生物强化技术在难降解有机物处理中的应用
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
污水处理中的生物强化技术在当今社会,随着工业化和城市化进程的加速,污水的排放量不断增加,水质污染问题日益严重。
为了保护生态环境和人类健康,污水处理技术的研究和应用变得至关重要。
生物强化技术作为一种新兴的污水处理方法,具有高效、经济、环保等优点,逐渐受到人们的关注和重视。
一、生物强化技术的概念生物强化技术是指通过向传统的生物处理系统中引入具有特定功能的微生物、酶或基因工程菌等,以提高污水处理系统的性能和效率。
这些引入的微生物或生物制剂能够增强系统对难降解有机物、有毒有害物质的去除能力,改善污泥性能,提高系统的稳定性和抗冲击能力。
二、生物强化技术的作用机制1、直接作用引入的高效微生物能够直接降解污水中的污染物。
这些微生物经过筛选和培养,具有特定的代谢途径和酶系,能够快速分解和转化目标污染物,从而提高处理效果。
2、共代谢作用某些微生物在降解主要污染物的同时,能够产生一些酶或中间产物,促进其他微生物对难降解污染物的分解。
这种共代谢作用可以拓宽污水处理系统的污染物去除范围。
3、竞争抑制作用引入的优势微生物能够与原有的微生物群落竞争生存空间和营养物质,抑制有害微生物的生长和繁殖,从而优化微生物群落结构,提高处理系统的稳定性。
4、生物刺激作用添加一些营养物质、生长因子或电子受体等,可以刺激微生物的生长和代谢活性,增强其对污染物的去除能力。
三、生物强化技术的应用形式1、投加高效微生物菌剂这是最常见的生物强化方式。
通过筛选和培养具有特定功能的微生物,制成菌剂投加到污水处理系统中。
例如,对于含有芳香烃类化合物的污水,可以投加能够降解这类化合物的微生物菌剂。
2、固定化微生物技术将微生物固定在特定的载体上,如多孔材料、凝胶等,使其在处理系统中保持较高的生物量和活性。
固定化微生物技术能够提高微生物对环境变化的适应能力,减少微生物的流失。
3、基因工程菌的应用利用基因工程技术构建具有特定降解能力的基因工程菌,并将其引入污水处理系统。
生物强化技术在难降解有机物处理中的应用摘要:总结生物强化技术的方法及优缺点,阐述生物强化技术的广阔应用范围与前景,并提出现在以及今后发展的热点方向。
关键词:生物强化;难降解有机污染物;微生物;生物修复1、概述目前实施生物强化技术可通过如下三条途径:投加有效降解微生物;优化现有处理系统的营氧供给、添加基质(底物)类似物来刺激微生物生长或提高其活力;投加遗传工程菌(gem)。
1.1投加有效降解微生物实施该技术的前提是获得可降解待定有毒难降解有机污染物的菌株,降解菌大多数在纯培养体系中表现高活性,对于多菌株共存的生物处理系统中,投加难降解菌株能否起到强化有机物降解的作用,尚需评估。
edgehill等人认为有效的菌剂应满足:①投加后,菌体活性高;②菌体可快速降解目标污染物;③在系统中(如曝气池)不仅能竞争性生存,且可维持相当的数量。
为了解决投加纯营氧物所出现的问题, stenstrom研究小组开发一种非线性富营氧反应器(er)工艺。
所谓er实际上是一个或多个sbr,以富集足够数量可连续供给主体反应器的驯化培养物,同时以有毒物本身及其降解过程的某些代谢中间体作为维持驯化作用的选择压力。
er培养的驯化培养物投加至主体工艺,强化有毒有机物的生物降解作用。
1.2投加营氧物质或基质类似物由于大多数难降解有机污染物的降解是通过共代谢途径进行的,在常规活性污泥系统中可降解目标污染物的微生物数量与活性比较低,添加某些营氧物质包括碳源与能源性物质,或提供目标污染物降解过程中所需的因素,将有助于降解菌的生长,改善处理系统的运行性能。
投加基质类似物是针对代谢酶的可诱导性而提出的,利用目标污染物的降解产物、前体作为酶的诱导物,提高酶活性。
作为诱导物(基质类物质)应考虑:毒性相对较低、价格低廉且有多种用途,并在无富集基质(目标污染物)时,诱导物可维持富集培养物的生长特性与污染物降解动力学。
在分批培养的条件下,已有很多研究证实投加营氧物可刺激有毒难降解有机物的生物降解。
染料废水处理技术染料品种数以万计,印染加工过程中约有10%~20%的染料随废水排出,每排放It染料废水,就会污染20t水体。
废水中的染料能吸收光线,降低水体透明度,造成视觉上的污染。
染料废水是难处理的工业废水之一,具有色度深、碱性大、有机污染物含量高和水质变化大的特点。
大多数染料为有毒难降解有机物,化学稳定性强,具有致癌、致畸、致突变作用;直接危害人类健康,还严重破坏水体、土壤及生态环境,造成难以想象的后果。
