当前位置:文档之家› 中央空调冷冻水系统循环水泵的选择

中央空调冷冻水系统循环水泵的选择

中央空调冷冻水系统循环水泵的选择
中央空调冷冻水系统循环水泵的选择

空调循环泵的选择

空调循环泵的选择 1、循环水泵容量过大的原因如下: 1.1 设计冷负荷偏大 设计冷负荷是选择设备的主要依据,所以正确地计算建筑冷负荷对整个空调系统的设计十分重要。目前,教科书及设计手册中提供的空调负荷计算方法不论是计算围护结构的墙壁负荷,还是门窗负荷,其计算结果都是针对某一具体房间而言。然而,空调系统设备容量是依据整个建筑的冷负荷确定。由于建筑内各房间的朝向、位置、使用功能及其发热源等因素的不同,往往造成各房间最大冷负荷出现的时间并不相同。因此,建筑冷负荷的最大值应为每个房间逐时负荷叠加的最大值。据调查在我国有部分设计人员在计算建筑冷负荷时只是简单地将每个房间的最大冷负荷进行叠加,导致计算结果远大于实际需求负荷。所以我们必须对此给予足够的重视,使设计负荷的确定更加合理正确。 1.2 系统循环阻力偏大 在计算系统循环阻力时,由于设计人员经验不足,使得一些计算参数取值过于保守,造成循环阻力计算值偏大,更有甚者,在施工图设计阶段采用估算方法确定循环阻力,致使计算循环阻力比实际值大一倍以上。 1.3 系统静压问题

空调系统充满水才能运行,水泵的进、出口承受相同的静水压力。因此,所选水泵的扬程只克服管道系统阻力即可。然而,有的设计者却把静水压力也计入该循环阻力之内,这当然会使循环水泵的容量增大很多。 1.4 系统水力平衡问题 由于设计时不认真进行系统的水力平衡计算,工程竣工后又未按要求进行全面调试,往往造成系统水力失调,系统出现冷热不均的现象。有些技术人员错误地认为造成此现象的原因是循环水泵的容量太小,结果只简单地采用加大水泵的方法解决了之,自然也就使水泵容量增大。 2、水泵特性曲线及最佳工作点 2.1 水泵的流量——扬程特性曲线 水泵的流量——扬程特性曲线一般有三种类型:平坦型、陡降型、驼峰型。用于空调水循环系统的水泵应具有平坦特性,其零流量与最大流量之间的扬程变化范围不应大于10%-15%;陡降特性的水泵由于其最大流量与最小流量间的扬程变化太大,故不宜选用;驼峰特性的水泵也不可采用,因为在两台水泵并联运行时可能引起负荷和扬程的周期变化,而当这一变化的频率等于系统的自振频率时便产生危险的“振荡现象”,而此现象将对系统的正常运行造成一定影响。

中央空调循环水泵选择方法介绍

中央空调循环水泵选择方法介绍 一问题的提出 在中央空调系统中,循环水泵夏季输送冷冻水,冬季输送热水至空调末端装置。工程设计应按照空调系统水流量和系统阻力选择性能良好的水泵。有关暖通空调设计手册都有详细设计计算方法。问题在于实际工程设计时,某些工程师未按照计算方法进行设计计算,而是凭经验想当然,对系统以及某些空调设备、配件等新产品缺乏认真研究,结果导致所选择的水泵不能满足要求,或者造成运行费用增加,甚至水泵不能正常工作,这不得不引起空调设计者的高度重视。 二理论分析 空调系统水流量的大小由负荷及供回水温差确定,系统阻力通过水力计算求得。按流量和阻力选择的水泵,运行时应处于高效区,其工作点为水泵性能曲线和管路特性曲线的交点,如图1中A点。而工程中选择的水泵常常出现两种不正常情况。 1)设计时比较保守,水系统实际流速取值较低,估算系统阻力较大,导致选水泵时扬程加 大,使所选择的循环水泵扬程比设计流量下的系统阻力大得多。如图2: 流量QA是系统设计流量,在此流量下水泵扬程为HB即可。实际选择的水泵扬程为HS。为了保证QA,则要改变管路特性,即通过关小水泵进出口的阀门,使管路特性曲线由Ⅰ变为Ⅱ。显然,ΔP=HB-HA完全通过阀门节流,这是非常不经济的,也是工程中需避免出现的情况,如果冬季运行采用同一套泵工作,由于流量变小,节流更严重,就更不经济,甚至造成水泵工作点不稳定。

