2]内的概率为___ ____ _(,)(,)(,)(,)22211112F x y F x y F x y F x y -+-.3.(X,Y)的联合分布率由下表给出,则α,β应满足的条件是13αβ+=;当=α 29 ,=β 19 时X 与Y 相互独立.4.设二维随机变量的密度函数2,01,02(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他,则(1)P X Y +≥=__6572____. 5.设随机变量X,Y 同分布,X 的密度函数为23,02(,)80,x x f x y ⎧≤≤⎪=⎨⎪⎩其他,设A=(X>b )与B =(Y>b )相互独立,且3()4P A B ⋃=,则6.在区间(0,1)内随机取两个数,则事件“两数之积大于14”的概率为_ _ 31ln 444- .7. 设X 和Y 为两个随机变量,且34(0,0),(0)(0)77P X Y P X P Y ≥≥=≥=≥=,则(max{,}0)P X Y ≥=_57. 8.(1994年数学一)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量max{,}Z X Y =的分布律为 .9.(2003年数学一)设二维随机变量(),X Y 的概率密度为6,01,(,)0,x x y f x y ≤≤≤⎧=⎨⎩其它. 则{1}P x y +≤= 1/4 . 二、单项选择题(每题4分)1.下列函数可以作为二维分布函数的是( B ).A .⎩⎨⎧>+=.,0,8.0,1),(其他y x y x FB .⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt e y x F y x t s C . ⎰⎰=∞-∞---y x ts dsdt ey x F ),( D .⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x e y x F yx2.设平面区域D 由曲线1y x=及直线20,1,x y y e ===围成,二维随机变量在区域D 上服从均匀分布,则(X,Y)关于Y 的边缘密度函数在y=2处的值为(C ).A .12 B .13 C .14 D .12-3.若(X,Y)服从二维均匀分布,则( B ).A .随机变量X,Y 都服从一维均匀分布B .随机变量X,Y 不一定服从一维均匀分布C .随机变量X,Y 一定都服从一维均匀分布D .随机变量X+Y 服从一维均匀分布4.在[0,]π上均匀地任取两数X 和Y ,则{cos()0}P X Y +<=( D ).A .1B .12 C . 23 D .345.(1990年数学三)设随机变量X 和Y 相互独立,其概率分布律为则下列式子正确的是( C ).A .;X Y = .{}0;P X Y == C .{}12;P X Y ==.{} 1.P X Y ==6.(1999年数学三)设随机变量101(1,2)111424i X i -⎡⎤⎢⎥=⎢⎥⎣⎦,且满足{}1201,P X X ==则12{}P X X =等于( A )..0; .14; C .12; .1.8.(2002年数学四)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则.12()()f x f x +必为某一随机变量的分布密度;.12()()F x F x 必为某一随机变量的分布函数;C .12()()F x F x +必为某一随机变量的分布函数;.12()()f x f x 必为某一随机变量的分布密度.B D A B D A B D三、计算题(第一题20分,第二题24分)1.已知2(),(),(1,2,3),a bP X k P Y k k X Y k k===-==与相互独立. (1)确定a ,b 的值; (2)求(X,Y)的联合分布律;解:(1)由正则性()1kP X k ==∑有,612311a a a a ++=⇒= ()1kP Y k =-=∑有,3614949b b b b ++=⇒=(2)(X,Y)的联合分布律为2. 设随机变量(X,Y)的密度函数为(34),0,0(,)0,x y ke x y p x y -+⎧>>=⎨⎩其他(1)确定常数k ; (2)求(X,Y)的分布函数; (3)求(01,02)P X Y <≤<≤.解:(1)∵0(34)01x y ke dx dy ∞∞-+⎰=⎰∴400011433()()430||112yy x x e dx k e e dy k k e∞-∞∞∞---=--⎰⋅==⎰∴k=12(2)143(34)(,)1212(1)(1)1200y x yx u v F x y e dudv e e ---+==⋅--⎰⎰43(1)(1)0,0y xe e x y --=-->>∴34(1)(1),0,00,(,)x y ee x y F x y ⎧--⎪-->>⎨⎪⎩=其他(3)(01,02)(1,2)(0,0)(1,0)(0,2)P X Y F F F F <≤<≤=+--38(1)(1)e e --=--3.设随机变量X,Y 相互独立,且各自的密度函数为121,0()20,0x X e x p x x ⎧≥⎪=⎨⎪<⎩,131,0()30,0x Y e y p y y ⎧≥⎪=⎨⎪<⎩,求Z=X+Y 的密度函数 解:Z=X+Y 的密度函数()()()Z XY p z px p z x dx ∞-∞=-⎰∵()X p x 在x ≥0时有非零值,()Y p z x -在z-x ≥0即x ≤z 时有非零值 ∴()()X Y p x p z x -在0≤x ≤z 时有非零值336362000111()[]|236zzz x z x z x xzZ p z e e dx e e dx e e -------=⋅==-⎰⎰ 36(1)zz e e --=--当z<0时,()0Z p z =所以Z=X+Y 的密度函数为36(1),0()0,0z zZ e e z p z z --⎧⎪--≥=⎨⎪<⎩4.设随机变量X,Y 的联合密度函数为3412,0,0(,)0,x y e x y p x y --⎧>>=⎨⎩其他,分别求下列概率密度函数.(1) {,}M Max X Y =; (2) {,}N Min X Y =.解:(1)因为3430()(,)123x yx X p x p x y dy edy e ∞∞----∞===⎰⎰3440()(,)124x y y Y p y p x y dx e dy e ∞∞----∞===⎰⎰所以(,)()()X Y p x y p x p y =即X 与Y 独立. 所以当z<0时,()0M F z =当z ≥0时,()()(,)()()M F z P M z P X z Y z P X z P Y z =≤=≤≤=≤≤34()()(1)(1)z z X Y F z F z e e --==--所以34430,0()3(1)4(1),0M z z z z z p z e e e e z ----<⎧=⎨-+-≥⎩3470,0347,0z z zz e e e z ---<⎧=⎨+-≥⎩ (2) 当z<0时,()0N F z =当z ≥0时,()()(,)1()()N F z P N z P X z Y z P X z P Y z =>=>>=->>7z e -=所以70,0()7,0M z z p z e z -<⎧=⎨≥⎩3470,0347,0zz zz e e e z ---<⎧=⎨+-≥⎩6.设随机变量(X,Y)的联合密度函数分别为3,01,0(,)0,x x y xp x y <<<<⎧=⎨⎩其他,求X和Y 的边际密度函数.解:2()(,)33,01xX p x p x y dy xdy x x ∞-∞===<<⎰⎰1223()(,)3(1),012Y yp y p x y dx xdx y x y ∞-∞===-<<⎰⎰。
高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1. 抛掷一枚质地均匀的硬币一次,随机变量为()A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和2. 下列随机变量是离散型随机变量的是()抛5颗骰子得到的点数和;某人一天内接收到的电话次数;某地一年内下雨的天数;某机器生产零件的误差数.A.(1)(2)(3)B.(4)C.(1)(4)D.(2)(3)3. 已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④4. 下列变量中不是随机变量的是().A.某人投篮6次投中的次数B.某日上证收盘指数C.标准状态下,水在100时会沸腾D.某人早晨在车站等出租车的时5. 下列随机变量中不是离散型随机变量的是().A.掷5次硬币正面向上的次数MB.某人每天早晨在某公共汽车站等某一路车的时间TC.从标有数字1至4的4个小球中任取2个小球,这2个小球上所标的数字之和YD.将一个骰子掷3次,3次出现的点数之和X6. 下列随机变量中,不是离散型随机变量的是()A.某无线寻呼台1分钟内接到的寻呼次数XB.某水位监测站所测水位在(0, 18]这一范围内变化,该水位监测站所测水位HC.从装有1红、3黄共4个球的口袋中,取出2个球,其中黄球的个数ξD.将一个骰子掷3次,3次出现的点数和X参考答案与试题解析高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】出现正面向上的次数为0或1,是随机变量【解答】此题暂无解答2.【答案】A【考点】离散型随机变量及其分布列【解析】由离散型随机变量的定义知((1)(2)(3)均是离散型随机变量,而(4)不是,由于这个误差数几乎都是在0附近的实数,无法——列出.【解答】此题暂无解答3.【答案】C【考点】离散型随机变量及其分布列【解析】③中X的值可在某一区间内取值,不能——列出,故不是离散型随机变量【解答】此题暂无解答4.【答案】C【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】由随机变量的概念可知.标准状态下,水在100∘C时会沸腾不是随机变量【解答】此题暂无解答5.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】f】由随机变量的概念可知.某人每天早晨在某公共汽车站等某一路车的时间T不能——举出,故不是离散型随机变量【解答】此题暂无解答6.【答案】B【考点】离散型随机变量及其分布列【解析】利用离散型随机变量的定义直接求解.【解答】解:水位在(0,18]内变化,不能一一举出,故不是离散型随机变量.其余都可以一一举出,故是离散型随机变量.故选B.。
高三数学随机变量的分布列试题1.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为()A.B.C.D.【答案】D【解析】由题意得,+++=1,解得a=.于是P(<X<)=P(X=1)+P(X=2)=+=a=,故选D.2. [2014·四川模拟]在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为()A.B.C.D.【答案】C【解析】设事件A在每次试验中发生的概率为p,则事件A在4次独立重复试验中,恰好发生k 次的概率为pk=p k(1-p)4-k(k=0,1,2,3,4),∴p0=p0(1-p)4=(1-p)4,由条件知1-p=,∴(1-p)4=,∴1-p=,∴p=.∴p1=p·(1-p)3=4××()3=,故选C.3.[2014·唐山检测]2013年高考分数公布之后,一个班的3个同学都达到一本线,都填了一本志愿,设Y为被录取一本的人数,则关于随机变量Y的描述,错误的是()A.Y的取值为0,1,2,3B.P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)=1C.若每录取1人学校奖励300元给班主任,没有录取不奖励,则班主任得奖金数为300Y D.若每不录取1人学校就扣班主任300元,录取不奖励,则班主任得奖金数为-300Y【答案】D【解析】由题意知A、B正确.易知C正确.对于D,若每不录取1人学校就扣班主任300元奖金,录取不奖励,则班主任得奖金数为-300(3-Y)=300Y-900.4.设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此两球所得分数之和,求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=,V(η)=,求a∶b∶c.【答案】(1)ξ的分布列为(2)3∶2∶1【解析】(1)由已知得到:当两次摸到的球分别是红红时ξ=2,此时P(ξ=2)==;当两次摸到的球分别是黄黄、红蓝、蓝红时ξ=4时,P(ξ=4)==;当两次摸到的球分别是红黄,黄红时ξ=3时,P(ξ=3)==;当两次摸到的球分别是黄蓝,蓝黄时ξ=5时,P(ξ=5)==;当两次摸到的球分别是蓝蓝时ξ=6时,P(ξ=6)==.所以ξ的分布列为ξ23456由已知得到:η有三种取值即1,,所以η的分布列为所以,所以b=2c,a=3c,所以a∶b∶c=3∶2∶1.5.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.【答案】(1)0.5(2)0.8(3)ξ0123【解析】解:记A表示事件:进入商场的1位顾客购买甲种商品;记B表示事件:进入商场的1位顾客购买乙种商品;记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种;记D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种.(1)C=A·B+A·B,P(C)=P(A·B+A·B)=P(A·B)+P(A·B)=P(A)·P(B)+P()·P(B)=0.5×0.4+0.5×0.6=0.5.(2)D=A·B,P(D)=P(A·B)=P(A)·P(B)=0.5×0.4=0.2,P(D)=1-P(D)=0.8.