有效解决染料废水处理问题是消除印染行业发展瓶颈的关键所在。
1、染料废水及其污染染料工业污染中尤以染料废水的污染问题最为突出。
近些年来,我国每年污水排放量达390多亿吨,其中工业污水占51%,而染料废水又占总工业废水排放量的35%,而且还以1%的速度在逐年增加。
每排放It染料废水,就能造成20t水体的污染。
各行业中,印染纺织业的COD排放量排在第4位,而且排放比重还在逐年增加。
“三河三湖”中,染料废水对太湖、淮河流域造成的污染状况尤其严重。
染料废水主要来自于染料及染料中间体的生产企业,由染整过程中排放出的染料、浆料、助剂等组成。
随着印染工业的迅猛发展,染料废水已成为水体中几种最主要的污染源之一。
目前世界染料年产量约为(8~9)x105t•我国是纺织品生产和加工大国,纺织品出口额已多年来列居世界首位,每年的染料生产量达1.5X105t,其中大约10%~15%的染料会直接随废水排入水体中。
染料废水色度高、水量大、碱性大、组成成分复杂,属于比较难处理的工业废水之。
染料是染料废水中的主要污染物,带有各类显色基团(如-N=N-,-N=O等)和部分极性基团(-S03Na,-OH,-NH2),成分复杂,大多数是以芳煌和杂环为母体,属较难降解的有机污染物,也是我国各大水域的重要污染源。
大多数有机染料化学稳定性强,具有三致(致癌、致畸、致突变)作用,是典型有毒难降解有机污染物。
止匕外,废水中的染料能吸收光线,降低水体的透明度,对水生生物、微生物的生长不利,并且降低了水体的自净能力,同时导致视觉污染,严重破坏水体、土壤及生态环境,直接和间接地危害人类身体健康。
技术应用与研究2018·0149Chenmical Intermediate当代化工研究难降解有机物质的生物降解技术分析*丁智晖 董子萱 于水利(同济大学 上海 200092)摘要:广泛存在于人们生产生活中的难降解化学物质,一方面为人们的物质生活提供方便,另一方面因难降解的特性长期滞留于人们的生活空间,因致癌、致畸、致突变的特性给人类健康带来了潜在危险。
为了减轻难降解有机物质对生态环境的影响与危害,国内外对难降解有机物的处理方法进行了大量研究,目前,主要方法包括生物法、物化法、化学氧化法等。
本文将根据国内外生物处理难降解有机物的进展作一简要介绍。
关键词:生物降解;难降解有机物;技术进展中图分类号:Q 文献标识码:AThe analysis of Biodegradation Technology in the field of Refractory organic mattersDing Zhihui, Dong Zixuan, Yu Shuili(Tongji University, Shanghai, 200092)Abstract:The refractory chemicals Widely existing in people's production life not only provide convenience for people,but also pose a potential danger to human health due to their carcinogenic, teratogenic, mutagenic properties and long-retention. In order to reduce the influence and harm by refractory organic matters to the environment, a large number of studies have been done on the treatment of refractory organic matters both at home and abroad, mainly including biological method, physicochemical method, chemical oxidation method and so on. In this paper, the research progress of biodegradation methods at home and abroad will be introduced briefly.Key words:biodegradation;refractory organic matters;technical progress1.前言进入工业时代以来,每年都有新型化学物质问世。