2)设计过于自信,对空调系统阻力估算偏小,所选泵扬程小于设计流量下系统阻 力。如图3所示: 设计工作点为A,水泵流量为QA,扬程为HA。水泵实际运行时管路特性曲线不是Ⅰ,而是Ⅱ,运行工作点为B,流量QBA,且B点不在水泵高效区。显然这比第一种情况更为不利。解决的唯一办法只能更换水泵。 三工程实例 例1 甲工程为一单体高层建筑,建筑高度29m,泵房设在主楼地下室。设计选用进口开利离心式冷冻机一台,制冷量为1163 kW,配用2台循环水泵,1用1备,水泵参数见表1。 刚开始调试运动时,发现水泵电机电流过大,水泵出水管振动厉害,且有异常声音。水泵扬程仅为0.28MPa,电机电流I=115A。分析原因,为分集水器压差仅为0.13MPa,所选水泵扬程偏大。此时水泵工作点为低扬程大流量,电机严重超载;水泵气蚀严重,管路抖动厉害,声音异常;关小水泵和冷冻机蒸发器进、出口阀门,保证蒸发器进出口要求的压差Δp=(92±5)kPa,使水泵恢复正常工作。此时测试数据如表2(原泵)。 设计工作点为A,水泵流量为QA,扬程为HA。水泵实际运行时管路特性曲线不是Ⅰ,而是Ⅱ,运行工作点为B,流量QBA,且B点不在水泵高效区。显然这比第一种情况更为不利。解决的唯一办法只能更换水泵。三工程实例 例1 甲工程为一单体高层建筑,建筑高度29m,泵房设在主楼地下室。设计选用进口开利离心式冷冻机一台,制冷量为1163 kW,配用2台循环水泵,1用1备,水泵参数见表1。 刚开始调试运动时,发现水泵电机电流过大,水泵出水管振动厉害,且有异常声音。水泵扬程仅为0.28MPa,电机电流I=115A。分析原因,为分集水器压差仅为0.13MPa,所选水泵扬程偏大。此时水泵工作点为低扬程大流量,电机严重超载;水泵气蚀严重,管路抖动厉害,声音异常;关小水泵和冷冻机蒸发器进、出口阀门,保证蒸发器进出口要求的压差Δp=(92±5)kPa,使水泵恢复正常工作。此时测试数据如表2(原泵)。

空调循环水加药装置特点及加药量计算

精心整理空调循环水加药装置特点、加药量计算 潍坊山水环保机械制造有限公司 空调循环水存在的问题及特点: 空调循环水一般分为三类:自来水、软化水和去离子水。最常用的为自来水。 存在的问题: 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 4 SO 等离子,溶解性固体,悬浮物相应增加,空气中污染物如尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥, 运营成本 杀菌

2、腐蚀指标 设备原材料、设备设计、制造、包装、运输等过程中执行以下标准: GB7190.2-1997 《大型玻璃纤维增强塑料冷却塔》 GB191-90 《包装储运图标记》 GB3538-83 《运输包装件各部件的标识方法》 GB6388-86 《运输包装收发货标志》 GB12348-90 《工业企业厂界噪声标准》 Q/LB08-95 《钢筋混凝土结构冷却塔安装》 药剂选用原则 循环水系统处理分成二大部分,第一部分:补充水处理,第二部分:循环水处理。循环水处理可以概括为去除悬浮物、控制泥垢及结垢、控制腐蚀及微生物杀菌等四个系统。泥垢及结垢、控制腐蚀及微生物等一般采用加药控制。 向循环水中投加阻垢、分散剂的方法来防止盐类垢。 加药剂为聚磷酸盐(三聚磷酸钠) 敞开式循环冷却水的加氯量处理宜采用定期投加,每天投加1~3次,余氯量控制在0.5~1.0mg/l之内。每

次加氯时间采用3~4h。加氯量按下式计算: G t =Q·g t /1000=4000立方米每小时*3mg/l=1.2Kg/h 式中G t——加氯量(Kg/h) Q——循环冷却水量(m3/h) g t——单位循环冷却水的加氯量,采用2~4mg/l 药剂的选用及投加量 缓蚀阻垢剂的复合配方为:铬酸盐+聚磷酸盐 投加量:投加量须根据循环水水质情况而确定,一般其投加量为40~60mg/l。 A、 G= 注: 2~5mg/l (1) (2) 1 次。每小 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:66/H 2、杀菌剂加药装置 根据前面计算可知,本系统杀菌剂加药量为192kg/天,(100%纯度按每天溶药一次,药剂配制浓芳按20%设计,则每天的溶药量为192÷0.2=960kg/d,每次的溶药量为960kg/次。每小时投加量为960÷24=4L/h。 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:40L/H

基于PLC的中央空调水泵变频调速系统设计论文

基于PLC的中央空调水泵变频调速系统设计 摘要 本文针对中央空调的节能问题,对中央空调水泵变频调速系统进行分析及设计。利用可编程控制器、模拟量扩展模块、变频器、温度传感器等代替传统再热量调节系统,实现中央空调水泵的变频调速。通过对空调出口温度进行检测,变频系统实时调节中央空调水泵转速,达到节能目的。采用变频技术控制中央空调水泵,是当前空调系统节能改造的有效途径。 关键词:中央空调,变频调速技术,可编程控制器PLC,PID

目录 1 绪论 (1) 1.1 中央空调变频调速的意义 (1) 1.2 变频调速技术介绍 (1) 1.3 本文的主要工作 (3) 2 系统原理分析及方案设计 (5) 2.1 中央空调结构原理 (5) 2.2 变频调速系统工作原理 (7) 2.3空调变频控制系统的构架 (8) 2.4总体设计方案的确定 (9) 3 系统硬件设计 (11) 3.1 可编程控制器的选型 (11) 3.1.1 可编程控制器概述 (11) 3.1.2 可编程控制器的选型 (12) 3.2 模拟量I/O模块及传感器选型 (14) 3.2.1 模拟量输入模块选型(A/D) (14) 3.2.2 模拟量输出模块选型(D/A) (17) 3.2.3 温度传感器选型 (18) 3.3 变频器的选型及参数设置 (20) 3.3.1 变频器的选型 (20) 3.3.1 变频器的参数设置 (21) 3.4 总体电路图 (23) 4 系统软件设计 (25) 4.1内存变量分配 (25) 4.2 控制系统程序设计 (27) 4.2.1 主程序设计 (27) 4.2.2 PID控制的设计及实现 (31) 4.2.3 冷却水系统循环控制及PID调节程序 (33) 4.2.4 冷冻水系统循环控制及PID调节程序 (37)

