电子能谱学第8讲俄歇电子能谱的应用
- 格式:ppt
- 大小:5.13 MB
- 文档页数:54
俄歇电子能谱简介摘要:本文介绍了俄歇电子的产生、表示、俄歇电子的过程和能量、样品制备技术、以及俄歇电子能谱仪的应用。
由此得出俄歇电子能谱仪在材料表面性质研究方面, 有着不可替代的作用。
关键词:俄歇电子;俄歇电子能谱仪;样品制备;应用俄歇过程是法国科学家Pierre Auger首先发现的。
1922年俄歇完成大学学习后加入物理化学实验室在其准备光电效应论文实验时首先发现这一现象,几个月后,于1923年他发表了对这一现象(其后以他的名字命名)的首次描述。
30年后它被发展成一种研究原子和固体表面的有力工具。
尽管从理论上仍然有许多工作要做,然而俄歇电子能谱现已被证明在许多领域是非常富有成果的,如基础物理(原子、分子、碰撞过程的研究)或基础和应用表面科学。
1.俄歇电子的产生原子在载能粒子(电子、离子或中性粒子)或X射线的照射下,内层电子可能获得足够的能量而电离,并留下空穴(受激)。
当外层电子跃入内层空位时,将释放多余的能量(退激)释放的方式可以是:发射X射线(辐射跃迁退激方式);发射第三个电子─俄歇电子(俄歇跃迁退激方式)。
如下图:例如,原子中一个K层电子被入射光量子击出后,L层一个电子跃入K层填补空位,此时多余的能量不以辐射X光量子的方式放出,而是另一个L层电子获得能量跃出吸收体,这样的一个K层空位被两个L层空位代替的过程称为俄歇效应,跃出的L层电子称为俄歇电子[1]。
在上述跃迁过程中一个电子能量的降低,伴随另一个电子能量的增高,这个跃迁过程就是俄歇效应。
从上述过程可以看出,至少有两个能级和三个电子参与俄歇过程,所以氢原子和氦原子不能产生俄歇电子。
同样孤立的锂原子因为最外层只有一个电子,也不能产生俄歇电子。
但是在固体中价电子是共用的,所以在各种含锂化合物中也可以看到从锂发生的俄歇电子。
俄歇电子的动能取决于元素的种类。
2.俄歇电子的表示每一俄歇电子的发射都涉及3个电子能级,故常以三壳层符号并列表示俄歇跃迁和俄歇电子。
俄歇电子能谱俄歇电子能谱(RydbergElectronSpectroscopy,RES)是一种测量极离子系统的光谱分析方法,可以将气态离子激发到高能状态,从而测量离子系统中激发光谱的强度和波长。
俄歇电子能谱可以用来测量和研究由多个电子组成的极离子系统的物理性质,是物理化学研究中经常使用的必要技术。
俄歇电子能谱技术是一种光谱分析技术,它可以用来测量极离子系统中激发状态的性质,如激发态的能量、振荡强度以及激发光谱的波长及波长分布。
此外,它还可以用来调查极离子系统中的局域化电子结构。
俄歇电子能谱可以用光学或电离谱的方法来测量极离子系统的光谱,并通过特征的谱线特征来分析信号,从而获取极离子系统的物理性质。
俄歇电子能谱试验常用到的发射管正是由极离子系统组成,在发射管中,离子被激发到极离子状态,然后释放出不同波长和强度的激发态,最终形成发射管中的总体激发光谱。
俄歇电子能谱技术可以用来测量极离子系统中各种物理量,如极离子能级的能量、激发态的密度和电子轨道的结构,以及极离子的结构、物理化学反应以及电子结构的研究。
同时,它也可以用于研究由极离子组成的分子的特性,包括分子结构、动力学研究以及超高真空和室温条件下分子的特性。
俄歇电子能谱技术具有较高的精确度,可以用来测量极离子系统中的激发态的能量和强度、激发态的密度和电子轨道的结构等,因此在科学研究中得到了广泛应用。
例如,在研究分子结构和性质以及电子激发能量的转移过程、分子的活化和物理化学反应等方面,都可以使用俄歇电子能谱技术。
俄歇电子能谱技术一直以来都是物理化学研究领域中重要的分析工具,它可以用来测量极离子系统中激发状态的性质,为物理化学研究和应用提供重要信息和参考,为解决科学问题和技术问题提供重要帮助。
随着科学技术的进步,俄歇电子能谱技术将会得到进一步的改进,并将在更多的研究领域中得到广泛应用。