第四章土壤环境化学1.什么是土壤的活性酸度与潜性酸度?试用它们二者的关系讨论我国南方土壤酸度偏高的原因。
根据土壤中H+的存在方式,土壤酸度可分为活性酸度与潜性酸度两大类。
(1)活性酸度:土壤的活性酸度是土壤溶液中氢离子浓度的直接反映,又称有效酸度,通常用pH表示。
(2)潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和Al3+。
当这些离子处于吸附状态时,是不显酸性的,但当它们经离子交换作用进入土壤溶液后,即可增加土壤溶液的H+浓度,使土壤pH值降低。
南方土壤中岩石或成土母质的晶格被不同程度破坏,导致晶格中Al3+释放出来,变成代换性Al3+,增加了土壤的潜性酸度,在一定条件下转化为土壤活性酸度,表现为pH值减小,酸度偏高。
2.土壤的缓冲作用有哪几种?举例说明其作用原理。
土壤缓冲性能包括土壤溶液的缓冲性能和土壤胶体的缓冲性能:(1)土壤溶液的缓冲性能:土壤溶液中H2CO3、H3PO4、H4SiO4、腐殖酸和其他有机酸等弱酸及其盐类具有缓冲作用。
以碳酸及其钠盐为例说明。
向土壤加入盐酸,碳酸钠与它生成中性盐和碳酸,大大抑制了土壤酸度的提高。
Na2CO3 + 2HCl2NaCl + H2CO3当加入Ca(OH)2时,碳酸与它作用生成难溶碳酸钙,也限制了土壤碱度的变化范围。
H2CO3 + Ca(OH)2CaCO3 + 2H2O土壤中的某些有机酸(如氨基酸、胡敏酸等)是两性物质,具有缓冲作用,如氨基酸既有氨基,又有羧基,对酸碱均有缓冲作用。
RCHNH2COOH+ HClNH3ClR CHCOOH+ NaOH + H 2ORCHNH 2COOH R CH NH 2COONa(2)土壤胶体的缓冲作用:土壤胶体吸附有各种阳离子,其中盐基离子和氢离子能分别对酸和碱起缓冲作用。
对酸缓冲(M -盐基离子):土壤胶体 M +HCl 土壤胶体 H +MCl对碱缓冲:土壤胶体 H +MOH 土壤胶体 M +H 2OAl 3+对碱的缓冲作用:在pH 小于5的酸性土壤中,土壤溶液中Al 3+有6个水分子围绕,当OH -增多时,Al 3+周围的6个水分子中有一、二个水分子离解出H +,中和OH -:2Al(H 2O)63+ + 2OH - [Al 2(OH)2(H 2O)8]4+ + 4H 2O3.植物对重金属污染产生耐性作用的主要机制是什么?不同种类的植物对重金属的耐性不同,同种植物由于其分布和生长的环境各异可能表现出对某种重金属有明显的耐性。
生物强化技术2020目前,污水处理领域生物技术的应用研究,主要集中在优势菌种的筛选、驯化、纯化等传统的微生物工程技术方面。
一、生物强化技术的原理1、生物强化技术(Bio-augmentation),发端于20世纪70年代中期,80年代以后逐步得到关注、研究和应用。
该技术的基本原理是,为了提高生物降解反应器或原体系中微生物的降解能力,通过投加外源微生物或营养调节成分来保持、强化反应器中微生物的活性,从而提高生物降解效果。
生物强化技术所利用的微生物可以来源于原有的生物降解体系,经过驯化、富集、筛选、培养获得:也可能是原来生物降解体系中不存在的微生物。
通过投加外源微生物对有机物的降解作用,包括微生物的直接降解作用和微生物的共代谢作用。
直接降解作用:通过投加能够降解目标污染物的微生物,提升生物反应器中生物降解活性,微生物以污染物为碳源或能源,实现对污染物的直接降解。
共代谢作用:有些污染物质,微生物不能直接以其碳源和能源生长,但在其它基质存在的条件下,能促进其降解。
共代谢过程主要通过不同类型的微生物相互协作降解污染物质,在生物降解过程中有着极其重要的作用。
2、采用生物强化技术,实现对污染物的直接降解作用和共代谢作用,前提是获得功能性降解微生物或者微生物菌群。
获取具有降解功能的微生物或菌群主要途径有:1、通过长时间驯化,获得具有一定降解能力的菌株或菌群;2、从特定的环境中分离纯化、获得某些具有特定降解能力的微生物菌株;3、通过基因工程技术改造微生物,使其获得或增强特定降解能力。
3、从本质意义上讲,在生产中投入活性污泥也属于生物强化技术。
但对于污水中含有难生物降解或毒性强的污染物,则需要经过长期驯化,尤其是自然的筛选和淘汰过程,才能逐步在反应器中建立生物降解菌群,实现生物降解过程。
而且,污泥来源的微生物菌群并非常常有效。
因此,在常规污水处理的生化系统中通过投加外源性具有降解功能的微生物,实现对生物降解微生态系统的优化,提高生物降解的广谱性和生物降解的效能,就成了实际应用中的一个选项。