(3)ξ~B(3,0.8),故ξ的分布列P(ξ=0)=0.23=0.008;P(ξ=1)=×0.8×0.22=0.096;P(ξ=2)=×0.82×0.2=0.384;P(ξ=3)=0.83=0.512.6.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X的分布列.【答案】(1)、、(2)X的分布列为【解析】(1)记“甲队以3∶0胜利”为事件A1,“甲队以3∶1胜利”为事件A2,“甲队以3∶2胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)==,P(A2)=××=,P(A3)=××=.所以,甲队以3∶0、3∶1、3∶2胜利的概率分别是、、;(2)设“乙队以3∶2胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)=××=.由题意,随机变量X的所有可能的取值为0,1,2,3,根据事件的互斥性得P(X=0)=P(A1+A2)=P(A1)+P(A2)=,P(X=1)=P(A3)=,P(X=2)=P(A)=,4P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=.故X的分布列为7.一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等).(1)求取出的小球中有相同编号的概率;(2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.【答案】(1);(2)随机变量的分布列为:346随机变量的数学期望 .【解析】(1)应用古典概型概率的计算公式,关键是利用组合知识,确定事件数;(2) 随机变量的可能取值为.计算相应概率即得随机变量的分布列为:数学期望 .试题解析:(1):设取出的小球中有相同编号的事件为,编号相同可分成一个相同和两个相同 2分4分(2) 随机变量的可能取值为:3,4,6 6分, 7分, 8分9分所以随机变量的分布列为:346所以随机变量的数学期望 . 12分【考点】古典概型,互斥事件,离散型随机变量的分布列及数学期望.8.某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的;若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金;若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其他区域,则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则参与了促销活动.(1)求顾客甲中一等奖的概率;(2)记X为顾客甲所得的奖金数,求X的分布列及其数学期望.【答案】(1)(2)【解析】(1)设事件A表示该顾客中一等奖,P(A)=×+2××=,所以该顾客中一等奖的概率是.(2)X的可能取值为20,15,10,5,0,P(X=20)=×=,P(X=15)=2××=,P(X=10)=×+2××=,P(X=5)=2××=,P(X=0)=×=.所以X的分布列为数学期望E(X)=20×+15×+10×+5×=.9.辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列.(3)求X的数学期望.【答案】(1)(2)(3)【解析】(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件E.则P(E)=1-P( )=1-P()P()P( )=1-××=.(2)由题意,得X的可能取值是,2,,3.因为P(X=)=P()=,P(X=2)=P(A )+P(B)+P(C )=,P(X=)=P(AB)+P(A C)+P( B C)==,P(X=3)=P(ABC)=,所以X的分布列为:(3)由(2)知E(X)=×+2×+×+3×==.10.随机变量的分布列如右:其中成等差数列,若,则的值是.【答案】.【解析】由题意,则.【考点】随机变量的期望和方差.11.一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为、,记.(Ⅰ)求取最大值的概率;(Ⅱ)求的分布列及数学期望.【答案】(Ⅰ);(Ⅱ)所以的分布列:数学期望.【解析】(1)随机变量的分布列问题,首先确定随机变量的所有可能值;(2))本题属古典概型,各随机变量所对应的事件包含的基本事件无法用公式求出,需一一列举出来.列举时要注意避免重复和遗漏,这是极易出错的地方试题解析:(Ⅰ)当时,最大。
16.随机变量及其分布一、选择题1.(2018浙江)设0<p则当p 在(0,1)内增大时A.D (ξ)减小B.D (ξ)增大C.D (ξ)先减小后增大D.D (ξ)先增大后减小1..答案:D 解答:111()0122222p p E p x -=???+, 22211113()()()()222222p p D p p p x -=?+?+? 22111()422p p p =-++=--+, 所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D.2.(2018全国新课标Ⅲ理)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A.0.7B.0.6C.0.4D.0.32.答案:B解答:由~(10,)X B p ,∴10(1) 2.4DX p p =-=,∴21010 2.40p p -+=,解之得120.4,0.6p p ==,由(4)(6)P X P X =<=,有0.6p =.二、填空三、解答题1.(假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.1.【答案】(1)概率为0025.;(2)概率估计为035.;(3)142536D D D D D D ξξξξξξ>>=>>. 【解析】(1)由题知,样本中电影的总部数是140503002008005102000+++++=,第四类电影中获得好评的电影部数是20002550⨯=..故所求概率为5000252000=.. (2)设事件A 为“从第四类电影中随机选出的电影获得好评”,事件B 为“从第五类电影中随机选出的电影获得好评”.故所求概率为()()()()()()()()()11P AB AB P AB P AB P A P B P A P B +=+=-+-.由题意知,()P A 估计为025.,()P B 估计为02.. 故所求概率估计为0250807502035⨯+⨯=...... (3)142536D D D D D D ξξξξξξ>>=>>.2.(2018天津理)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;(ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.2.【答案】(1)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)①答案见解析;②.【解析】(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)(1)随机变量X 的所有可能取值为0,1,2,3. ()()34337C C 0,1,2,3C k k P X k k -⋅===. 所以,X0 1 2 3 P 135 **** **** 435随机变量X 的数学期望()0123353535357E X =⨯+⨯+⨯+⨯=. (2)设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A B C =,且B 与C 互斥,由(1)知,()()2P B P X ==,()()1P C P X ==, 故()()()627()1P A P B C P X P X ===+==. 所以,事件A 发生的概率为67.。
高二数学随机变量的分布列试题答案及解析1.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.【答案】-1,0,1,2,3【解析】甲获胜且获得最低分的情况是:甲抢到一题并回答错误,乙抢到两题并且都回答错误,此时甲得-1分,故X的所有可能取值为-1,0,1,2,3.2.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A“取出的2件产品都是二等品”的概率P(A)=0.04(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共10件,从中任意抽取2件;X表示取出的2件产品中二等品的件数,求X的分布列.【答案】(1) 0.2 (2) X的分布列为【解析】解:(1)设任取一件产品是二等品的概率为p,依题意有P(A)=p2=0.04,解得p1=0.2,p2=-0.2(舍去).故从该批产品中任取1件是二等品的概率为0.2.(2)若该批产品共10件,由(1)知其二等品有10×0.2=2件,故X的可能取值为0,1,2.P(X=0)==.P(X=1)=.P(X=2)==.所以X的分布列为X0123.已知~,且,则等于( )A.B.C.D.【答案】A【解析】∵~,∴,∴,故选A【考点】本题考查了二项分布点评:熟练掌握二项分布列的期望、方差公式是解决此类问题的关键,属基础题4.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;(3)这名学生在途中至少遇到一次红灯的概率.【答案】(1)的分布列为:01 2 345(2)的分布列为:012345(3)【解析】(1)由于~,则,所以的分布列为:(2)也就是说{前个是绿灯,第个是红灯},也就是说(5个均为绿灯),则,;所以的分布列为:012345(3)所求概率【考点】本题考查了随机变量的分布列点评:分布列的求解分三步:确定随机变量的取值有那些,求出每种取值下的随机事件的的概率,列表对应即为分布列5.设随机变量~,又,则和的值分别是()A.和B.和C.和D.和【答案】C【解析】因为随机变量~,所以,,所以=,=。
章末复习课[整合·网络构建][警示·易错提醒]1.“互斥事件”与“相互独立事件”的区别.“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否对另一个事件发生的概率没有影响.2.对独立重复试验要准确理解.(1)独立重复试验的条件:第一,每次试验是在同样条件下进行;第二,任何一次试验中某事件发生的概率相等;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.(2)独立重复试验概率公式的特点:关于P(X=k)=C k n p k(1-p)n-k,它是n次独立重复试验中某事件A恰好发生k次的概率.其中n是重复试验次数,p是一次试验中某事件A发生的概率,k是在n次独立试验中事件A恰好发生的次数,弄清公式中n,p,k的意义,才能正确运用公式.3.(1)准确理解事件和随机变量取值的意义,对实际问题中事件之间的关系要清楚.(2)认真审题,找准关键字句,提高解题能力.如“至少有一个发生”“至多有一个发生”“恰有一个发生”等.(3)常见事件的表示.已知两个事件A、B,则A,B中至少有一个发生为A∪B;都发生为A·B;都不发生为—A ·—B ;恰有一个发生为(—A ·B)∪(A·—B );至多有一个发生为(—A ·—B )∪(—A ·B)∪(A·—B ).4.对于条件概率,一定要区分P(AB)与P(B|A).5.(1)离散型随机变量的期望与方差若存在则必唯一,期望E (ξ)的值可正也可负,而方差的值则一定是一个非负值.它们都由ξ的分布列唯一确定.(2)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ) 越大表明平均偏离程度越大,说明ξ的取值越分散;反之D (ξ)越小,ξ的取值越集中.(3)D (aξ+b )=a 2D (ξ),在记忆和使用此结论时,请注意D (aξ+b )≠aD (ξ)+b ,D (aξ+b )≠aD (ξ).6.对于正态分布,要特别注意N (μ,σ2)由μ和σ唯一确定,解决正态分布问题要牢记其概率密度曲线的对称轴为x =μ.专题一 条件概率的求法条件概率是高考的一个热点,常以选择题或填空题的形式出现,也可能是大题中的一个部分,难度中等.[例1] 坛子里放着7个大小、形状相同的鸭蛋,其中有4个是绿皮的,3个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第1次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿出绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.解:设“第1次拿出绿皮鸭蛋”为事件A ,“第2次拿出绿皮鸭蛋”为事件B ,则“第1次和第2次都拿出绿皮鸭蛋”为事件AB .(1)从7个鸭蛋中不放回地依次拿出2个的事件数为n (Ω)=A 27=42, 根据分步乘法计数原理,n (A )=A 14×A 16=24. 于是P (A )=n (A )n (Ω)=2442=47.(2)因为n (AB )=A 24=12, 所以P (AB )=n (AB )n (Ω)=1242=27.(3)法一 由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P (B |A )=P (AB )P (A )=27÷47=12. 法二 因为n (AB )=12,n (A )=24, 所以P (B |A )=n (AB )n (A )=1224=12.归纳升华解决概率问题的步骤.第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验、条件概率,然后把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式.