移动平均法ppt课件
- 格式:ppt
- 大小:916.50 KB
- 文档页数:17
移动平均法
移动平均法(Moving Average Method)是一种常用的数理统计方法,它通过移动的方
式对数据进行平均处理,使得原始数据上下波动形成一个趋势线,从而更容易判断出这种
趋势。
如果单独处理一段时间区间内数据,可能会受到一定范围内偶然因素的影响,而通
过移动平均法就可以将偶然因素抵消,更精准地把握数据的大致趋势。
移动平均法是用前面几个数据点的平均值来代替当前点的一种方法,从而形成一条趋
势线,与原始数据的波动相比更容易分析。
它把一段时间上的数据抽象为某种特征,通常
是将多个数据当成一个数据看待,只要综合看出其变化特征就可以对未来发展进行预测。
使用移动平均法分析数据时,我们需要设定移动步长。
即每次移动多少个数据点,比
如前期移动3个数据点,则取前3个数据点的平均值作为当前点的值,然后向后移动1个
数据点,重新取3个数据点的平均值,以此类推。
还可以设定长期步长来分析影响数据的
长期因素。
移动步长的选择对结果影响较大,应根据实际分析目的来考虑数据的变化节律,确定合理的移动步长。
移动平均法是目前最为常用的数据分析方法之一,它简单有效,被广泛应用于定量分
析中。
它可以获取数据的重要趋势信息,从而帮助决策者更好的把握市场变化,对相关决
策做出最佳决定。
3移动平均法第二节移动平均法移动平均法是根据时间序列资料,逐项推移,依次计算包含二定项数的序时平均数,以反映长期趋势的方法。
当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析,预测序列的长期趋势。
移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法,分别介绍如下: 一简单移动平均法设时间序列为Y1,Y2,……YT……;简单移动平均法公式为:式中:Mt为t期移动平均数;N为移动平均数的项数.这公式表明:当T向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新的平均数.∴t-1+M t=M t-1这是它的递堆公式。
当N较大时,利用递堆公式可以大大减少计算量。
由于移动平均可以平滑数据,消除周期变动和不规则变动的影响使长期趋势显示出来,因而可以用于预测:预测公式为:y t+1=M t即以第t期移动平均数作为第t+1期的预测值。
例1:某市汽车配件销售公司,某年1月至12月的化油器销量如表4-1所示。
试用简单移动平均法,预测下年1月的销售量。
解:分别取N=3和N=5按列预公式y t =y t+1=计算3个月和5个月移动平均预测值,其结果如表:y t-y t-Ny t-y t-Ny t+y t-1+y t-2y t+y t-1+y t-2+y t-3+y t-40060019101112实际销售量3个月移动平均预测值5个月移动平均预测值由图可以看出,实际销售量的随机波动比较大,经过移动平均法计算以后,随即波动显着减小,即消除随机干扰。
而且求取平均值所用的月数越多,即N 越大,修匀的程度也越大,波动也越小。
但是,在这种情况下,对实际销售量真实的变化趋势反应也越迟钝。
反之,如果N 取的越小,对销售量真实变化趋势反应越灵敏,但修匀性越差,从而把随机干扰作为趋势反映出来。
因此,N 的选择甚为重要,N 应取多大,应根据具体情况作出抉择,当N 等于周期变动的周期时,则可消除周期变动影响。