活性污泥法活性污泥法处理焦化废水,是利用活性污泥在废水中的凝聚、吸附、氧化、分解和沉淀等作用,从而达到去除废水中有机污染物的目的。
该法向废水中连续通入空气,因好氧微生物繁殖,经一定时间后形成污泥状絮凝物,其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
活性污泥法主要应用于焦化废水预处理后的二级处理。
生物脱氮技术传统生物脱氮技术可分为A-O、A-A-O、O-A-O等工艺,新型生物脱氮技术主要有半硝化工艺(SHARON)、厌氧氨氧化工艺(ANAMMOX)、半硝化-厌氧氨氧化工艺(SHARON-ANAMMOX)、生物膜内自养脱氮工艺(CAUON)。
其中,半硝化-厌氧氨氧化工艺与传统的硝化-反硝化工艺相比,耗氧量明显减少,不需要添加碳源,而且产生的剩余污泥量很少。
生物流化床技术生物流化床技术是一种新型的生物膜法工艺,其载体在流化床内呈流化状态,使固(生物膜)、液(废水)、气(空气)三相间得到充分接触,颗粒之间剧烈碰撞,生物膜表面不断更新,微生物始终处于生长旺盛阶段,保持高浓度的生物量,传质效率极高,水力停留时间短,运转负荷比一般活性污泥法高10~20倍,耐冲击负荷能力强。
因此近几年在处理难降解有机废水方面应用得越来越广泛。
生物强化处理技术与传统生物处理工艺相比,生物强化技术使用了特效微生物菌群和维持菌群活性的生物催化剂,可大大缩短处理工艺流程和工程投资,无二次污染,可抑制污泥膨胀,提高废水处理系统运行的稳定性,因此在有机废水处理中越来越受到重视。
序批式反应器序批式反应器(SBR)是一个间歇注水的反应器系统,包括一个独立的完全混合式反应器,活性污泥工艺的所有步骤都在其中发生,典型流程包括进水、反应、沉淀、排水、闲置等5个过程,是一个集生物降解和脱氮除磷于一体的间歇运行的废水处理工艺。
曝气生物滤池曝气生物滤池(BAF)工艺具有去除SS、COD、BOD、硝化、脱氮、除磷、去除AOX(有害物质)的作用。
污水处理技术最新进展水是生命之源,然而随着工业化和城市化的快速发展,污水的产生量也日益增加。
污水处理成为了环境保护中至关重要的环节,其技术也在不断创新和进步。
本文将为您介绍污水处理技术的最新进展,带您了解这一领域的前沿动态。
一、膜生物反应器(MBR)技术的优化膜生物反应器是一种将膜分离技术与生物处理技术相结合的新型污水处理工艺。
近年来,MBR 技术在膜材料、膜组件设计和运行方式等方面不断优化。
在膜材料方面,新型的高分子材料如聚偏氟乙烯(PVDF)和聚四氟乙烯(PTFE)等的应用,提高了膜的抗污染性能和使用寿命。
同时,对膜表面进行改性处理,如增加亲水性涂层,能够有效减少膜污染,降低运行维护成本。
膜组件的设计也在不断改进。
从传统的平板膜和中空纤维膜,发展到如今的管式膜和浸没式膜组件,提高了膜的装填密度和处理效率。
此外,采用多段式膜组件布置,能够实现更灵活的工艺组合和更高效的污水净化。
在运行方式上,通过优化膜通量、错流速度和曝气强度等参数,MBR 系统的稳定性和处理效果得到了显著提升。
同时,结合智能化控制技术,实现了对 MBR 系统的实时监测和自动调控,进一步提高了运行效率和可靠性。
二、高级氧化技术的突破高级氧化技术(AOPs)在污水处理中具有广阔的应用前景。
常见的 AOPs 包括芬顿氧化、臭氧氧化、光催化氧化和电化学氧化等。
芬顿氧化技术通过 Fe²⁺和 H₂O₂的反应产生强氧化性的羟基自由基(·OH),能够快速降解有机污染物。
近年来,对芬顿反应的条件优化和催化剂的改进取得了重要进展。
例如,采用非均相催化剂替代传统的均相催化剂,不仅提高了催化剂的稳定性和重复使用性,还降低了铁泥的产生量。
臭氧氧化技术具有氧化能力强、反应速度快等优点。
新型的臭氧发生装置和高效的臭氧传质技术,提高了臭氧的利用率和氧化效果。
同时,将臭氧与其他技术如活性炭吸附、生物处理等联合使用,能够实现对复杂污水的深度处理。
中国石油化工股份有限公司天津分公司污水外排原执行国家标准《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级B 限值,重点污染物COD ≤60mg/L 。
为了响应天津市政府建设美丽天津的号召,中石化天津分公司将对已有废水处理设施进行深度处理改造以满足更严格的排放标准要求,即外排污水主要指标要达到《地表水环境质量标准》(GB 3838—2002)Ⅴ类标准,其中重点污染物指标COD ≤40mg/L 。
此外,天津市地方标准《城镇污水处理厂污染物排放标准》A 级限值COD ≤30mg/L ,因此中石化天津分公司计划按最严标准(COD ≤30mg/L )来建设外排污水深度治理提标改造工程。