中央空调水系统施工交底

中央空调水系统施工交底 一、行为规范 1、施工人员必须穿着公司统一工服。 2、施工人员必须遵守与客户约定的时间。 3、高空作业必须佩戴安全带。 4、打孔、焊接作业必须佩戴防尘口罩。 5、人字梯须加防滑绳,必须结实牢靠方可使用。 6、不得使用电缆线已损坏或松动了的排插。 7、不得用非礼貌态度、语言跟客户交谈。 8、严禁吸烟、酗酒、打闹嬉戏。 9、严禁违章冒险作业。 10、工完料尽场地清,养成文明施工习惯。 二、开工交接 1、现场负责人跟业主沟通确定空调内外机的安装位置、线控器的位置、墙面开孔位置、管道走向、电源接驳点等问题。 2、现场负责人根据销售安装合同检查到场材料的品牌、型号、规格尺寸;拆开设备包装箱,检查包装箱内的设备是否齐全,并收集使用说明书、保修卡等资料。 三、室内机安装 1、室内机固定需要四根吊杆,要保证吊杆垂直,吊装丝杆规格不小于Φ10mm。

2、室内机安装位置要便于安装和检修,安装位置附近应没有任何热源及蒸汽源;室内机离开电磁波发射源3米以上,或者采取措施,防止外来射线的干扰。 3、内机吊装要保证机器水平,偏差在5mm以内,同时为保证排水通畅一端要略高于排水端。 4、室内机安装离房顶距离不得小于1公分,以避免机器运行时与房顶产生共振; 5、主机、水泵、风机盘管等管道的进、出水口均应安装橡胶(金属)减振软接头。 6、室内机吊装丝杆下方用双螺母固定,安装完成后丝杆下方长度超出螺母100mm左右; 7、室内机保护完成后,“出风口开设尺寸标识”应粘贴在机器出风口中心位置,“回风口开设尺寸标识”应粘贴在机器回风口中心位置,“检修口开设尺寸标识“应粘贴在回风口前方平行位置,并对齐,标识贴好后应平整牢固,不脱落、不歪斜。 四、室外机安装 1、室外机的安装位置满足维修空间、散热、噪音影响等方面要求,按照国家规定要求空调不能装在一楼离地面1.8m以下或离对面门、窗太近的地方以免影响他人等,也不能装在空间太小的过道、地下室、阳台内等散热不好的地方;外机尽量不要装在阳光直射和有其它热源的地方,位置要便于通风,主机四周应留有不少于50cm的维修空间,同时保证出、回风顺畅,进、回水管上的配件应严格按照施

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

空调循环水泵的选择

空调循环水泵的选择 1 循环水泵容量过大的问题 循环水泵容量过大在我国是普遍存在的问题,其容量常常达到实际需要的2-4倍,造成工程投资和运行费用的严重浪费。其主要原因如下:1.1 设计冷负荷偏大 设计冷负荷是选择设备的主要依据,所以正确地计算建筑冷负荷对整个空调系统的设计十分重要。目前,教科书及设计手册中提供的空调负荷计算方法不论是计算围护结构的墙壁负荷,还是门窗负荷,其计算结果都是针对某一具体房间而言。然而,空调系统设备容量是依据整个建筑的冷负荷确定。由于建筑内各房间的朝向、位置、使用功能及其发热源等因素的不同,往往造成各房间最大冷负荷出现的时间并不相同。因此,建筑冷负荷的最大值应为每个房间逐时负荷叠加的最大值。据调查在我国有部分设计人员在计算建筑冷负荷时只是简单地将每个房间的最大冷负荷进行叠加,导致计算结果远大于实际需求负荷。所以我们必须对此给予足够的重视,使设计负荷的确定更加合理正确。 1.2 系统循环阻力偏大 在计算系统循环阻力时,由于设计人员经验不足,使得一些计算参数取值过于保守,造成循环阻力计算值偏大,更有甚者,在施工图设计阶段采用估算方法确定循环阻力,致使计算循环阻力比实际值大一倍以上。

1.3 系统静压问题 空调系统充满水才能运行,水泵的进、出口承受相同的静水压力。因此,所选水泵的扬程只克服管道系统阻力即可。然而,有的设计者却把静水压力也计入该循环阻力之内,这当然会使循环水泵的容量增大很多。 1.4 系统水力平衡问题 由于设计时不认真进行系统的水力平衡计算,工程竣工后又未按要求进行全面调试,往往造成系统水力失调,系统出现冷热不均的现象。有些技术人员错误地认为造成此现象的原因是循环水泵的容量太小,结果只简单地采用加大水泵的方法解决了之,自然也就使水泵容量增大。 2 水泵特性曲线及最佳工作点 2.1 水泵的流量——扬程特性曲线 水泵的流量——扬程特性曲线一般有三种类型:平坦型、陡降型、驼峰型(如图2.1所示)。用于空调水循环系统的水泵应具有平坦特性,其零流量与最大流量之间的扬程变化范围不应大于10%-15%;陡降特性的水泵由于其最大流量与最小流量间的扬程变化太大,故不宜选用;驼峰特性的水泵也不可采用,因为在两台水泵并联运行时可能引起负荷和扬程的周期变化,而当这一变化的频率等于系统的自振频率时便产生危险的“振荡现象”,而此现象将对系统的正常运行造成一定影响。 2.2 最佳工作点