第三步,利用条件概率公式求解:(1)条件概率定义:P (B |A )=P (AB )P (A ).(2)针对古典概型,缩减基本事件总数P (B |A )=n (AB )n (A ).[变式训练] 已知100件产品中有4件次品,无放回地从中抽取2次每次抽取1件,求下列事件的概率:(1)第一次取到次品,第二次取到正品; (2)两次都取到正品.解:设A ={第一次取到次品},B ={第二次取到正品}.(1)因为100件产品中有4件次品,即有正品96件,所以第一次取到次品的概率为P (A )=4100,第二次取到正品的概率为P (B |A )=9699,所以第一次取到次品,第二次取到正品的概率为P (AB )=P (A )P (B |A )=4100×9699=32825. (2)因为A ={第一次取到次品},且P (A )=1-P (A )=96100, P (B |A )=9599,所以P (AB )=P (A )P (B |A )=96100×9599=152165. 专题2 独立事件的概率要正确区分互斥事件与相互独立事件,准确应用相关公式解题,互斥事件是不可能同时发生的事件,相互独立事件是指一个事件的发生与否对另一个事件没有影响.[例2] 某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比赛活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1)若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率.(2)计划在2018年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E (ξ)≥5,求P 2的取值X 围.解析:(1)因为P 1=23,P 2=12,根据“先进和谐组”的定义可得,该小组在一次检测中荣获“先进和谐组”的包括两人两次都射中,两人恰好各射中一次,所以该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13·⎝ ⎛⎭⎪⎫C 12·12·12+⎝ ⎛⎭⎪⎫23·23⎝ ⎛⎭⎪⎫12·12=13.(2)该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13[C 12·P 2·(1-P 2)]+⎝ ⎛⎭⎪⎫23·23()P 2·P 2=89P 2-49P 22, 又ξ~B (12,P ),所以E (ξ)=12P , 由E (ξ)≥5知,⎝ ⎛⎭⎪⎫89P 2-49P 22·12≥5,解得34≤P 2≤1.[变式训练] 甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率. (2)2人中恰有1人射中目标的概率. (3)2人中至少有1人射中目标的概率.解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,与B , A 与B ,与为相互独立事件.(1)2人都射中目标的概率为P (AB )=P (A )·P (B )=0.8×0.9=0.72.(2)“2人中恰有1人射中目标”包括两种情况:一种是甲射中、乙未射中(事件A 发生),另一种是甲未射中、乙射中(事件B 发生).根据题意,知事件A 与B 互斥,所求的概率为P =P (A )+P (B )=P (A )P ()+P ()P (B )=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26.(3)“2人中至少有1人射中目标”包括“2人都射中”和“2人中有1人射中”2种情况,其概率为P =P (AB )+[P (A )+P (B )]=0.72+0.26=0.98.专题三 独立重复试验与二项分布二项分布是高考考查的重点,要准确理解、熟练运用其概率公式P n (k )=C kn ·p k(1-p )n -k,k =0,1,2,…,n ,高考以解答题为主,有时也用选择题、填空题形式考查.[例3] 现有10道题,其中6道甲类题,4道乙类题,X 同学从中任取3道题解答. (1)求X 同学所取的3道题至少有1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设X 同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示X 同学答对题的个数,求X 为1和3的概率.解:(1)设事件A =“ X 同学所取的3道题至少有1道乙类题”,则有A =“X 同学所取的3道题都是甲类题”.因为P (— A )=C 36C 310=16,所以P (A )=1-P (— A )=56.(2)P (X =1)=C 12⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+C 02⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·45=28125; P (X =3)=C 22⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫25·45=36125. 归纳升华解决二项分布问题必须注意: (1)对于公式P n (k )=C k n ·p k (1-p )n -k,k =0,1,2,…,n 必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.[变式训练] 口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖.每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为()A.80243B.100243C.80729D.100729解析:每次摸球中奖的概率为C 14C 15C 29=2036=59,由于是有放回地摸球,故3次摸球相当于3次独立重复实验, 所以3次摸球恰有1次中奖的概率P =C 13×59×⎝ ⎛⎭⎪⎫1-592=80243.答案:A专题四 离散型随机变量的期望与方差离散型随机变量的均值和方差在实际问题中具有重要意义,也是高考的热点内容. [例4] (2016·某某卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为:X 0 1 2 P415715415随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.归纳升华(1)求离散型随机变量的分布列有以下三个步骤:①明确随机变量X 取哪些值;②计算随机变量X 取每一个值时的概率;③将结果用表格形式列出.计算概率时要注意结合排列组合知识.(2)均值和方差的求解方法是:在分布列的基础上利用E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 求出均值,然后利用D (X )=∑i =1n[x i -E (X )]2p i 求出方差.[变式训练] 根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:0.3,0.7,0.9,求:(1)工期延误天数Y 的均值与方差.(2)在降水量至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4,P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1.所以Y 的分布列为于是,E (Y )=0×0.3D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.专题五 正态分布及简单应用高考主要以选择题、填空题形式考查正态曲线的形状特征与性质,抓住其对称轴是关键. [例5] 某市去年高考考生成绩服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550~600分的人数.解:因为考生成绩X ~N (500,502),所以μ=500,σ=50,所以P (550<X ≤600)=12[P (500-2×50<X ≤500+2×50)-P (500-50<X ≤500+50)]=12(0.954 4-0.682 6)=0.135 9.故考生成绩在550~600分的人数为25 000×0.135 9≈3 398(人). 归纳升华正态分布概率的求法1.注意3σ原则,记住正态总体在三个区间内取值的概率.2.注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.[变式训练] 某镇农民年收入服从μ=5 000元,σ=200元的正态分布.则该镇农民平均收入在5 000~5 200元的人数的百分比是________.解析:设X 表示此镇农民的平均收入,则X ~N (5 000,2002). 由P (5 000-200<X ≤5 000+200)=0.682 6. 得P (5 000<X ≤5 200)=0.682 62=0.341 3.故此镇农民平均收入在5 000~5 200元的人数的百分比为34.13%. 答案:34.13% 专题六 方程思想方程思想是解决概率问题中的重要思想,在求离散型随机变量的分布列,求两个或三个事件的概率时常会用到方程思想.即根据题设条件列出相关未知数的方程(或方程组)求得结果.[例6] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:记A ,B ,C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件. 由题设条件有⎩⎪⎨⎪⎧P (A — B )=14,P (B — C )=112,P (AC )=29,即⎩⎪⎨⎪⎧P (A )[1-P (B )]=14, ①P (B )[1-P (C )]=112,②P (A )P (C )=29. ③由①③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0.解得P (C )=23或P (C )=119(舍去).将P (C )=23分别代入②③可得P (A )=13,P (B )=14.故甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件.则P (D )=1-P (— D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.归纳升华(1)在求离散型随机变量的分布列时,常利用分布列的性质:①p 1≥0,i =1,2,3,…,n ;②∑i =1np i =1,列出方程或不等式求出未知数.(2)在求两个或多个概率时,常根据不同类型的概率公式列出方程或方程组求出未知数. [变式训练] 若离散型随机变量ξ的分布列为:ξ 0 1 P9a 2-a3-8a求常数a 解:由离散型随机变量的性质得⎩⎪⎨⎪⎧9a 2-a +3-8a =1,0≤9a 2-a ≤1,0≤3-8a ≤1,解得a =23(舍去)或a =13.所以,随机变量的分布列为:ξ 0 1 P2313。
一、选择题1.已知随机变量X 的分布列则对于任意01a b c <<<<,()E X 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .1,13⎛⎫ ⎪⎝⎭C .()0,1D .1,3⎛+∞⎫ ⎪⎝⎭2.随机变量ξ的分布列如表所示,若1()3E X =-,则(31)D X +=( )A .4B .5C .6D .73.随机变量X 的概率分布为()()()1,2,31aP X n n n n ===+,其中a 是常数,则()E aX =( )A .3881B .139C .152243D .52274.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件A 为“抓取的球中存在两个球同色”,事件B 为“抓取的球中有红色但不全是红色”,则在事件A 发生的条件下,事件B 发生的概率()|P B A =( ) A .37B .1237C .1219D .16215.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为4x y +>,事件B 为x y ≠,则概率()|P B A =( )A .45B .56C .1315D .2156.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则(|)P B A =( ) A .14B .34C .29D .597.甲、乙、丙三人每人准备在3个旅游景点中各选一处去游玩,则在“至少有1个景点未被选择”的条件下,恰有2个景点未被选择的概率是( ) A .17B .18C .114D .3148.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有23的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率( )A .1320B .920C .15D .1209.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2B .52C .94D .410.已知一组数据12,,,n x x x 的平均数3x =,方差24s =,则数据1232,32,,32n x x x +++的平均数、方差分别为( )A .9,12B .9,36C .11,12D .11,3611.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( ) A .8225B .12C .34D .3812.已知2~(1,)X N σ,(03)0.7P X <≤=,(02)0.6P X <≤=,则(3)≤=P X ( ) A .0.6B .0.7C .0.8D .0.9二、填空题13.