根据文献〔1-7〕报道,难降解有机废水深度处理需要采用高级氧化法(包括臭氧催化氧化、Fenton 试剂氧化、电子束氧化、电化学氧化、臭氧双氧水氧化、微电解法和超临界水氧化法)、混凝沉淀、活性炭或大孔树脂吸附和生物处理(包括膜生物反应器、曝气生物滤池)等相结合的措施或采用特种生物处理措施。
目前石化行业外排含盐污水常规生化处理出水COD 的极限一般在50~60mg/L 左右,而COD 稳定低于30mg/L 的运行案例尚不多。
本工程先经过了近一年的现场中试试验筛选,比较了臭氧-曝气生物滤池、臭氧-活性炭、臭氧-MBBR 、活性炭吸附和高效生物反应器(ABR )5种工艺,综合测试结果表明,ABR 可以实现在最低的运行成本下稳定满足深度处理达标要求,并最终选择ABR 应用于中石化天津分公司综合废水深度处理工程。
1ABR 的工作机理ABR 是专门针对低负荷且难生物降解(BOD 5/COD<0.2)废水深度处理的一种上向流好氧高效生物反应器专利技术〔3〕,ABR 的工作原理见图1。
图1ABR 的工作原理由图1可知,其池型结构与上向流好氧生物滤池相同,采用气水同向上向流的运行方式,水流自下而上通过ABR 载体,但空床停留时间是传统上向流好氧生物滤池的1~2倍,典型处理对象为生化处理系统出水、纳滤或反渗透或电渗析浓盐水、冷却塔排污水、树脂酸碱再生中和废水等。
微生物在水资源处理中的应用有哪些水是生命之源,对于人类的生存和发展至关重要。
然而,随着工业化和城市化的快速推进,水资源受到了越来越严重的污染。
为了保障水资源的质量和可持续利用,各种处理技术应运而生。
微生物技术作为一种高效、环保且经济的方法,在水资源处理中发挥着重要作用。
微生物在水资源处理中的应用主要包括以下几个方面:一、生物降解有机物许多工业废水和生活污水中含有大量的有机污染物,如碳水化合物、蛋白质、脂肪等。
微生物通过自身的代谢作用,可以将这些有机物质分解为二氧化碳、水和简单的无机物。
例如,好氧微生物在有氧环境下,能够将有机物彻底氧化分解;而厌氧微生物在无氧条件下,则可以将有机物转化为甲烷等气体。
在生物处理工艺中,常见的有活性污泥法和生物膜法。
活性污泥法是利用悬浮生长的微生物絮体来处理废水,微生物在曝气池中与废水充分混合,吸附和分解有机物。
生物膜法则是让微生物在固体介质表面形成一层生物膜,废水流经生物膜时,有机物被膜中的微生物摄取和代谢。
二、去除氮和磷氮和磷是导致水体富营养化的主要营养元素。
微生物在去除氮和磷方面具有重要作用。
对于氮的去除,主要通过硝化和反硝化过程。
硝化细菌将氨氮转化为亚硝酸盐氮和硝酸盐氮,然后反硝化细菌在缺氧条件下将硝酸盐氮还原为氮气,从而实现氮的去除。
在除磷方面,聚磷菌在厌氧条件下释放磷,在好氧条件下过量摄取磷,并将其以聚合态储存在细胞内,通过排放富含磷的剩余污泥来实现除磷的目的。
三、去除重金属一些工业废水中含有重金属离子,如汞、镉、铅等,这些重金属对环境和人类健康危害极大。
微生物可以通过吸附、沉淀、氧化还原等作用来去除重金属。
一些微生物的细胞壁表面具有带负电荷的官能团,能够与重金属离子结合,从而实现吸附。
另外,微生物还可以分泌一些物质,如多糖、蛋白质等,与重金属形成沉淀。
某些微生物还具有氧化还原能力,能够改变重金属的价态,使其毒性降低或更容易去除。
四、生物监测微生物不仅可以用于水资源的处理,还可以作为生物监测的指标。
生物强化技术在污水处理中的应用现状
李彦宇;董三强;何子晗;谢慧娜;赵炜
【期刊名称】《石油化工应用》
【年(卷),期】2024(43)5
【摘要】生物强化技术是指将具有特定功能的微生物、营养物或基质类似物投加到污水生化处理系统中,以提高生化处理系统对污水中污染物的降解能力。
本文介绍了生物强化技术的概念和作用机理,探讨了生物强化技术在低温污水、难降解有机废水、高盐废水、污水的脱氮除磷、地下水的污染修复和污泥减量化等领域的应用现状,评价了实际处理效果和应用前景。
作为一种新型环境污染治理技术,生物强化技术具有处理效率高、投资和运行成本低、抗冲击负荷能力强等优势,是未来污水生物处理研究与应用的新方向。
【总页数】5页(P9-13)
【作者】李彦宇;董三强;何子晗;谢慧娜;赵炜
【作者单位】兰州交通大学环境与市政工程学院
【正文语种】中文
【中图分类】X703.1
【相关文献】
1.生物强化技术在污水处理中的作用机理及应用现状
2.生物强化技术在污水处理中的应用研究现状及发展展望
3.生物强化技术在污水处理中应用现状及未来趋势
4.