中央空调水系统安装工序

中央空调安装工序及规范 风机盘管安装(室内机): 1-1、安装工序 (1).开箱检查 (2).预装风机盘管帆布软连接 (3).确定好内机位置 (4).确定吊杆尺寸,下料加工吊杆 (5).确定好室内机尺寸,划线电锤打点 (6).固定吊杆,吊装内机 (7).施工所需辅材: 丝杆,拉爆三件套,螺母,垫片,帆布,铁皮条,燕尾丝。 (8).施工主要使用工具: 脚手架,梯子,活动扳手,手锤,电锤(钻头根据拉爆型号而定),叉扳手(大小根据型号而定),切割机,锯片,卷尺,记号笔(石笔),电源线

1-2 、安装规范 (1). 风机盘管在搬运过程中应小心轻放,不得使风机盘管室外主机承受重压,严禁手持叶轮、涡壳进行搬运,风机盘管室外主机在安装前应进行通电试验,要求通电时间在2 分钟以上,保证无异常杂音及异常情况后方可安装。 (2). 风机盘管在安装过程中应确保风机、盘管、外壳、保温层等完好无损。 (3).风机盘管安装应保持略坡向冷凝盘出水口10mm风机盘管安装必须牢固可靠,屋顶与盘管距离应》30mm所有室内机吊装应加设回风箱,避免使用时影响其使用效果,且应考虑维修空间。 ( 4) . 风机盘管只承受本身的重力,不可承受风管、水管及其余物体的外力。 ( 5) . 接管时不能使风机盘管接头发生变形和扭曲。 ( 6) . 进、回、排水管接头处应密封,管路必须进行保温处理,盘管风口连接需用软接,接口应牢固、严密,风机盘管安装后应清洁冷凝水盘。 (7). 风机盘管接管标准配置为阀门和软接头,若有电磁阀,须安装在回水管上,同时确保电磁阀安装位置有足够的维修空间,确保电磁阀方向与水流方向一致。 (8).风机盘管距顶>600mm严禁使用通丝予以吊装应设固定支架予以安装并固定。 ( 9) . 严禁不同型号风机盘管共用一个控制开关。风机盘管安装完成后,应轻轻转动风机叶轮,检查是否有磨擦声。 ( 10) . 水系统试压完毕后,将风机盘管及时做好承品保护,同时谨防脏物落入托盘中堵塞冷凝水管。 管路安装: 1-1 、安装工序 (1). 根据图纸要求确定管道走向,放线 2). 支吊架制作 3). 电锤打眼,支吊架安装

PDP空调循环水系统冲洗

四川虹欧显示器件有限公司 PDP项目一期工程普通机电安装工程 暖通空调工程循环水系统 通水方案 编写单位:四川华西集团有限公司PDP项目部 编写日期:2008年7月6日

目录 一、101#,102#、103#工程概况 (1) 二、冷冻水系统冲洗 (4) 三、温水、高温热水系统冲洗 (8) 四、冲洗系统的人员安排和组织机构 (12) 五、冲洗时间安排 (13)

一、101#,102#、103#工程概况 1.101#厂房概况 101#厂房所有空调机组和风机盘管均设置在两侧支持区,干冷盘管设置在一层及三层下夹层,空调水管系统分为低温冷冻水系统(LCH),中温冷冻水系统(CH),温水系统(WW),高温热水系统(HW),蒸汽系统(S),具体情况如下: 以上空调处理设备冷热水供应管路均采用无缝钢管,管路总量在30416米,由冷冻站和制热站引入生产车间支持区,冷热水沿管路供末端设备进行冷热交换,管路在进出末端设备的分支管上设置控制阀组,调节末端空调设备的换热量,经过换热后的冷热水再沿回水管路至冷热站,进行再次循环。

2.102#厂房概况 102#冷冻站分为三个独立的供回水系统,基本内容如下: (1)低温冷冻水系统:设计选用离心制冷机组6台,每台制冷量1150USRT(4043KW),设备供回水温度为5/12℃,冷冻水系统分为2级,即一次冷冻水和二次冷冻水,其中一次冷冻水系统为定流量,二次冷冻水系统为变流量系统,设计还选用一次冷冻水泵6台,二次冷冻水泵4台(变频泵),三用一备,补水箱一个,膨胀水箱一套,冷却水泵6台。 (2)中温冷冻水系统,设计选用离心制冷机组10台,九用一备(其中3台带热回收系统)。每台制冷量为1400USRT(4922KW),设备供回水温度为13/18℃,冷冻水系统分为2级,即一次冷冻水和二次冷冻水,其中一次冷冻水系统为定流量,二次冷冻水系统为变流量系统,设计还选用一次冷冻水泵10台(九用一备),二次冷冻水泵6台(变频泵,五用一备),补水箱一个,膨胀水箱一套,冷却水泵`10台。 (3)温水系统,热回收制冷机组3台,每台产生热量5450KW,设备供回水温度为37/29℃,热回收系统分为2级,即一次热回收系统和二次热回收系统,其中一次冷水系统为定流量,二次冷水系统为变流量系统,设计还选用一次热回收水泵3台,二次冷冻水泵4台(变频泵,三用一备),板式换热器3台,补水箱一个,膨胀水箱一套。同时热回收系统由锅炉房作为补充热源。 3.103#厂房概况 长虹PDP锅炉房位于长虹工业园虹欧显示器件有限公司103厂