中国福利彩票3D 游戏(以下简称3D ),是以一个3位自然数(如:0记作000)为投注号码的彩票.投注者从000~999这些3位自然数中选择一个进行投注,每注2元,如果与官方公布的三位数相同,则视为中奖,获得奖金1000元,反之则获得奖金0元.某人随机投了一注,他的奖金的期望是______元.14.一位篮球运动员投篮一次得3分概率为a ,得2分概率为b ,不得分概率为c ,(),,0,1a b c ∈.若他投篮一次得分的期望为1,则12a b+的最小值为______.15.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率(A |B)P 等于______.16.一次英语测验由50道选择题构成,每道题有4个选项,其中有且仅有一个是正确的,每个选对得3分,选错或不选均不得分,满分150.某学生选对每一道题的概率均为0.7,则该生在这次测验中的成绩的期望是__________17.下表是随机变量X 的分布列,其中a ,b ,c 成等比数列,23a c b +=,且a ,b ,c 互不相等.则()D X =__________.18.袋中有20个大小相同的球,其中标号为0的有10个,标号为(1,2,3,4)n n =的有n 个.现从袋中任取一球,ξ表示所取球的标号.若2,()1a E ηξη=-=,则()D η的值为_____.参考答案三、解答题19.某班级以“评分的方式”鼓励同学们以骑自行车或步行方式“绿色出行”,培养学生的环保意识.“十一黄金周”期间,组织学生去A 、B 两地游玩,因目的地A 地近,B 地远,特制定方案如下:若甲同学去A 地玩,乙、丙同学去B 地玩,选择出行方式相互独立. (1)求恰有一名同学选择“绿色出行”方式的概率; (2)求三名同学总得分X 的分布列及数学期望EX .20.某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除了颜色外均相同. (1)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记取到红球的次数为ξ,求ξ的分布列;(3)每次从纸箱中摸取一个小球,记录颜色后放回纸箱,这样摸取20次,取得几次红球的概率最大?(只需写出结论)21.某企业为了解职工A 款APP 和B 款APP 的用户量情况,对本单位职工进行简单随机抽样,获得数据如下表:男职工女职工使用不使用 使用 不使用 A 款APP72人 48人 40人 80人 B 款APP60人60人84人36人(1)分别估计该企业男职工使用A 款APP 的概率、该企业女职工使用A 款APP 的概率; (2)从该企业男,女职工中各随机抽取1人,记这2人中使用A 款APP 的人数为X ,求X 的分布列及数学期望;(3)据电商行业发布的市场分析报告显示,A 款APP 的用户中男性占52.04%、女性占47.96%;B 款APP 的用户中男性占38.92%、女性占61.08%.试分析该企业职工使用A 款APP 的男、女用户占比情况和使用B 款APP 的男、女用户占比情况哪一个与市场分析报告中的男、女用户占比情况更相符.22.在某市举办的“中华文化艺术节”知识大赛中,大赛分预赛与复赛两个环节.预赛有4000人参赛.先从预赛学生中随机抽取100人成绩得到如下频率分布直方图:(1)若从上述样本中预赛成绩不低于60分的学生中随机抽取2人,求至少1人成绩不低于80分的概率;(2)由频率分布直方图可以认为该市全体参加预赛的学生成绩Z 服从正态分布()2,N μσ,其中μ可以近似为100名学生的预赛平均成绩,2362σ=,试估计全市参加预赛学生中成绩不低于91分的人数;(3)预赛成绩不低于91分的学生可以参加复赛.复赛规则如下:①每人复赛初始分均为100分;②参赛学生可在开始答题前自行选择答题数量()1n n >,每答一题需要扣掉一定分数来获取答题资格,规定回答第()1,2,,k k n =题时扣掉0.2k 分;③每答对一题加2分,答错既不加分也不扣分;④答完n 题后参赛学生的最后分数即为复赛分数.已知学生甲答对每题的概率为0.75,且各题答对与否相互独立,若甲期望得到最佳复赛成绩,则他的答题数量n 应为多少?19≈,若()2~,z Nμσ,则()0.6826P x μσμσ-<≤+=,()220.9544P x μσμσ-<≤+=,()330.9974P x μσμσ-<≤+=).23.学校趣味运动会上增加了一项射击比赛,比赛规则如下:向A 、B 两个靶子进行射击,先向A 靶射击一次,命中得1分,没有命中得0分;再向B 靶连续射击两次,如果只命中一次得2分,一次也没有命中得0分,如果连续命中两次则得5分.甲同学准备参赛,经过一定的训练,甲同学的射击水平显著提高,目前的水平是:向A 靶射击,命中的概率是23;向B 靶射击,命中的概率为34.假设甲同学每次射击结果相互独立. (1)求甲同学恰好命中一次的概率;(2)求甲同学获得的总分X 的分布列及数学期望.24.假设有3箱同种型号零件,里面分别装有50件、30件、40件,而且一等品分别有20件、12件和24件,现在任取一箱,从中不放回地先后取出两个零件,试求: (1)先取出的零件是一等品的概率; (2)两次取出的零件均为一等品的概率.25.根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以A 表示事件“试验反应为阳性”,以C 表示事件“被诊断者患有癌症”,则有()|P A C 0.95=,()|0.95P A C =.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即()0.005P C =,试求()|P C A .26.共享交通工具的出现极大地方便了人们的生活,也是当下一个很好的发展商机.某公司根据市场发展情况推出共享单车和共享电动车两种产品.市场调查发现,由于两种产品中共享电动车速度更快,故更受消费者欢迎,一般使用共享电动车的概率为23,使用共享单车的概率为13.该公司为了促进大家消费,使用共享电动车一次记2分,使用共享单车一次记1分.每个市民各次使用共享交通工具选择意愿相互独立,市民之间选择意愿也相互独立. (1)从首次使用共享交通工具的市民中随机抽取3人,记总得分为随机变量ξ,求ξ的分布列和数学期望;(2)记某一市民已使用该公司共享交通工具的累计得分恰为n 分的概率为n B (比如:1B 表示累计得分为1分的概率,2B 表示累计得分为2分的概率,n *∈N ),试探求n B 与1n B -之间的关系,并求数列{}n B 的通项公式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题易得222()E X a b c =++,结合题中条件再由基本不等式可得2222()133a b c a b c ++++>=,即1()3E X >;再由2222()2()12()1a b c a b c ab bc ca ab bc ca ++=++-++=-++<,即()1E X <,最后得出()E X 的取值范围. 【详解】由随机变量的期望定义可得出222()E X a b c =++, 因为01a b c <<<<,且1a b c ++=,所以222222222a b aba c acbc bc ⎧+>⎪+>⎨⎪+>⎩,三式相加并化简可得222a b c ab bc ac ++>++,故2222222222()2222()3()a b c a b c ac bc ab a b c ac bc ab a b c ++=+++++=+++++<++,即2222()133a b c a b c ++++>=,所以2()1()33a b c E X ++>=,又因为2()()2()12()1E X a b c ab bc ca ab bc ca =++-++=-++<,所以1()13E X <<. 故选:B . 【点睛】本题考查随机变量的期望,考查基本不等式的应用,考查逻辑思维能力和运算求解能力,属于常考题.2.B解析:B 【分析】 由于()13E X =-,利用随机变量的分布列列式,求出a 和b ,由此可求出()D X ,再由()(319)X D D X +=,即可求出结果.【详解】 根据题意,可知:112a b ++=,则12a b +=, ()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=, ∴5(31)D X +=.故选:B. 【点睛】本题考查离散型随机变量的方差的求法,以及离散型随机变量的分布列、数学期望等知识,考查运算求解能力.3.D解析:D 【分析】根据裂项相消法以及概率的性质求出a ,再得出()E X ,最后由()()E aX aE X =得出答案. 【详解】()()11a a aP X n n n n n ===-++(1)(2)(3)1P X P X P X =+=+== 122334a a a a a a ∴-+-+-=,解得43a =则221(1),(2),(3)2369129a a a P X P X P X ========= 62113()1239999E X ∴=⨯+⨯+⨯=452()()392137E aX aE X ∴==⨯=故选:D 【点睛】本题主要考查了随机变量分布列的性质以及均值的性质,属于中档题.4.C解析:C 【分析】根据题意,求出()P A 和()P AB ,由公式()()()|P AB P B A P A =即可求出解答.【详解】解:因为事件A 为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以()213363393357198428C C C P A C +=== 事件A 发生且事件B 发生概率为:()12213336392363847C C C C P AB C +=== 故()()()3127|191928P AB P B A P A ===. 故选:C. 【点睛】本题考查条件概率求法,属于中档题.5.C解析:C 【分析】分别得到所有基本事件总数、4x y +>的基本事件个数、满足4x y +>且x y ≠的基本事件个数,根据古典概型概率公式计算可得()P AB 和()P A ;由条件概率公式计算可得结果. 【详解】先后抛掷骰子两次,正面朝上所得点数(),x y 的基本事件共有6636⨯=个 则4x y +≤的有()1,1、()1,2、()2,1、()2,2、()1,3、()3,1,共6个基本事件4x y ∴+>的基本事件共有36630-=个,其中x y =的有()3,3、()4,4、()5,5、()6,6,共4个∴满足4x y +>且x y ≠的基本事件个数为30426-=个()26133618P AB ∴==,()30153618P A == ()()()131318151518P AB P B A P A ∴=== 故选:C【点睛】本题考查条件概率的计算问题,涉及到古典概型概率问题的求解;关键是能够准确计算基本事件总数和满足题意的基本事件的个数.6.A解析:A 【分析】确定事件AB ,利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概型的概率公式可计算出()P B A 的值. 【详解】事件AB 为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则()3344A P AB =,()4444A P A =,()()()3434444144P AB A P B A P A A ∴==⋅=,故选A. 【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题.7.A解析:A 【分析】设事件A 为:至少有1个景点未被选择,事件B 为:恰有2个景点未被选择,计算()P AB 和()P A ,再利用条件概率公式得到答案.【详解】设事件A 为:至少有1个景点未被选择,事件B 为:恰有2个景点未被选择331()39P AB == 3337()139A P A =-=()1()()7P AB P B A P A == 故答案选A 【点睛】本题考查了条件概率,意在考查学生对于条件概率的理解和计算.8.C解析:C 【分析】记“三人中至少有两人解答正确”为事件A ;“甲解答不正确”为事件B ,利用二项分布的知识计算出()P A ,再计算出()P AB ,结合条件概率公式求得结果. 【详解】记“三人中至少有两人解答正确”为事件A ;“甲解答不正确”为事件B则()2323332122033327P A C C ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;()122433327P AB =⨯⨯=()()()15P AB P B A P A ∴==本题正确选项:C 【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.9.C解析:C 【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值.【详解】离散型随机变量X 服从二项分布()X B n p ,,所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14qp +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号.故选C . 【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题. 10.D解析:D 【解析】分析:由题意结合平均数,方程的性质即可求得新数据的平均数和方差. 详解:由题意结合平均数,方程的性质可知: 数据1232,32,,32n x x x +++的平均数为:3211x +=,方差为22336s ⨯=.本题选择D 选项.点睛:本题主要考查平均数的性质,方差的性质等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D 【解析】分析:根据条件概率求结果.