生物强化技术在污水处理中的应用研究现状及发展展望5.生物强化技术在污水处理中的作用机理及应用现状
因版权原因,仅展示原文概要,查看原文内容请购买。
石油、石化行业污水、医药废水和食品加工污水多具有高浓度、高盐、含毒性和可生化性差等特点,对整个人类生存环境会造成潜在的危害,而且,随着新型生产工艺的产生以及清洁生产的进行,现在的各类行业生产过程中排放的废水浓度越来越高,生产规模的提高也造成了废水排放量的日益增多,这些问题的产生也就随之带来了日益严峻的环保问题。
为了消除此类企业的后顾之忧,为企业和国家的环保事业贡献力量,我公司经过多年的努力,开发了针对高浓度难降解废水的生物处理技术即QBR(生物强化技术)技术,在多个企业成功地进行了实际应用。
同时,我公司的含氰化物废水处理工艺已经获得了国家专利(专利技术号:ZL2005 1 0134754.7)。
一、QBR工艺简介在废水处理工艺中,运行费用最低廉的就是采用生化处理技术。
微生物广泛存在于自然界中,并且在合适的环境中会迅速的自我增殖,微生物的增殖会使废水中的污染物得以持续的降解。
二、微生物处理技术的关键是:1、针对废水中的污染物筛选具有较高处理能力的微生物类群。
2、针对微生物类群的习性提供最佳的微生物栖息和生长环境。
由于石油石化行业的废水具有污染物浓度高、普通的微生物对废水内的污染物几乎没有降解能力,或者水质恶劣,无法提供微生物的生存环境,而且某些废水对微生物还有毒性等特点,所以很多废水处理工程在采用一般生化技术进行处理经过无数次尝试后以失败而告终,进而不得不转向高投资、高运行费用的物化处理技术。
QBR(Quick-BioReactor)是一种新型的,用于高浓度有机废水处理的生物技术,是一种比焚烧法、分级降解法及化学凝结法更为经济的处理方法,其专有的高效微生物(与高校菌种技术不同,QBR采用的菌种是一次植入,无需在使用中反复投加),以高于传统活性污泥法10倍以上的容积负荷,将传统生物法难以处理的高浓度、有毒废水,比较经济地处理成低浓度、易生化废水的生物前处理工艺,可以极大地降低高浓度有机废水的处理成本,产生良好的经济效益。
生物技术在污水处理与资源回收中的创新应用在当今社会,随着工业化和城市化的快速发展,污水的产生量不断增加,水质也变得越来越复杂。
传统的污水处理方法在应对这些挑战时往往显得力不从心,而生物技术的出现为污水处理与资源回收带来了新的希望。
生物技术利用微生物、植物和动物等生物有机体的代谢作用,实现对污水中污染物的去除和转化,同时还能回收有价值的资源,具有高效、环保、可持续等优点。
生物技术在污水处理中的应用主要包括生物膜法、活性污泥法、生物强化技术等。
生物膜法是一种利用附着在固体介质表面的微生物膜来处理污水的方法。
微生物在膜内形成复杂的生态系统,通过吸附、吸收和代谢等作用将污水中的有机物、氮、磷等污染物去除。
这种方法具有生物量高、耐冲击负荷、运行稳定等优点,适用于处理中小规模的污水。
活性污泥法是目前应用最广泛的污水处理技术之一。
它是将含有大量微生物的活性污泥与污水混合,在有氧条件下,微生物通过代谢作用将污水中的有机物分解为二氧化碳和水,同时将氮、磷等营养物质转化为无害物质。
活性污泥法具有处理效率高、适应性强等优点,但也存在污泥膨胀、污泥流失等问题,需要加强运行管理和优化工艺参数。
生物强化技术是通过向污水处理系统中添加特定的微生物或酶制剂,提高系统对污染物的去除能力。
这些微生物或酶制剂具有高效的代谢能力和特异性的降解作用,能够快速分解污水中的难降解有机物或有毒有害物质。
生物强化技术可以作为传统污水处理技术的补充和优化,提高处理效果和降低处理成本。
除了上述常见的生物技术,近年来,一些新兴的生物技术也在污水处理领域崭露头角。
例如,基因工程技术可以通过对微生物的基因进行改造,使其具有更强的污染物降解能力;微生物燃料电池技术则利用微生物的代谢作用将化学能转化为电能,实现污水的能源回收;藻类生物处理技术利用藻类的光合作用吸收污水中的氮、磷等营养物质,同时产生氧气,改善水质。
生物技术在资源回收方面也具有巨大的潜力。
污水中含有丰富的有机物、氮、磷等资源,如果能够有效地回收利用,不仅可以减少对环境的污染,还可以实现资源的可持续利用。