中央空调水泵改造节能原理

中央空调水泵改造节能原理 一、水泵的基本知识 水泵的几个参数 1、流量Q 水泵在单位时间内所输送的液体的体积,称体各流量,常用单位米3/小时(m3/h)、米3/秒(m3/s)或开/秒(L/S) 2、扬程H 水泵对单位重量的液体所做的功,即单位重量的液体通过水泵后其能量的增值,法定单位Kpa或Pa,习惯上折算成抽送液柱高度m< 3、轴功率N 原动机传送给泵轴的功率(输入功率)称水泵轴功率。常用单位KW。 4、效率Y] 水泵输出功率与轴功率比值。 水泵的扬程特性(如下图) 扬程特性是一条不规则的下倾曲线,在任一个流量下都有一个相应的(固有的)扬程,即水泵选定了,它的扬程特性也就定了。 设计工况点: 水泵运行时,在某一流量下效率(门)是不同的。其中最局效率点即是设计工况点。选泵时应使水泵在设计工况点(最高效率点)附近工作。 水泵的选型 中央空调系统的主机和系统设备管路确定后,

流量根据主机额定流量来确定,流量确定后也就是管内水的流速确定,就可以根据水的流速计算出系统的阻力。 流速越大,阻力越大,并以此为依据确定水泵的扬程。知道了水泵的流量和扬程就可以选水泵了。 深圳国际商品交易大厦中央空调系统原设三台相同型号的主机。选用一机一泵的形式,即一台主机对应一台冷冻泵,一台冷却泵。 假设三台主机同时开启,三台冷冻泵也同时开启,这时一台主机需要流量212m3/h,三台主机就需要212X3=636 m3/h,这时系统扬程在40米水柱,也就是每台水泵约按流量212,扬程40m来运型。 当二台主机同时开启,二台冷冻泵也同时开启,二台主机需要流量212 x 2=424m3/h,那么二台冷冻泵正常工作时应提供212 X 3=424m3/h,这时系统扬程在30m水柱,也就是每台水泵应按212 m3/h、30m 扬程。 当一台主机开启,即一台冷冻泵开启,主机需要212X 1=212m3/h, 那么,冷冻泵正常工作应按212X 1=212m3/h,这时系统扬程20m, 水大厦的冷冻泵是按设计三台主机,三台冷冻水泵同时开始,即每台水型按Q=212, H=40米送型。

中央空调水循环系统简介

中央空调系统简介 随着我国国民经济的快速增长,中央空调被广泛使用,尤其是城市的宾馆、饭店、大型商场、娱乐场所、大型写字楼、办公楼、现代化生产车间都相继安装了中央空调设备,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。热媒水在热水锅炉中被加热至60℃左右后送往风机盘管,与空气进行热交换降至55℃左右后,再返回到锅炉中加热。热水和冷冻水共用一套管道系统。1.中央空调系统特点 中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。 2.冷冻水系统特点 冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色水质。因此,对于冷冻水系统水处理 的重点是控制设备的腐蚀及粘泥的产生。 3.冷却水系统特点 冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。含盐量上升后极易在热交换器的水侧形成水垢,垢的形成不仅使传热效率下降、制冷负荷增大,还会形成垢下腐蚀,造成水电浪费和缩短机组使用寿命。冷却水系统的另一特点是保有水量小,极易浓缩,如掌握不好排污量和补水量,浓缩倍数波动较大,难以保证水处理效果。因此,对于冷却水系统水处理的重点是控制结垢兼顾缓蚀。 中央空调系统为什么会有上面所讲的问题呢,主要是由于其媒介——水所造成的。 自然界中的水是怎样的? 水在自然界中大量的存在,比较容易取得,价格便宜。水的物理化学性质稳定,水的潜热大,这是水成为工业首选作为冷却介质或热载体的重要原因。但自然界中的水并非纯净的物质,因为水是很好的溶剂,当它流过岩石、矿床和土壤时,就会有很多的盐类溶入其中。空气中带入尘埃、有机物及其它们的分解产物,水中生长的物质,都将成为各种各样的杂质,溶入水中。那么,溶入水中的盐类和杂质以离子形态存在的有阳离子:Ca2+、Mg2+、Na+、Fe2+、Zn2+、 Cu2+、Mn2+、H+、NH4+等;以阴离子形态存在的有:CO 32-、HCO 3 -、Cl-、SO 4 2-、NO 3 -、HSiO 3 -、F-、 H 2PO 4 -、OH-、H 2 BO 3 -、HPO 4 2-、HCO 3 -、NO 2 -、HS-等;以气态存在于水中的有:CO 2 、O 2 、N 2 、HN 3 、 SO 2、H 2 S、CH 4 、H 2 等;以悬浮物形式存在于水中的有粘土、无机的土壤污物、有机污物、有 机废水、各种微生物;还有以胶体形式存在于水中的SiO 2、Fe 2 O 3 、Al 2 O 3 、MnO 2 、植物色素、 生长在水中的各种细菌和藻类。 人类可利用的淡水资源主要来自地表水(江河水、湖水)和地下水(井水),不同水源、不同地区、周围的不同环境和不同季节,自然界水中的各类杂质的品种和量有很大的差别。