详解:因为在下雨天里,刮风的概率为既刮风又下雨的概率除以下雨的概率,所以在下雨天里,刮风的概率为13104815=, 选D.点睛:本题考查条件概率,考查基本求解能力.12.D解析:D 【解析】分析:根据随机变量X 服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得()3P X ≤.详解:由题意230.70.60.1P x =-=,(<<) , ∵随机变量()2~1,X N σ,(02)0.6P X <≤=,(12)0.3P X <≤=∴()130.30.10.4,P X <≤=+=30.40.50.9P X =+=(<), 故选D .点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.二、填空题13.1【分析】求出此人中奖和不中奖的概率利用期望的公式即可求得数学期望得到答案【详解】由题意此人中奖的概率为不中奖的概率为所以此人随机投注一次他的奖金的期望为:元故答案为:1【点睛】本题主要考查了离散型解析:1 【分析】求出此人中奖和不中奖的概率,利用期望的公式,即可求得数学期望,得到答案. 【详解】由题意,此人中奖的概率为11000,不中奖的概率为9991000,所以此人随机投注一次,他的奖金的期望为:199910000110001000⨯+⨯=元. 故答案为:1. 【点睛】本题主要考查了离散型随机变量的数学期望的求法,其中解答中正确理解题意,求得此人中奖和不中奖的概率,结合期望的计算公式求解是解答的关键,属于基础题.14.;【分析】推导出从而利用基本不等式能求出的最小值【详解】一位篮球运动员投篮一次得3分概率为得2分概率为不得分概率为他投篮一次得分的期望为1当且仅当时取等号的最小值为故答案为:【点睛】本题考查代数式的解析:7+; 【分析】推导出321a b +=,从而121262()(32)7a b a b a b a b b a+=++=++,利用基本不等式能求出12a b +的最小值. 【详解】一位篮球运动员投篮一次得3分概率为a ,得2分概率为b , 不得分概率为c ,a ,b ,(0,1)c ∈,他投篮一次得分的期望为1, 321a b ∴+=,∴1212626()(32)7727a b a a b a b a b b a b +=++=+++=+ 当且仅当62a bb a=时取等号,∴12a b+的最小值为7+.故答案为:7+ 【点睛】本题考查代数式的最小值的求法,考查离散型随机变量的分布列、数学期望、均值不等式等基础知识,考查运算求解能力,是中档题.15.【分析】本题利用条件概率公式求解【详解】至少出现一个5点的情况有:至少出现一个5点的情况下三个点数之和等于15有一下两类:①恰好一个5点则另两个点数只能是4和6共有;②恰好出现两个5点则另一个点数也 解析:113【分析】本题利用条件概率公式()(|)()n AB P A B n B =求解. 【详解】至少出现一个5点的情况有:336591-=,至少出现一个5点的情况下,三个点数之和等于15有一下两类:①恰好一个5点,则另两个点数只能是4和6,共有11326C C ⨯=;②恰好出现两个5点,则另一个点数也只能是5点,共有1种情况.()611(|)()9113n AB P A B n B +∴===,故答案为:113. 【点睛】本题考查条件概率的公式,需要求出基本事件的个数,运用正难则反的思想.16.105【解析】分析:先判断概率分别为二项分布再根据二项分布期望公式求结果详解:因为所以点睛:解析:105. 【解析】分析:先判断概率分别为二项分布,再根据二项分布期望公式求结果. 详解:因为(150,0.7)x B ~,所以1500.7105.Ex =⨯= 点睛:(,),(),()(1).x B n p E X np V X np p ~==-17.【解析】分析:由题意首先求得实数abc 的值然后利用期望公式求得期望值最后结合求得的期望值求解方差即可详解:由题意可得:解得:或互不相等则:分布列为: 故其方差为:点睛:本题主要考查 解析:5249【解析】分析:由题意首先求得实数a ,b ,c 的值,然后利用期望公式求得期望值,最后结合求得的期望值求解方差即可.详解:由题意可得:2231b ac a c b a b c ⎧=⎪+=⎨⎪++=⎩,解得:131313a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩或472717a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.a ,b ,c 互不相等,则:421,,777a b c ===,分布列为:故()0777E X =-++=-,其方差为: ()2222422215210277777749D X ⎛⎫⎛⎫⎛⎫=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.点睛:本题主要考查离散型随机变量的期望和方差的计算及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【解析】根据题意得出随机变量ξ的分布列: 0 1 2 3 4 P ∵∴即a=2∴∵故答案为11 解析:11【解析】根据题意得出随机变量ξ的分布列:()01234220102052E ξ=⨯+⨯+⨯+⨯+⨯= ,∵2,()1a E ηξη=-= ,∴3122a =⨯- , 即a=2,∴22,()1E ηξη=-= ,22222131113331311()234222021022020524D ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯-+⨯-+⨯-+⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,∵11()4()4114D D ηξ==⨯= . 故答案为11.三、解答题19.(1)736;(2)分布列见解析,1225=EX . 【分析】(1)分析恰有一个同学选择“绿色出行”方式的情况,利用相互独立事件的概率计算公式求解;(2)根据题意得,X 的所有可能取值为0,1,2,3,分别计算概率,列出分布列,代入公式求解EX . 【详解】(1)恰有一名同学选择绿色出行方式的概率2123111274343336P C ⎛⎫=⋅+⋅⋅⋅= ⎪⎝⎭.(2)根据题意,X 的所有可能取值为0,1,2,3,根据事件的独立性和互斥性得:1111(0)43336P X ==⨯⨯=;1231112173(1)4334363==⨯⨯+⨯⨯⨯=P X C ;21221124(2)4393343⎛⎫==⨯⨯⨯+⨯= ⎪⎝⎭P X C ;3221(3)4333==⨯⨯=P X .故X 的分布列为:所以360123369312=⨯+⨯+⨯+⨯=EX . 【点睛】本题考查了随机变量分布列问题,一般列分布列时先判断变量的可能取值,遇到比较复杂的情况可以采用列表格的方式能更直观的判断出可能取值有哪些,然后计算不同取值下的概率,需要分析清楚不同取值对应的所有情况,注意是二项分布还是超几何分布问题. 20.(1)12;(2)分布列见解析;(3)15次. 【分析】(1)利用组合数公式和古典概型的概率公式可求得所求事件的概率; (2)由题意可知,34,4B ξ⎛⎫⎪⎝⎭,利用二项分布可得出随机变量ξ的分布列; (3)根据独立重复试验的概率公式可得出结论. 【详解】(1)一次从纸箱中摸出两个小球,恰好摸出2个红球,相当于从3个红球中摸出2个红球,由古典概型的概率公式可知,所求事件的概率为232412C P C ==;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,则每次摸到红球的概率均为34, 这样摸球4次,则34,4B ξ⎛⎫ ⎪⎝⎭, 所以,()4110=4256P ξ⎛⎫== ⎪⎝⎭,()3143131=4464P C ξ⎛⎫==⋅⋅ ⎪⎝⎭,()22243127244128P C ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()334312734464P C ξ⎛⎫==⋅⋅=⎪⎝⎭,()438144256P ξ⎛⎫===⎪⎝⎭. 因此,随机变量ξ的分布列如下表所示:【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.21.(1)13;(2)分布列答案见解析,数学期望:1415;(3)该企业职工使用B APP 的情况与官方发布的男、女用户情况更相符 【分析】(1)根据题中数据,用频率估计概率,即可求出;(2)先确定X 的取值,再计算出对应的概率,即求出X 的分布列及数学期望;(3)分别计算出A 款,B 款APP 的男、女用户总人数,再计算对应的男用户,女用户的概率,再根据题意判断即可. 【详解】解:(1)由所给数据可知,男职工使用A 款APP 的人数为72, 用频率估计概率,可得男职工使用京东APP 的概率约为7231205=, 同理,女职工使用A 款APP 的概率约为4011203=; (2)X 的可能取值为0,1,2,()3140115315P X ⎛⎫⎛⎫∴==-⨯-= ⎪ ⎪⎝⎭⎝⎭;()31318111535315P X ⎛⎫⎛⎫==⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭;()3112535P X ==⨯=.∴X 的分布列为:X 的数学期望()0121515515E X =⨯+⨯+⨯=; (3)样本中,A 款APP 的男、女用户为7240112+=(人),其中男用户占7264.3112≈%;女用户占4035.7112≈%, 样本中,B 款APP 的男、女用户为6084144+=(人),其中男用户占6041.7144≈%;女用户占8458.3144≈%, ∴该企业职工使用B APP 的情况与官方发布的男、女用户情况更相符.【点睛】 思路点睛:求离散型随机变量的分布列及期望的一般步骤: (1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算). 22.(1)813,(2)91,(3)若学生甲期望获得最佳复赛成绩,则他的答题量n 应该是7. 【分析】(1)求出样本中成绩不低于60分的学生共有40人,其中成绩不低于80分的人数为15人,由此能求出至少有1人成绩不低于80分的概率.(2)样本中的100名学生预赛成绩的平均值为:53,则53μ=,由2362σ=,得19σ=,从而(91)(2)P Z P Z μσ=+,由此能求出估计全市参加参赛的全体学生中成绩不低于91分的人数.(3)以随机变量ξ表示甲答对的题数,则~(,0.75)B n ξ,求出E ξ,记甲答完n 题所加的分数为随机变量X ,则2X ξ=,求出EX ,为了获取答n 题的资格,甲需要扣掉的分数为:20.1()n n +,设甲答完n 题的分数为()M n ,则2()1000.1() 1.5M n n n n =-++,由此能求出学生甲期望获得最佳复赛成绩的答题量n 的值. 【详解】解:(1)样本成绩不低于60分的学生有()0.01250.00752010040+⨯⨯=人 其中成绩不低于80分的有0.00752010015⨯⨯=人则至少有1人成绩不低于80分的概率2252408113C P C =-=(2)由题意知样本中100名学生成绩平均分为100.1300.2500.3700.25900.1553⨯+⨯+⨯+⨯+⨯=,所以53μ=,2362σ=,所以19σ=所以()~53,362Z N ,则()()()191210.95440.02282P Z P Z μσ≥=≥+≈-= 故全市参加预赛学生中成绩不低于91分的人数为0.022*******⨯≈人 (3)以随机变量ξ表示甲答对的题数,则~(,0.75)B n ξ,且0.75E n ξ=, 记甲答完n 题所加的分数为随机变量X ,则2X ξ=, 2 1.5EX E n ξ∴==,依题意为了获取答n 题的资格,甲需要扣掉的分数为:20.2(123)0.1()n n n ⨯+++⋯+=+, 设甲答完n 题的分数为()M n ,则22()1000.1() 1.50.1(7)104.9M n n n n n =-++=--+,由于*n N ∈,∴当7n =时,()M n 取最大值104.9,即复赛成绩的最大值为104.9.∴若学生甲期望获得最佳复赛成绩,则他的答题量n 应该是7.【点睛】本题考查概率、频数、数学期望的求法及应用,考查频率分布直方图、二项分布等基础知识,考查运算求解能力. 23.(1)16;(2)分布列见解析;期望为20348. 【分析】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,然后利用互斥事件概率的求解方法求解即可.(2)随机变量X 的可能取值为:0,1,2,3,5,6,求出概率,列出分布列,然后求解期望. 【详解】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,由题意可知()23P D =,()()34P E P F ==.由于C DEF DEF DEF =++,()()21111313134434413446P C P DEF DEF DEF =++=⨯⨯+⨯⨯+⨯⨯=.(2)随机变量X 的可能取值为:0,1,2,3,5,6.()1111034448P X ==⨯⨯=()2111134424P X ==⨯⨯=()12113123448P X C ==⨯⨯⨯=()12231334144P X C ==⨯⨯⨯=()1333534416P X ==⨯⨯=()233363448P X ==⨯⨯=()48E X =. 【点睛】 关键点点睛:古典概型及其概率计算公式的应用,求离散型随机变量的分布列及其期望的求法,解题的关键为正确求出X =0,1,2,3,5,6,所对应的概率. 24.(1)715;(2)0.22. 【分析】(1)记事件=i A “任取的一箱为第i 箱零件”,则1i =、2、3,记事件j B =“第j 次取到的是一等品”,则1j =、2,利用条件概率和全概率公式可求得所求事件的概率; (2)求出()121P B B A 、()122P B B A 、()123P B B A ,利用全概率公式可求得所求事件的概率. 