斜拉桥受力状态优化及理论计算分析PPT课件
- 格式:ppt
- 大小:974.00 KB
- 文档页数:73
第二章 斜拉桥的计算第一节 结构分析计算图式斜拉桥是高次超静定结构,常规分析可采用平面杆系有限元法,即基于小位移的直接刚度矩阵法。
有限元分析首先是建立计算模型,对整体结构划分单元和结点,形成结构离散图,研究各单元的性质,并用合适的单元模型进行模拟。
对于柔性拉索,可用拉压杆单元进行模拟,同时按后面介绍的等效弹性模量方法考虑斜索的垂度影响,对于梁和塔单元,则用梁单元进行模拟。
斜拉桥与其它超静定桥梁一样,它的最终恒载受力状态与施工过程密切相关,因此结构分析必须准确模拟和修正施工过程。
图2-1是一座斜拉桥的结构分析离散图。
图2-1斜拉桥结构分析离散图第二节 斜拉索的垂度效应计算一、等效弹性模量斜拉桥的拉索一般采用柔性索,斜索在自重的作用下会产生一定的垂度,这一垂度的大小与索力有关,垂度与索力呈非线性关系。
斜索张拉时,索的伸长量包括弹性伸长以及克服垂度所带来的伸长,为方便计算,可以用等效弹性模量的方法,在弹性伸长公式中计入垂度的影响。
等效弹性模量常用Ernst 公式,推导如下:如图2-2所示,为斜索自重集度,q m f 为斜索跨中的径向挠度。
因索不承担弯矩,根据处索弯矩为零的条件,得到:m m 22111cos 88m T f q l ql α⋅==⋅2cos 8m ql f Tα= (2-1)图2-2 斜拉索的受力图式索形应该是悬链线,对于m f 很小的情形,可近似地按抛物线计算,索的长度为:lf l S m238⋅+= (2-2)223228cos 324m f q l l S l l TαΔ=−=⋅= 2323cos 12d l q l dT TαΔ=− (2-3) 用弹性模量的概念表示上述垂度的影响,则有:()3322321212cos f dT l lT E d l A Aq l L σαγ=⋅==Δ (2-4)式中:/T A σ=,q A γ=,cos L l α=⋅为斜索的水平投影长度, f E :计算垂度效应的当量弹性模量。
斜拉桥施工索力张拉控制及优化研究背景:随着经济和技术的发展,以及斜拉桥合理的结构形式,我国修建了大量的斜拉桥。
因此该类桥梁的施工控制就显得尤为重要。
国内外学者及工程技术人员对斜拉桥的施工控制进行了许多研究,提出了卡尔曼滤波法、最小二乘误差控制法、自适应控制法、无应力状态控制法等许多实用控制方法。
这些方法的实质都是基于对施工反馈数据的误差分析,通过计算和施工手段对结构的目标状态和施工的实施状态进行控制调整,达到对施工误差进行控制的目的。
施工控制的方法必须与各类斜拉桥设计、施工的特点相结合才能在确保结构安全及施工便捷的前提下切实可靠地实现控制的目标。
目前国内大多数斜拉桥的施工控制都是针对常规的混凝土斜拉桥进行的,其相应的控制方法也是针对常规混凝土斜拉桥的施工特点提出来的,本文着重阐述对于常规混凝土斜拉桥的施工控制过程中的索力张拉控制及优化方法。
斜拉索施工过程:斜拉索安装完毕,即进行张拉工作。
张拉前对千斤顶、油泵、油表进行编号、配套,张拉设备定期进行标定。
斜拉索正常状态按设计指令分2次张拉,第1次张拉按油表读数控制,张拉时4根索严格分级同步对称进行;第2次张拉是在监控利用频率法测完索力后,以斜拉索锚头拔出量进行精确控制。
施工监控包括对索力、应力、应变、线形、温度、主塔偏位的监控。
施工监控在凌晨气温相对稳定时进行,保证在凌晨5点前完成。
索力测试采用应变仪捕捉索自振频率,当测出索力误差超过2时,应对索力进行调整,直到满足要求。
索力调整完毕立即对应力、应变、线形、温度、主塔偏位进行测量。
可分阶段地进行张拉、调索。
在牵索挂篮悬浇时,在控制好挂篮底模标高后,在节段砼灌注过程中,当砼灌注至1/4、2/4、3/4,及砼灌注完后,均需进行调整索力及挂篮底模标高。
当主塔施工至与边跨合拢前、中跨合拢前和合拢后、二期恒载安装后均需按设计要求对全桥斜拉索进行统一检测调整,使全桥线型满足设计要求。
并在对每节段主梁悬浇进行监控时,对主梁最前端的5~6对拉索的索力进行测定,观察其变化幅度是否在设计范围内。
斜拉桥设计计算参数分析摘要: 在斜拉桥的设计中,除对塔、梁、索的构造形式及尺寸的选取外,主要的总体设计参数有主梁的中边跨跨径比、跨高比、跨宽比、宽高比和主塔的有效跨高比以及主梁的温度变化、混凝土收缩徐变,这些参数将直接对斜拉桥的结构性能产生影响,故有必要通过统计已建斜拉桥的设计资料,对上述参数的选用给出一总体认识。
关键词:斜拉桥;设计参数;1 概述斜拉桥属高次超静定结构,所采用的施工方法和安装程序与成桥后的主梁线形、结构内力有着密切的联系。
并且在施工阶段随着斜拉桥结构体系和荷载状态的断变化,主梁线形和结构内力亦随之不断发生变化。
因此,需对斜拉桥的每一施工阶段进行详尽的分析、验算,从而求得斜拉索张拉吨位和主梁挠度、主塔位移等施工控制参数,并依此对施工的顺序做出明确的规定,并在施工中加以有效的管理和控制。
2 设计参数分析2.1 主梁的中、边跨跨径比主梁的中、边跨跨径比反映了结构体系的变形特性和锚索的抗疲劳性能:从图1、图2可见,三跨钢斜拉桥的中边跨跨径比较多地位于2.0~3.5之间,集中在2.5处;三跨混凝土斜拉桥的相应数值则为1.5~3.0,较集中于2.2处。
就一般而言,中、边跨跨径的比值大于2.0,将能控制锚索的应力幅度在一定的范围内,并提高结构体系的总体刚度。
在许多斜拉桥中,虽然中、边跨跨径的比值较小,但边跨中往往采用设置辅助墩或将主梁与引桥连接形成组合体系以提高结构刚度,适应结构的变形要求。
2.2 主梁自重分析选取某斜拉桥桥5号、9号梁段(见图3),各自增重5 %(其它参数取理论值) ,分别计算得到在浇筑完5号、9号梁段后各控制点挠度及主梁控制截面弯矩变化情况,见图3 、图4 。
图3:主梁自重增大5 %的梁段挠度影响图4:主梁自重增大5 %的梁段弯矩影响从图3 、图4可见,梁段自重对控制点挠度的影响较大,且悬臂越大,影响越明显。
梁段自重对控制点弯矩的影响更加不容忽视, 9 号梁段自重增大5 %,导致6 号梁段的弯矩值增加至1 200 kN ·m ,达到合理成桥状态下该截面弯矩值的7 %。