三.力对点的矩
z
B
1.力对点的矩
mo(F)
mo(F) = r×F
mo(F)表示力F绕O点
A
r
O
y
转动的效应.O点称为矩
d
x
心.力矩矢是定位矢量.
力矩的三要素:力矩的大小;力矩平面的
方位;力矩在力矩平面内的转向.
力矩的几何意义: mo(F) =±2OAB面积=±Fd 力矩的单位: N·m 或 kN·m
a an2 at2 R 2 4
方向为
tan
at an
R 2R
2
结论: (1)在每一瞬时,转动刚体内所有各点的速度和加速 度的大小,分别与这些点到转轴的距离成正比。
(2)在每一瞬时,转动刚体内所有各点的全加速度 a 的方
向与半径间的夹角 都相同。
速度分布图
加速度分布图
四 刚体的转动惯量与飞轮的作用
1.转动惯量的概念
n
I mi i2 i 1
转动惯量反映物体转动时惯性的大小。物 体的转动惯量,一方面决定于物体的形状 ,另一方面又决定于转动轴的位置。
四 刚体的转动惯量与飞轮的作用
2.飞轮的作用 (1)使转速变化均匀 (2)改善扭转特性,减缓机械振动 (3)改善机器的启动和操纵性能
三.力对点的矩
2.合力距定理
定理:平面汇交力 系的合力对平面内任一 点之距,等于其所有分 力对于同一点力矩的代 数和
四.力偶及其性质
F
1力偶(F ,F)
B A
力偶作用面和力偶臂d.
F´
力偶无合力.因此力偶不能与一个力等效,也不 能用一个力来平衡.力偶只能与力偶等效或平衡.
四.力偶及其性质 2力偶的三要素