【详解】(1)记事件=i A “任取的一箱为第i 箱零件”,则1i =、2、3, 记事件j B =“第j 次取到的是一等品”,则1j =、2,由题意知1A 、2A 、3A 构成完备事件组,且()()()12313P A P A P A ===, ()11200.450P B A ==,()12120.430P B A ==,()13240.640P B A ==, 由全概率公式得()()()()()()()()1111212313170.40.40.6315P B P A P B A P A P B A P A P B A =++=⨯++=;(2)因为()22012125038245C P B B A C ==,()21212223022145C P B B A C ==,()2241232402365C P B B A C ==,由全概率公式得()()()()()()()12112121223123P B B P A P B B A P A P B B A P A P B B A =++13822230.22324514565⎛⎫=⨯++≈ ⎪⎝⎭. 【点睛】易错点点睛:本题考查利用条件概率和全概率公式计算事件的概率,解本题的关键在于确定一等品是从哪个箱子里取出的,再结合相应的知识求解.25.19218【分析】根据条件概率和全概率公式可求得结果. 【详解】因为()|0.95P A C =,所以()|1P A C =-()|0.05P A C =, 因为()0.005P C =,所以()0.995P C =,所以由全概率公式可得()()()()()||P A P A C P C P A C P C =⋅+⋅, 因为()P AC =()|P C A ()P A ()()|P A C P C = 所以()|P C A ()()()|()0.950.005190.950.0050.050.995218|()|()P A C P C P A C P C P A C P C ⨯===⨯+⨯+.【点睛】关键点点睛:掌握条件概率和全概率公式是解题关键. 26.(1)分布列答案见解析,数学期望:5;(2)1213n n B B -=-+,13425153n n B -⎛⎫=-- ⎪⎝⎭.【分析】(1)根据题意,得到总得分为随机变量ξ的可能取值为3,4,5,6,求得相应的概率,得出随机变量的分布列,利用公式求得其数学期望;(2)已调查过的累计得分恰为n 分的概率为n B ,得出1213n n B B -+=,结合等比数列的定义,得到35n B ⎧⎫-⎨⎬⎩⎭为等比数列,结合等比数列的通项公式,即可求解. 【详解】(1)由题意,从首次使用共享交通工具的市民中随机抽取3人,则总得分为随机变量ξ的可能取值为3,4,5,6, 则3311(3)C 327P ξ⎛⎫=== ⎪⎝⎭,12132162(4)C 33279P ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭, 122312124(5)C 33279P ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,33328(6)C 327P ξ⎛⎫=== ⎪⎝⎭, 所以ξ的分布列为所以数学期望8()34565279927E ξ=⨯+⨯+⨯+⨯=. (2)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分, 再得2分,概率为123n B -,其中113B =. 因为1213n n B B -+=,即1213n n B B -=-+,所以1323535n n B B -⎛⎫-=-- ⎪⎝⎭, 则35n B ⎧⎫-⎨⎬⎩⎭是首项为134515B -=-,公比为23-的等比数列, 所以13425153n n B -⎛⎫-=-- ⎪⎝⎭,所以13425153n n B -⎛⎫=-- ⎪⎝⎭.【点睛】 求随机变量X 的期望与方差的方法及步骤:理解随机变量X 的意义,写出X 可能的全部值;求X 取每个值对应的概率,写出随机变量的分布列;由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解.。
高三数学随机变量的分布列试题答案及解析1.盒中有9个正品、3个次品零件,每次取1个零件,如果取出的次品不再放回,则在取得正品前已取出的次品数ξ的分布列________.【解析】ξ可能取的值为0,1,2,3这四个数,而ξ=k(k=0,1,2,3)表示取k+1次零件,前k次取得的都是次品,第k+1次才取到正品.P(ξ=0)==,P(ξ=1)=·=,P(ξ=2)=··=,P(ξ=3)=··=.故ξ的分布列为ξ01232.某电视台的一个智力游戏节目中,有一道将中国四大名著《三国演义》、《水浒传》、《西游记》、《红楼梦》与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线,每连对一个得2分,连错得-1分,某观众只知道《三国演义》的作者是罗贯中,其他不知道随意连线,将他的得分记作ξ.(1)求该观众得分ξ为负数的概率;(2)求ξ的分布列.【答案】(1)(2)ξ-128【解析】解:(1)当该观众只连对《三国演义》,其他全部连错时,得分为负数,此时ξ=-1,故得分为负数的概率为P(ξ=-1)==.(2)ξ的可能取值为-1,2,8.P(ξ=2)==,P(ξ=8)==.ξ的分布列为:ξ-1283.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设ξ为取出的4个球中红球的个数,求ξ的分布列.【答案】(1)(2)(3)ξ的分布列为ξ0123【解析】(1)设“从甲盒内取出的2个球均为黑球”为事件A,“从乙盒内取出的2个球均为黑球”为事件B.由于事件A、B相互独立,且P(A)==,P(B)==.故取出的4个球均为黑球的概率为P(A·B)=P(A)·P(B)=×=.(2)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D.由于事件C、D互斥,且P(C)=·=,P(D)==.故取出的4个球中恰有1个红球的概率为P(C+D)=P(C)+P(D)=+=.(3)ξ可能的取值为0,1,2,3.由(1),(2)得P(ξ=0)=,P(ξ=1)=,P(ξ=3)==.从而P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=.ξ的分布列为4.某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的;若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金;若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其他区域,则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则参与了促销活动.(1)求顾客甲中一等奖的概率;(2)记X为顾客甲所得的奖金数,求X的分布列及其数学期望.【答案】(1)(2)【解析】(1)设事件A表示该顾客中一等奖,P(A)=×+2××=,所以该顾客中一等奖的概率是.(2)X的可能取值为20,15,10,5,0,P(X=20)=×=,P(X=15)=2××=,P(X=10)=×+2××=,P(X=5)=2××=,P(X=0)=×=.所以X的分布列为数学期望E(X)=20×+15×+10×+5×=.5.某中学从高中三个年级选派4名教师和20名学生去当文明交通宣传志愿者,20名学生的名额分配为高一12人,高二6人,高三2人.(1)若从20名学生中选出3人做为组长,求他们中恰好有1人是高一年级学生的概率;(2)若将4名教师随机安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.【答案】(1) ;(2)详见解析.【解析】(1)从高一12人中选出1人,从高二和高三共8人中选出2人的事件为A,,计算得到结果;(2)每位教师选择高一年级的概率均为,并且相互独立,X的所有取值为0,1,2,3,4.,,,然后列出随机变量X的概率分布列,利用,或是利用二项分布的期望公式,得出结果.随机变量的概率,分布列,期望还是高考的重点内容,属于基础题型,试题解析:(1)解:设“他们中恰好有1人是高一年级学生” 为事件,则.所以恰好有1人是高一年级学生的概率为. 4分(2)解:X的所有取值为0,1,2,3,4. 6分由题意可知,每位教师选择高一年级的概率均为, 7分所以;;;.随机变量X的分布列为:12分所以. 13分【考点】1.超几何分布;2.二项分布.6.一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.【答案】(1)(2)【解析】记“取出的3个球编号都不相同”为事件A,“取出的3个球中恰有两个球编号相同”为事件B,则P(B)===,∴P(A)=1-P(B)=.(2)X的取值为1,2,3,4P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.所以X的分布列为E(X)=1×+2×+3×+4×==.7.甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:(Ⅰ)请画出甲、乙两人成绩的茎叶图. 你认为选派谁参赛更好?说明理由(不用计算);(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为,求随机变量的分布列和期望.【答案】(Ⅰ)选派乙参赛更好(Ⅱ)【解析】(Ⅰ)茎表示得分的十位数,放在中间的列,叶表示得分的个位数,放在两侧。
随机变量及其分布一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设随机变量ξ等可能取值1,2,3,…,n .如果P (ξ<4)=0.3,那么( )A .n =3B .n =4C .n =10D .n 不能确定2.已知离散型随机变量ξ的分布列为则均值E (ξ)=( )A .1B .0.3C .2+3mD .2.4 3.已知η的分布列为设ξ=3η-2,则D (ξ)A .5 B .53 C .59 D .-34.若ξ~B ⎝⎛⎭⎫10,12 ,则P (ξ≥2)等于( ) A .111 024 B .501512 C .1 0131 024 D .5075125.已知ξ~N (0,σ2),且P (-2≤ξ≤0)=0.4,则P (ξ>2)=( ) A .0.1 B .0.2 C .0.6 D .0.86.由1,2组成的有重复数字的三位数中,若用A 表示事件“十位数字为1”,用B 表示事件“百位数字为1”,则P (A |B )=( )A .25B .34C .12D .187.甲、乙两人参加青年志愿者的选拔,选拔以现场答题的方式进行.已知在备选的10道试题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,设甲答对的试题数为X ,则X =2的概率为( )A .130B .110C .16D .128.甲、乙两名同学做游戏,他们分别从两个装有编号为1~5的球的箱子中抽取一个球,若两个球的编号之和小于6,则甲赢,若大于6,则乙赢,若等于6,则和局,若他们共玩三次,则甲赢两次的概率为( )A .8125B .12125C .36125D .54125二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法不正确的是( )A.P (B |A )<P (AB ) B .P (B |A )=P (B )P (A )是可能的C .0<P (B |A )<1D .P (A |A )=0 10.若随机变量η的分布列如下:则当P (η<x )=A .1 B .1.5 C .2 D .2.5 11.设离散型随机变量X 的分布列为若离散型随机变量 )A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8 D .E (Y )=5,D (Y )=7.212.某市有A ,B ,C ,D 四个景点,一位游客来该市游览,已知该游客游览A 的概率为23 ,游览B ,C 和D 的概率都是12,且该游客是否游览这四个景点相互独立.用随机变量X 表示该游客游览的景点的个数,下列正确的( )A .游客至多游览一个景点的概率14B .P (X =2)=38C .P (X =4)=124D .E (X )=136三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.设随机变量ξ的分布列为P (ξ=k )=m ·⎝⎛⎭⎫23 k ,k =1,2,3,则m 的值为________.14.设随机变量ξ服从正态分布N (μ,σ2),向量a =(1,2)与向量b =(ξ,-1)的夹角为锐角的概率是12,则μ=________.15.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D (X )=________.16.一批玉米种子的发芽率是0.8,每穴只要有一粒发芽,就不需补种,否则需要补种.则每穴至少种________粒,才能保证每穴不需补种的概率大于98%.(lg 2≈0.301 0)四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)某班包括男生甲和女生乙在内共有6名班干部,其中男生4人,女生2人,从中任选3人参加义务劳动.(1)求男生甲或女生乙被选中的概率;(2)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (A )和P (A |B ).18.(本小题满分12分)在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为0.8,求小李在比赛中得分的数学期望与方差.19.