中央空调循环水处理

中央空调循环水处理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

中央空调循环水处理 随着我国国民经济的快速增长,中央空调被广泛使用,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。热水和冷冻水共用一套管道系统。 1.中央空调系统特点 中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。 2.冷冻水系统特点 冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色

水质。冷冻水的化学处理采用一次性投加药剂的方法,重点控制设备的腐蚀及粘泥的产生。 3.冷却水系统特点 冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。含盐量上升后极易在热交换器的水侧形成水垢,垢的形成不仅使传热效率下降、制冷负荷增大,还会形成垢下腐蚀,造成水电浪费和缩短机组使用寿命。冷却水系统的另一特点是保有水量小,极易浓缩,如掌握不好排污量和补水量,浓缩倍数波动较大,难以保证水处理效果。因此,对于冷却水系统水处理的重点是控制结垢兼顾缓蚀并定时加药、排污、补水。 针对中央空调系统的特点和实际情况,选择适宜的水处理药剂和摸索出一条简便且适合现场情况的粗放式的管理模式,具有十分重要的现实意义。它可以有效的控制设备的腐蚀和结垢,延长设备的寿命,减少维修工作量,提高制冷效率,满足客户和工艺生产的需要。 ————国家工业水处理工程技术研究中心张凤仙高级工程师

循环泵扬程的估算方法

循环泵扬程的估算方法 水泵扬程的计算公式本来就是估算,所以还不如彻底估算冷冻水泵扬程计算方法 空调闭式水系统的扬程计算公式为:H=1.2∑△h,其中1.2为附加安全系数。而∑△h为管路总阻力损失。那么,∑△h是怎么计算的? 对闭式水系统: ∑△h=Hf+Hd+Hm。 Hf、Hd——水系统沿程阻力和局部阻力损失Pa。 Hm——设备阻力损失Pa。 估算方法1: 暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O): Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0. 3,最不利环路较短时K值取0.4~0.6 估算方法2: 这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是量常用的系统。 1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。 2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。目前设计中冷水管路的比摩组宜控制在150~200Pa/m范围内,管径较大时,取值可小些。 3.空调未端装置阻力:末端装置的类型有风机盘管机组,组合式空调器等。它们的阻力是根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。此项阻力一般在20~50kPa范围内。 4.调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。如果此允许

空调系统水泵的选型

空调系统水泵的选型 第一步:水泵流量的确定 1.冷却水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量 L(m3/h)= Q(kW)/(4.5~5)℃x1.163X(1.15~1.2) 2.冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。 L(m3/h)= Q(kW)/(4.5~5)℃x1.163 第二步:水系统水管管径的计算 在空调系统中所有水管管径一般按照下述公式进行计算: D(m)=√L(m3/h)/0.785x3600xV(m/s) 公式中: L----所求管段的水流量(第一步已计算出) V----所求管段允许的水流速 流速的确定:一般,当管径在DN100到DN250之间时,流速推荐值为1.5m/s左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。进行计算是应该注意管径和推荐流速的对应。 目前管径的尺寸规格有:DN15、DN20、DN25、DN32、DN40、

DN50、DN65、DN80、DN100、DN125、DN150、DN200、DN250、DN300、DN350、DN400、DN450、DN500、DN600 注意:一般,选择水泵时,水泵的进出口管径应比水泵所在管段的管径小一个型号。例如:水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。 第三步:水泵扬程的确定 以水冷螺杆机组为例: 冷冻水泵扬程的组成 1.制冷机组蒸发器水阻力:一般为5~7mH2O;(具体值可参看产品样本) 2.末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力:一般为5~7mH2O;(据体值可参看产品样本) 3.回水过滤器阻力,一般为3~5mH2O; 4.分水器、集水器水阻力:一般一个为3mH2O; 5.制冷系统水管路沿程阻力和局部阻力损失:一般为7~10mH2O; 综上所述,冷冻水泵扬程为26~35mH2O,一般为32~36mH2O。 注意:扬程的计算要根据制冷系统的具体情况而定,不可照搬经验值! 冷却水泵扬程的组成 1.制冷机组冷凝器水阻力:一般为5~7mH2O;(具体值可参看产品样本) 2.冷却塔喷头喷水压力:一般为2~3mH2O