先进的城市污水处理技术有哪些在现代城市的发展进程中,污水处理是一项至关重要的工作。
随着科技的不断进步,各种先进的污水处理技术应运而生,为改善城市水环境、保障居民健康和促进可持续发展发挥了重要作用。
接下来,让我们一起了解一下一些常见的先进城市污水处理技术。
一、膜生物反应器(MBR)技术膜生物反应器是一种将膜分离技术与生物处理技术相结合的新型污水处理工艺。
它通过膜组件将生物反应池中的活性污泥和大分子有机物等截留在池内,从而提高了生物反应池中的生物浓度和泥水分离效果。
MBR 技术具有出水水质好、占地面积小、剩余污泥产量少等优点。
其出水可以直接回用,用于城市绿化、景观补水等。
然而,MBR 技术也存在膜污染和成本较高等问题,需要定期对膜进行清洗和更换,增加了运行维护成本。
二、厌氧氨氧化(ANAMMOX)技术厌氧氨氧化是一种新型的生物脱氮工艺,它以亚硝酸盐为电子受体,将氨氮直接转化为氮气。
与传统的硝化反硝化脱氮工艺相比,厌氧氨氧化不需要外加有机碳源,降低了运行成本,同时减少了温室气体的排放。
该技术具有高效、节能、环保等优点,但对反应条件要求较为苛刻,如温度、pH 值等,需要严格控制,目前在实际应用中还存在一定的局限性。
三、人工湿地处理技术人工湿地是模拟自然湿地的生态系统,通过植物、微生物和土壤的协同作用来净化污水。
污水在湿地中经过物理、化学和生物等过程,得到有效的净化。
人工湿地具有投资少、运行成本低、生态景观效果好等优点。
它不仅可以去除污水中的有机物、氮、磷等污染物,还能为鸟类等生物提供栖息地。
但人工湿地占地面积较大,处理效率相对较低,受季节和气候影响较大。
四、高级氧化技术高级氧化技术是通过产生具有强氧化性的自由基,如羟基自由基(·OH),来氧化分解污水中的有机污染物。
常见的高级氧化技术包括芬顿氧化法、臭氧氧化法、光催化氧化法等。
这些技术能够有效地降解难生物降解的有机物,提高污水的可生化性。
但高级氧化技术往往需要消耗大量的化学试剂或能源,运行成本较高。
难降解有机物的处理及处理原理摘要难降解有机物严重污染和威胁人类身体健康,因此难降解有机物的治理技术研究是目前水污染防治研究的热点与难点。
近年来,难降解有机物的生物处理技术研究取得了广泛的成果。
目前运用生物技术处理难降解有机物的主要技术路线,包括共代谢技术、缺氧反硝化技术、高效菌种技术、细胞固定化技术、厌氧水解酸化预处理技术。
关键词:难降解有机污染物生物技术共代谢技术1.前言难降解有机物通常指在自然条件难于被生物作用发生递降分解的有机化学物质。
有机物被微生物降解,转化为无机物,又由于无机物经过生命活动合成各种有机物,这是自然界生物地球化学的基本循环。
合成洗涤剂、有机氯农药、多氯联苯等化合物在水中较难被生物降解,无氮有机物中的脂肪和油类也是难降解物质,它们往往通过食物链逐步被浓缩而造成危害;在生产、使用过程中以及使用后,会通过各种途径进入水体造成污染。
难降解物质在环境中的持久性,以及广域的分散性,对环境与生态造成影响较大。
因此,一直是环境污染、生态环境恶性循环的重要环节。
难降解有机物被微生物分解时速度很慢,分解不彻底的有机物(也包括某些有机物的代谢产物),这类污染物易在生物体内富集,也容易成为水体的潜在污染源。
这类污染物包括多环芳烃、卤代烃、杂环类化合物、有机氰化物、有机磷农药、表面活性剂、有机染料等有毒难降解有机污染物。
这些物质的共同特点是毒性大,成份复杂,化学耗氧量高,一般微生物对其几乎没有降解效果,如果这些物质不加治理地向环境排放,势必严重地污染环境和威胁人类的身体健康。
随着工农业的迅速发展,人们合成了越来越多的有机物,其中难降解有机物占了很大比例,因此难降解有机物的治理研究已引起国内外有关专家的高度重视,是目前水污染防治研究的热点与难点。
2.难降解有机物的处理方式2.1难降解有机物的分类难降解(难生物降解)有机物是指微生物在任何条件下不能以足够快的速度降解的有机物。
形成有机物难于生物降解的原因除了在处理时的外部环境条件(如温度、pH值等)没有达到生物处理的最佳条件外,还有两个重要的原因,一是由于化合物本身的化学组成和结构,在微生物群落中,没有针对要处理的化合物的酶,使其具有抗降解性;二是在废水中含有对微生物有毒或者能抑制微生物生长的物质(有机物或无机物),从而使得有机物不能快速的降解[1]。