(本小题满分12分)袋中装着标有数字1,2,3,4,5的卡片各2张,从袋中任取3张卡片,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字,求:(1)取出的3张卡片上的数字互不相同的概率;(2)随机变量X的分布列.20.(本小题满分12分)某市教育部门规定,高中学生三年在校期间必须参加不少于80小时的社区服务,该市教育部门随机抽取了全市200位高中学生参加社区服务时间的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(2)从全市高中学生(人数很多)中任意选取3位学生,记X为3位学生中参加社区服务时间不少于90小时的人数,试求随机变量X的分布列与期望.21.(本小题满分12分)为了评估某大米包装生产设备的性能,从该设备包装的大米中随机抽取100袋作为样本,称其重量为(1)为评判该生产线的性能,从该生产线中任抽取一袋,设其重量为X(kg),并根据以下不等式进行评判,①P(μ-σ<X≤μ+σ)≥0.682 7;②P(μ-2σ<X≤μ+2σ)≥0.954 5;③P(μ-3σ<X≤μ+3σ)≥0.997 3;若同时满足三个不等式,则生产设备为甲级;满足其中两个,则为乙级;仅满足其中一个,则为丙级;若全不满足,则为丁级.请判断该设备的等级.(2)将重量小于或等于μ-2σ与重量大于μ+2σ的包装认为是不合格的包装,从设备的生产线上随机抽取5袋大米,求其中不合格包装袋数Y的均值E(Y).22.(本小题满分12分)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有金额的球的袋中一次性随机摸出2个球,球上所标的金额之和为该顾客所获得的奖励金额.(1)若袋中所装的4个球中有1个所标的金额为50元,其余3个均为10元,求: ①顾客所获得的奖励金额为60元的概率;②顾客所获得的奖励金额的分布列及数学期望. (2)商场对奖励总金额的预算是60 000元,并规定袋中的4个球只能由标有金额10元和50元的两种球,或标有金额20元和40元的两种球组成.为了使顾客得到的奖励总金额尽可能符合商场的预算,且每位顾客所获得的奖励金额相对均衡,请对袋中的4个球的金额给出一个合适的设计,并说明理由.1.解析:∵ξ是等可能取值,∴P (ξ=k )=1n (k =1,2,…,n ),∴P (ξ<4)=3n=0.3,∴n =10.故选C.答案:C2.解析:m =1-0.5-0.2=0.3,所以E (ξ)=1×0.5+3×0.3+5×0.2=2.4.故选D. 答案:D3.解析:E (η)=(-1)×12 +0×13 +1×16 =-13 ,D (η)=⎝⎛⎭⎫-1+13 2 ×12+⎝⎛⎭⎫0+13 2×13 +⎝⎛⎭⎫1+13 2 ×16 =59 ,D (ξ)=D (3η-2)=32×59 =5.故选A. 答案:A4.解析:P (ξ≥2)=1-P (ξ=0)-P (ξ=1)=1-C 010 ⎝⎛⎭⎫12 0 ×⎝⎛⎭⎫1-12 10 -C 110 ⎝⎛⎭⎫12 1 ×⎝⎛⎭⎫1-12 9=1-11 024 -101 024 =1 0131 024.故选C. 答案:C5.解析:因为ξ~N (0,σ2),且P (-2≤ξ≤0)=0.4,所以P (ξ<-2)=0.5-0.4=0.1,所以P (ξ>2)=P (ξ<-2)=0.1.故选A.答案:A6.解析:P (B )=1×2×22×2×2 =12 ,P (AB )=1×1×22×2×2 =14 ,∴P (A |B )=P (AB )P (B )=12 .故选C.答案:C7.解析:随机变量X 服从超几何分布,其中N =10,M =6,n =3,则P (X =2)=C 26 C 14C 310=12.故选D. 答案:D8.解析:由题意知,玩一次游戏甲赢的概率为P =1025 =25 ,那么,玩三次游戏,甲赢两次的概率为C 23⎝⎛⎭⎫25 2×⎝⎛⎭⎫1-25 =36125.故选C. 答案:C9.解析:由条件概率公式P (B |A )=P (AB )P (A ) 及0<P (A )≤1知P (B |A )≥P (AB ),故A 错误;当事件A 包含事件B 时,有P (AB )=P (B ),此时P (B |A )=P (B )P (A ) ,故B 正确;由于0≤P (B |A )≤1,P (A |A )=1,故C ,D 错误.答案:ACD10.解析:由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8,P (η<2)=0.8,故1<x ≤2.故选BC.答案:BC11.解析:因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确;又E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.故选ACD.答案:ACD12.解析:记该游客游览i 个景点为事件A i ,i =0,1,则P (A 0)=⎝⎛⎭⎫1-23 ⎝⎛⎭⎫1-12 ⎝⎛⎭⎫1-12 ⎝⎛⎭⎫1-12 =124 , P (A 1)=23 ⎝⎛⎭⎫1-12 3 +⎝⎛⎭⎫1-23 C 13 ·12 ·⎝⎛⎭⎫1-12 2 =524,所以游客至多游览一个景点的概率为 P (A 0)+P (A 1)=124 +524 =14 ,故A 正确;随机变量X 的可能取值为0,1,2,3,4; P (X =0)=P (A 0)=124 ,P (X =1)=P (A 1)=524,P (X =2)=23 ×C 13 ×12 ×⎝⎛⎭⎫1-12 2 +⎝⎛⎭⎫1-23 ×C 23 ×⎝⎛⎭⎫12 2 ×⎝⎛⎭⎫1-12 =38,故B 正确;P (X =3)=23 ×C 23 ×⎝⎛⎭⎫12 2 ×⎝⎛⎭⎫1-12 +⎝⎛⎭⎫1-23 ×C 33 ×⎝⎛⎭⎫12 3 =724 ,P (X =4)=23 ×⎝⎛⎭⎫12 3 =112,故C 错误;数学期望为:E (X )=0×124 +1×524 +2×924 +3×724 +4×224 =136 ,故D 正确,故选ABD.答案:ABD13.解析:因为P (ξ=1)+P (ξ=2)+P (ξ=3)=1,即m ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫231+⎝⎛⎭⎫232+⎝⎛⎭⎫233 =1,所以m =2738 .答案:273814.解析:由向量a =(1,2)与向量b =(ξ,-1)的夹角是锐角,得a ·b >0,即ξ-2>0,解得ξ>2,则P (ξ>2)=12.根据正态分布密度曲线的对称性,可知μ=2.答案:215.解析:X ~B (100,0.02),所以D (X )=np (1-p )=100×0.02×0.98=1.96. 答案:1.9616.解析:记事件A 为“种一粒种子,发芽”, 则P (A )=0.8,P (A -)=1-0.8=0.2.因为每穴种n 粒相当于做了n 次独立重复试验,记事件B 为“每穴至少有一粒种子发芽”,则P (B - )=C 0n 0.80(1-0.8)n =0.2n , 所以P (B )=1-P (B -)=1-0.2n . 根据题意,得P (B )>98%, 即0.2n <0.02.两边同时取以10为底的对数,得 n lg 0.2<lg 0.02,即n (lg 2-1)<lg 2-2,所以n >lg 2-2lg 2-1 ≈-1.699 0-0.699 0≈2.43.因为n ∈N *,所以n 的最小正整数值为3. 答案:317.解析:(1)从6人中任选3人,选法共有C 36 =20(种), 其中男生甲和女生乙都不被选中的概率为C 3420 =15 .故男生甲或女生乙被选中的概率为1-15 =45.(2)由题知,P (A )=C 25 20 =12 .又P (B )=P (A )=12 ,P (AB )=C 1420 =15 ,所以P (A |B )=P (AB )P (B )=25 .18.解析:用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B (10,0.8),η=3ξ+2.因为E (ξ)=10×0.8=8,D (ξ)=10×0.8×(1-0.8)=1.6, 所以E (η)=E (3ξ+2)=3E (ξ)+2=3×8+2=26(分), D (η)=D (3ξ+2)=32×D (ξ)=9×1.6=14.4.所以小李在比赛中得分的数学期望为26分,方差为14.4.19.解析:(1)记“取出的3张卡片上的数字互不相同”为事件A ,则P (A )=C 35 C 12 C 12 C 12C 310 =23 . (2)随机变量X 的可能取值为2,3,4,5.P (X =2)=C 34 C 310 =130 ,P (X =3)=C 12 C 24 +C 22 C 14C 310=215 , P (X =4)=C 12 C 26 +C 22 C 16 C 310 =310 ,P (X =5)=C 12 C 28 +C 22 C 18C 310=815 , 所以随机变量X 的分布列为20.解析:(1)内的学生人数为200×0.06×5=60,参加社区服务时间在[95,100]内的学生人数为200×0.02×5=20,∴抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80.∴从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率P =80200=25. (2)由(1)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为25.由题意得,随机变量X 的所有可能取值为0,1,2,3,则P (X =0)=C 03 ⎝⎛⎭⎫25 0 ⎝⎛⎭⎫35 3 =27125 ; P (X =1)=C 13 ⎝⎛⎭⎫25 1 ⎝⎛⎭⎫35 2 =54125; P (X =2)=C 23 ⎝⎛⎭⎫25 2 ⎝⎛⎭⎫35 1 =36125; P (X =3)=C 33 ⎝⎛⎭⎫25 3 ⎝⎛⎭⎫35 0 =8125. ∴随机变量X 的分布列为∵X ~B ⎝⎛⎭⎫3,25 ,∴E (X )=3×25 =65.21.解析:(1)由题意得P (μ-σ<X ≤μ+σ)=P (9.89<X ≤10.31)=80100 =0.8>0.682 7,P (μ-2σ<X ≤μ+2σ)=P (9.68<X ≤10.52)=94100=0.94<0.954 5,P (μ-3σ<X ≤μ+3σ)=P (9.47<X ≤10.73)=99100 =0.99<0.997 3,所以该生产设备为丙级.(2)由表知,不合格的包装共有6袋,则从设备的生产线上随机抽一袋不合格的概率P =6100 =350, 由题意知Y 服从二项分布, 即Y ~B ⎝⎛⎭⎫5,350 , 所以E (Y )=5×350=0.3.22.解析:(1)①设顾客所获得的奖励金额为X .依题意,得P (X =60)=C 11 C 13C 24 =12 ,即顾客所获得的奖励金额为60元的概率为12 .②依题意,得X 的所有可能取值为20,60.P (X =20)=C 23C 24 =12 ,P (X =60)=12 ,即X 的分布列为所以E (X )=20×12 +60×12=40.(2)根据商场的预算,每位顾客的平均奖励金额为60元,所以,先寻找期望为60元的可能方案.对于金额由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是金额之和的最大值,所以数学期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是金额之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于金额由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获得的奖励金额为X 1,则X 1的分布列为X 1的数学期望E (X 1)=20×16 +60×23 +100×16=60, X 1的方差D (X 1)=(20-60)2×16 +(60-60)2×23 +(100-60)2×16 =1 6003. 对于方案2,即方案(20,20,40,40),设顾客所获得的奖励金额为X 2,则X 2的分布列为X 2的数学期望E (X 2)=40×16 +60×23 +80×16=60, X 2的方差D (X 2)=(40-60)2×16 +(60-60)2×23 +(80-60)2×16 =4003. 由于两种方案的奖励金额的期望都符合要求,但方案2的奖励金额的方差比方案1的小,所以应该选择方案2,即袋中的4个球,其中2个标金额20元,2个标金额40元.。