中央空调系统水泵设计

中央空调系统水泵设计 -----水泵选型索引----- 所谓水泵的选取计算其实就是估算(很多计算公式本身就是估算的),估算分的细致些考虑的内容全面些就是精确的计算。 特别补充一句:当设计流量在设备的额定流量附近时,上面所提到的阻力可以套用,更多的是往往都大过设备的额定流量很多。同样,水管的水流速建议计算后,查表取阻力值。 关于水泵扬程过大问题。设计选取的水泵扬程过大,将使得富裕的扬程换取流量的增加,流量增加才使得水泵噪音加大。特别的,流量增加还使得水泵电机负荷加大,电流加大,发热加大,“换过无数次轴承”还是小事,有很大可能还要烧电机的。 另外“水泵出口压力只有0.22兆帕”能说明什么呢?水泵进出口压差才是问题的关键。例如将开式系统的水泵放在100米高的顶上,出口压力如果是0.22MPa,就这个系统将水泵放在地上向100米高的顶上送,出口压力就是0.32MPa了! -----水泵扬程简易估算法----- 暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O): Hmax=△P1+△P2+0.05L (1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6 -----冷冻水泵扬程实用估算方法----- 这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是量常用的系统。 1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。

中央空调水系统施工工艺

1、施工准备 (1)机具仪表准备:套丝机、试压泵、台钻、冲击钻、砂轮切割机、砂轮机、坡口机、交流电焊机、倒链、管钳、扳手、钢直尺、卷尺、角尺、压力表、水平尺、线坠等。 (2)现场作业条件: ①与空调水系统管道和设备安装有关的土建工程已施工完毕并经检验合格,且能保证空调水系统与设备安装正常开展。 ②所需图纸资料和技术文件齐备。 ③管道、阀门及管道附件等经检验合格。 ④施工方案或技术措施中规定的施工机具已齐备。 ⑤设备配管时,该设备应安装结束并检查合格,达到配管施工要求。 2、施工工艺 (1)工艺流程 技术交底→支架制作防腐→支架安装→管道安装→水压试验→设备安装→系统冲洗→管道与制冷机组、空调机组贯通→检查验收 (2)支架制作安装 ①制作前,应根据管道安装所在空间位置、管径大小等要求选择适宜的支、吊、托架型式;根据管道安装的标高、坡度、管径大小等要求,用22号钢线或

棉线在管道的首、末端及吊架型钢的吊孔中心位置上拉直绷紧,结合吊卡间距实际测量计算后,才能进行中间型钢吊架、吊杆的制作。 ②支架宜用砂轮切割机进行下料。 ③支吊架开孔应采用钻孔或冲孔,不得采用气焊割孔,吊杆、管卡等部件的螺纹可采用板牙扳丝,也可用车床加工。 ④支吊架组对焊接过程中,应边组对边矫形、边点焊边连接,直至成型,经点焊成型的支、吊应用标准样板进行校核,确认无误后方可正式焊接。焊缝必须饱满,保证具有足够的承载能力,外观检查应无漏焊、裂焊等缺陷,焊接后应对焊接变形进行矫正。 ⑤支吊制作完成后,必须除锈和清理焊渣,并及时涂刷防锈漆作防锈处理,按设计图纸要求进行镀锌处理。 ⑥支吊架的安装位置应正确,与管道接触紧密、牢固、可靠,吊架、吊杆应垂直安装。固定在建筑结构上的管道支吊架不得影响结构的安全,当固定在空心砖墙上时,严禁使用膨胀螺栓。 (3)管道制作安装 A.套管制作安装 ①套管管径应比穿墙板的干管、立管管径大1-2号,保温管道的套管应留出保温层间隙。镀锌铁皮套管适用于过墙支管,要求卷制规整,咬口接缝,套管两端平齐,剔除毛刺,管内外须防腐。位于混凝土墙、楼板内的套管应在钢筋绑扎时放入,可点焊或绑扎在钢筋上,套管内应填以松散材料,防止混凝土浇筑时堵