第三章 多维随机变量及其分布答案 一、填空题(每空3分)1.设二维随机变量(X,Y)的联合分布函数为22213,0,0(1)(1)(1)(,)0,A x y x y x y F x y ⎧+-≥≥⎪++++=⎨⎪⎩其他,则A=_____1____. 2.若二维随机变量(X,Y)的分布函数为F(x,y)则随机点落在矩形区域[x 1《<x<x 2,y 1<y<y 2]内的概率为_______ _(,)(,)(,)(,)22211112F x y F x y F x y F x y -+-.3.(X,Y)的联合分布率由下表给出,则α,β应满足的条件是13αβ+=;当=α 29 ,=β 19 时X 与Y 相互独立.4.设二维随机变量的密度函数2,01,02(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他,则(1)P X Y +≥=__6572____. 5.设随机变量X,Y 同分布,X 的密度函数为23,02(,)80,x x f x y ⎧≤≤⎪=⎨⎪⎩其他,设A=(X>b )与B=(Y>b )相互独立,且3()4P A B ⋃=,则6.在区间(0,1)内随机取两个数,则事件“两数之积大于14”的概率为_ _31ln 444- . 7. 设X 和Y 为两个随机变量,且34(0,0),(0)(0)77P X Y P X P Y ≥≥=≥=≥=,则(max{,}0)P X Y ≥=_57. 8.(1994年数学一)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量max{,}Z X Y =的分布律为 .9.(2003年数学一)设二维随机变量(),X Y 的概率密度为6,01,(,)0,x x y f x y ≤≤≤⎧=⎨⎩其它. 则{1}P x y +≤= 1/4 . 二、单项选择题(每题4分)1.下列函数可以作为二维分布函数的是( B ).A .⎩⎨⎧>+=.,0,8.0,1),(其他y x y x FB .⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt e y x F y x t s C . ⎰⎰=∞-∞---y x ts dsdt ey x F ),( D .⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x ey x F y x2.设平面区域D 由曲线1y x=及直线20,1,x y y e ===围成,二维随机变量在区域D 上服从均匀分布,则(X,Y)关于Y 的边缘密度函数在y=2处的值为(C ).A .12B .13C .14D .12-3.若(X,Y)服从二维均匀分布,则( B ).A .随机变量X,Y 都服从一维均匀分布B .随机变量X,Y 不一定服从一维均匀分布C .随机变量X,Y 一定都服从一维均匀分布D .随机变量X+Y 服从一维均匀分布4.在[0,]π上均匀地任取两数X 和Y ,则{cos()0}P X Y +<=( D ).A .1B .12 C . 23 D .345.(1990年数学三)设随机变量X 和Y 相互独立,其概率分布律为则下列式子正确的是( C ).A .;X Y =B .{}0;P X Y ==C .{}12;P X Y ==D .{} 1.P X Y ==6.(1999年数学三)设随机变量101(1,2)111424i X i -⎡⎤⎢⎥=⎢⎥⎣⎦:,且满足{}1201,P X X ==则12{}P X X =等于( A ).A .0;B .14; C .12; D .1.8.(2002年数学四)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则A .12()()f x f x +必为某一随机变量的分布密度;B .12()()F x F x 必为某一随机变量的分布函数;C .12()()F x F x +必为某一随机变量的分布函数;D .12()()f x f x 必为某一随机变量的分布密度.三、计算题(第一题20分,第二题24分)1.已知2(),(),(1,2,3),a bP X k P Y k k X Y k k===-==与相互独立.(1)确定a ,b 的值; (2)求(X,Y)的联合分布律;解:(1)由正则性()1kP X k ==∑有,612311a a a a ++=⇒=()1kP Y k =-=∑有,3614949b b b b ++=⇒= (2)(X,Y)的联合分布律为2. 设随机变量(X,Y)的密度函数为(34),0,0(,)0,x y ke x y p x y -+⎧>>=⎨⎩其他(1)确定常数k ; (2)求(X,Y)的分布函数; (3)求(01,02)P X Y <≤<≤.解:(1)∵0(34)01x y ke dx dy ∞∞-+⎰=⎰∴400011433()()430||112yy x x e dx k e e dy k k e∞-∞∞∞---=--⎰⋅==⎰∴k=12(2)143(34)(,)1212(1)(1)1200y x y xu v F x y e dudv ee ---+==⋅--⎰⎰ 43(1)(1)0,0yxeex y --=-->>∴34(1)(1),0,00,(,)x y ee x y F x y ⎧--⎪-->>⎨⎪⎩=其他(3)(01,02)(1,2)(0,0)(1,0)(0,2)P X Y F F F F <≤<≤=+--38(1)(1)ee --=--3.设随机变量X,Y 相互独立,且各自的密度函数为121,0()20,0x X e x p x x ⎧≥⎪=⎨⎪<⎩,131,0()30,0x Y e y p y y ⎧≥⎪=⎨⎪<⎩,求Z=X+Y 的密度函数 解:Z=X+Y 的密度函数()()()Z XY p z px p z x dx ∞-∞=-⎰∵()X p x 在x ≥0时有非零值,()Y p z x -在z-x ≥0即x ≤z 时有非零值 ∴()()X Y p x p z x -在0≤x ≤z 时有非零值336362000111()[]|236zzz x z x z x xzZ p z e e dx e e dx e e -------=⋅==-⎰⎰ 36(1)zz e e --=--当z<0时,()0Z p z =所以Z=X+Y 的密度函数为36(1),0()0,0z zZ e e z p z z --⎧⎪--≥=⎨⎪<⎩4.设随机变量X,Y 的联合密度函数为3412,0,0(,)0,x y e x y p x y --⎧>>=⎨⎩其他,分别求下列概率密度函数.(1) {,}M Max X Y =; (2) {,}N Min X Y =.解:(1)因为3430()(,)123x yx X p x p x y dy edy e ∞∞----∞===⎰⎰3440()(,)124x y y Y p y p x y dx e dy e ∞∞----∞===⎰⎰所以(,)()()X Y p x y p x p y =即X 与Y 独立. 所以当z<0时,()0M F z =当z ≥0时,()()(,)()()M F z P M z P X z Y z P X z P Y z =≤=≤≤=≤≤34()()(1)(1)z z X Y F z F z e e --==--所以34430,0()3(1)4(1),0M z z z z z p z e e e e z ----<⎧=⎨-+-≥⎩3470,0347,0z z zz e e e z ---<⎧=⎨+-≥⎩ (2) 当z<0时,()0N F z =当z ≥0时,()()(,)1()()N F z P N z P X z Y z P X z P Y z =>=>>=->>7z e -=所以70,0()7,0M z z p z e z -<⎧=⎨≥⎩3470,0347,0zz zz e e e z ---<⎧=⎨+-≥⎩6.设随机变量(X,Y)的联合密度函数分别为3,01,0(,)0,x x y xp x y <<<<⎧=⎨⎩其他,求X和Y 的边际密度函数.解:2()(,)33,01xX p x p x y dy xdy x x ∞-∞===<<⎰⎰1223()(,)3(1),012Y yp y p x y dx xdx y x y ∞-∞===-<<⎰⎰。
随机变量及其分布试题
1.已知随机变量X满足D(X)=2,则D(3X+2)=( C )A.2 B.8 C.18 D.20
2.某次语文考试中考生的分数X~N(90,100),则分数在70~110分的考生占总考生数的百分比是( B )
A.68.26% B.95.44% C.99.74% D.31.74%
3.两台相互独立工作的电脑,产生故障的概率分别为a,b,则产生故障的电脑台数的均值为(B )
A. B. C. D.
4.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4、0.5,则恰有一人击中敌机的概率为(D )
A.0.9 B.0.2 C.0.7 D.0.5
5.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是103的事件为(C )
A.恰有1只是坏的 B.4只全是好的 C.恰有2只是好的 D.至多有2只是坏的
6.若X是离散型随机变量,P(X=x1)=32,P(X=x2)=31,且x1<x2.又已知E(X)=34,D(X)=92,则x1+x2的值为( D )
A.35 B.37 C.311 D.3
7.将一颗骰子连掷100次,则点6出现次数X的均值E(X)=__11、350
8.设l为平面上过点(0,1)的直线,l的斜率等可能地取-2,-,-25,0,25,,2,用X表示坐标原点到l的距离,
则随机变量X的数学期望EX=___4/7_____.
9.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生
的人数,则数学期望(均值)E(ξ)_4/7_______(结果用最简分数表示)
10.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一
球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以
B
表示由乙罐取出的球是红球的事件.则下列结论中正确的是__②④______(写出所有正确结论的编号).
①P(B)=52;②P(B|A1)=115;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;
11.袋中有5个大小相同的小球,其中1个白球和4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直
到取出白球为止.求取球次数X的均值和方差.
[解析] 取球次数X是一个随机变量,X的所有可能值是1、2、3、4、5.为了求X的均值和方差,可先求X的分布
列.于是,我们得到随机变量X的分布列
X 1 2 3 4
5
P 0.2 0.2 0.2 0.2
0.2
由随机变量的均值和方差的定义可求得:
E(X
)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2
=0.2×(1+2+3+4+5)=3,
X 0 1 2
3
P 0.1 a b
0.1
D(X
)=(1-3)2×0.2+(2-3)2×0.2+(3-3)2×0.2+(4-3)2×0.2+(5-3)2×0.2=0.2×(22+12+02+12+22)
=2.
12.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可
进进入第二次烧制,两次烧制过程相互独立.根据该厂现有技术水平,经过第一次烧制后,甲、乙、丙三件产品合
格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75,
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为X,求随机变量X的均值.
. [解析] 分别记甲、乙、丙经第一次烧制后合格为事件A1、A2、A3.
Ⅰ.设E表示第一次烧制后恰好有一件合格,则
P(E)=P(A1··)+P(·A2·)+P(··A
3
)=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38.
Ⅱ.解法一:因为每件工艺品经过两次烧制后合格的概率均为p=0.3,所以X~B(3,0.3),故E(X)=np=3×
0.3=0.9.
13甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)设随机变量X为这五名志愿者中参加A岗位服务的人数,求X的分布列.
[解析] (1)记甲、乙两人同时参加A岗位服务为事件EA,那么P(EA)=44=401.
即甲、乙两人同时参加A岗位服务的概率是401.
(2)记甲、乙两人同时参加同一岗位服务为事件E,那么P(E)=44=101.
所以,甲、乙两人不在同一岗位服务的概率是P()=1-P(E)=109.
(3)随机变量X可能取的值为1,2,事件“X=2”是指有两人同时参加A岗位服务,则P(X=2)=44=41.所以P(
X
=1)=1-P(X=2)=43,X的分布列为:
X 1
2
P
43 41
14.坛子里放着5个相同大小,相同形状的咸鸭蛋,其中有3个是绿皮的,2个是白皮的.如果不放回地依次拿出2
个鸭蛋,求:
(1)第一次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿到绿皮鸭蛋的概率;
(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.
[解析] 设第1次拿出绿皮鸭蛋为事件A,第2次拿出绿皮鸭蛋为事件B,则第1次和第2次都拿出绿皮鸭蛋为
事件AB.
(1)从5个鸭蛋中不放回地依次拿出2个的基本事件数为μ(Ω)=A52=20.
又μ(A)=A31×A41=12.于是P(A)=ΩA=2012=53.
(2)因为μ(AB)=A32=6,所以P(AB)=ΩAB=206=103.
(3)解法一:由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为
P(B|A
)=AAB=53=21.
15.设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的
值为两条棱之间的距离;当两条棱异面时,. (1)求概率.(2)求的分布列,并求其数学期望.
【解析】(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱, ∴共有对
相交棱,∴ .
(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,
∴ ,∴.
∴随机变量的分布列是:
0 1
∴.
16.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无
放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.
(1)求X的分布列.
(2)求X的数学期望E(X).
【解析】(1)X=3,4,5,6,所以X的分布列为:
X 3 4 5 6
P
(2)X的数学期望E(X)=