中央空调循环水系统

中央空调循环水处理方案 2011-09-21 中央空调循环水系统一般分为三部分,即循环水系统、冷冻水系统、采暖水系统。循环冷却水多为开式,冷冻水与采暖水为封闭式;目前,高层建筑或封闭式厂方的冷冻水与采暖水多为同一系统,在夏季走冷冻水,在冬季走采暖水。 一、概述 中央空调循环水系统一般分为三部分,即循环水系统、冷冻水系统、采暖水系统。循环冷却水多为开式,冷冻水与采暖水为封闭式;目前,高层建筑或封闭式厂方的冷冻水与采暖水多为同一系统,在夏季走冷冻水,在冬季走采暖水。这三套循环水系统各有特点,但存在同一问题:结垢、腐蚀和生物粘泥,如不进行适当的处理,势必会引起管道堵塞,腐蚀泄漏、传热效率大为降低等一系列问题,影响整个空调系统的正常工作。 多年来,我们对中央空调用水情况作了广泛的调查,综合起来看现中央空调水系统的用水分为三类,即未经过任何处理的自来水、软化水和去离子水。水中对设备主要产生影响的因素分别为碱度、PH值、Cl-、氧含量等。自来水因地区不同而水质变化较大,在水的循环过程中,硬度和碱度是造成结垢的主要因素,而Cl-、低PH值、溶解氧是造成腐蚀的罪魁祸首。在自来水中这两种危害同时存在,只是由于水质差异,危害的主副性有所区别;相对腐蚀而言,结垢性离子Ca2+、Mg2+、碱度为保护性离子,软化水正是由于去除了这些离子,增加了Na+、Cl-等腐蚀性离子,从而加重了设备的腐蚀,所以说软化水虽然避免了结垢问题,却加重了腐蚀,这种现象会随着时间推移而显露出来。如大港开发区某空调系统一年就出现腐蚀穿孔现象,可见软化水腐蚀性的强弱。去离子水相对地说即去除了结垢因素,也去除了腐蚀因素,但实际上并非如此,同样,去离子水中虽然不存在结垢性离子和腐蚀性离子,但却并未除去水中的溶解氧,初始时,腐蚀速度较慢,有一个逐渐加速过程,最终会导致同前两种水一样的红水现象(封闭式系统)。 空调水处理的必要性主要有以下三点,其一是延长管线和设备的使用寿命。如果在主要管线和设备上发生的泄露时,或在敷设管道上发生了泄露时,更换维修,不但要花费较大的费用,而且,在实施时存在着许多困难。空调系统水处理的必要性就在于使管线和设备达到设计的使用寿命。下表中数据可说明水处理的重要性;其二是节能。当结垢和腐蚀产生锈垢堆积物,都会导致传热效率下降,为达到设定效果,必须加大能量消耗同时还会造成缩短设备的使用寿命。在敞开式循环水系统中,采用水处理技术还会节省大量的补充水;其三是创造稳定舒适的工作和生活环境,保证中央空调系统稳定正常运行。 注:1:预防处理是指为预防危害发生而进行水处理;事后处理是指危害发生后进行水处理;实际使用年限指设备破旧而更换的时间。2:本数据来自日本“建筑业协会”统计,而中国还未有有关统计数据。 二、中央空调循环冷却水处理 1.中央空调循环冷却水基本使用自来水。多年来,由于水系统结垢和腐蚀造成机组功能下降、使用寿命降低、能耗增加,业主长期处于设备、管线维修的局面。为改变这种状况,水磁化器被引入中央空调水系统。实践证明,使用这种设备处理能力有限,不成功的报导很多。上世纪80年代中期在工业的冷冻水系统引入工业循环冷却水处理技术后非常成功,这就是循环冷却水化学水处理技术。该技术是向水中投加水质稳定剂——包括分散剂、阻垢剂、缓蚀剂、杀菌剂等。是通过化学方法,使水中结垢型离子稳定在水中,其原理是通过螫合、络合和吸附分散作用,使Ca2+、Mg2+稳定地溶于水中,并对氧化铁、二氧化硅等胶体也有良好的分散作用,本法是目前空调水处理使用最为普遍的一种方法,也是在工业循环水处理中应用面最广、技术最成熟的一种方法,实践证明是有效而经济的方法。 1.1缓蚀阻垢处理 过去使用以聚磷酸盐为主体的缓蚀剂,但是,如果冷却水系统在水高浓缩倍数下进行,由于磷酸盐会

暖通空调系统水泵的使用与选型

暖通空调系统水泵的使用与选型 1、冷水泵: 在冷水环路中,驱动水进行循环流动的装置。我们知道,空调房间内的末端(如风机盘管,空气处理机组等)需要冷水机组提供的冷水,但是冷水由于阻力的限制不会自然流动,这就需要水泵驱动冷水进行循环以达到换热的目的。 2、冷却水泵: 在冷却水环路中驱动水进行循环流动的装置。我们知道,冷却水在进入冷水机组后带走制冷剂一部分热量,而后流向冷却塔将这部分热量释放掉。而冷却水泵就是负责驱动冷却水在机组与冷却塔这个闭合环路中进行循环。外形同冷冻水泵。 3、补水泵: 空调补水所用装置,负责将处理后的软化水打入系统中。外形同上水泵。 常用的水泵有卧式离心泵和立式离心泵,它们都可以用在冷水系统,冷却水系统和补水系统中。对于机房面积大的地方可以用卧式离心泵,对于机房面积较小的地方可以考虑使用立式离心泵。 水泵并联运行情况

水泵并联运行时,流量有所衰减;当并联台数超过3台时,衰减尤为厉害。故建议: 1)选用多台水泵时,要考虑流量的衰减,一般附加5%~10%的余量。 2)水泵并联不宜超过3台,即进行制冷主机选择时也不宜超过3台。 3)大中型工程应分别设置冷、热水循环泵。 一般,冷水泵和冷却水泵的台数应和制冷主机一一对应,并考虑一台备用。补水泵一般按照一用一备的原则选取,以保证系统可靠的补水。 4、水泵流量的计算: 1)冷水泵/冷却水泵流量计算公式:L=Q×(1.15~1.2)/(5℃×1.163)式中:Q为制冷主机的制冷量,kW;L为冷水/冷却水泵的流量,m3/h。 2)补给水泵的流量:正常补给水量为系统循环水量的1%~2%,但是选择补给水泵时,补给水泵的流量除应满足上述水系统的正常补水量外,还应考虑发生事故时所增加的补给水量,因此,补给水泵的流量通常不小于正常补水量的4倍。补给水箱的有效容积可按1~1.5h的正常补水量考虑。 5、水泵扬程的确定: 1)冷水泵扬程的组成: 制冷机组蒸发器水阻力: 一般为5~7m H2O; 末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力: 一般为5~7m H2O(具体值可参看产品样本); 回水过滤器,二通调节阀等的阻力: 一般为3~5m H2O;

相关主题
文本预览
相关文档 最新文档