生物强化技术在难降解有机物处理中的应用
摘要:总结生物强化技术的方法及优缺点,阐述生物强化技术的广阔应用范围与前景,并提出现在以及今后发展的热点方向。
关键词:生物强化;难降解有机污染物;微生物;生物修复
1、概述
目前实施生物强化技术可通过如下三条途径:投加有效降解微生物;优化现有处理系统的营氧供给、添加基质(底物)类似物来刺激微生物生长或提高其活力;投加遗传工程菌(GEM)。
1.1投加有效降解微生物
实施该技术的前提是获得可降解待定有毒难降解有机污染物的菌株,降解菌大多数在纯培养体系中表现高活性,对于多菌株共存的生物处理系统中,投加难降解菌株能否起到强化有机物降解的作用,尚需评估。
Edgehill等人认为有效的菌剂应满足:①投加后,菌体活性高;②菌体可快速降解目标污染物;③在系统中(如曝气池)不仅能竞争性生存,且可维持相当的数量。
为了解决投加纯营氧物所出现的问题,Stenstrom研究小组开发一种非线性富营氧反应器(ER)工艺。
所谓ER实际上是一个或多个SBR,以富集足够数量可连续供给主体反应器的驯化培养物,同时以有毒物本身及其降解过程的某些代谢中间体作为维持驯化作用的选择压力。
ER培养的驯化培养物投加至主体工艺,强化有毒有机物的生物降解作用。
1.2投加营氧物质或基质类似物
由于大多数难降解有机污染物的降解是通过共代谢途径进行的,在常规活性污泥系统中可降解目标污染物的微生物数量与活性比较低,添加某些营氧物质包括碳源与能源性物质,或提供目标污染物降解过程中所需的因素,将有助于降解菌的生长,改善处理系统的运行性能。
投加基质类似物是针对代谢酶的可诱导性而提出的,利用目标污染物的降解产物、前体作为酶的诱导物,提高酶活性。
作为诱导物(基质类物质)应考虑:毒性相对较低、价格低廉且有多种用途,并在无富集基质(目标污染物)时,诱导物可维持富集培养物的生长特性与污染物降解动力学。
在分批培养的条件下,已有很多研究证实投加营氧物可刺激有毒难降解有机物的生物降解。
1.3投加遗传工程菌GEM
近10多年来,通过基因工程技术构建具有特殊降解功能的GEM已有一些进展。
这些GEM菌株在纯培养时,可有效降解一些异生合成物。
但投加于复杂生态系统的废水处理构筑物中,它们是否可强化污染物降解,这一问题已有一些报道。
英国Wales大学理论与应用生物系的Fry等人将带有质粒的PD10(3CB+)的P.UWC1,投加到实验室规模AS系统中,发现该菌株可存活8个星期,对系统中其它原核微生物和原生动物无不良影响,但不能强化3-氯苯甲酸(3-CB)的降解速率,然而由于降解性质粒具有转移接合的特性,该工程菌所携带的PD10可转移至活性污泥土菌性菌株中,分离所获得的菌株中,AS2菌株降解3-CB的活性远高于菌株UWC1。
这项研究揭示了在GEM构建时必需考虑受体菌的生态适应性。
2、固定化生物技术是实现生物强化技术的桥梁
固定化生物技术是将实验室筛选的优势菌种通过化学或物理手段固定于某种载体上,使其密度密集,并保持活性反复利用的方法,是国际上从20世纪60年代后期开始迅速发展的一项技术。
固定化生物技术是实现污水处理生物强化技术的桥梁。
20世纪70年代后期开始应用于废水处理,主要有结合固定化、交联固定化、包埋固定化、自固定化等几种方法。
2.1包埋固定化技术
包埋固定化技术是指通过某些多聚体化合物包埋微生物,从而达到固定微生物的目的。
它具有两大特点:一是可快速简捷地获得固定微生物;二是可以选择性地固定不同菌属的微生物。
Anselmo等人研究了用琼脂、海藻硅酸钠、卡拉胶和聚乙烯酰胺等载体包埋固定化微生物降解苯酚。
随后,他们又以聚氨酯泡沫为载体固定镰刀菌菌丝体,在完全混合器中降解苯酚。
结果表明,与游离菌相比之下,固定化细胞降解苯酚的速度大大提高,且固定化细胞生物产量低。
2.2 其它固定化技术
除包埋固定化技术固定优势菌种处理焦化废水外,国内外有许多学者对其它固定化技术进行了研究。
吴立波等人以喹啉为唯一碳源驯化高效菌种,将其一部分附着在陶粒材料上,比较了自固定化前后菌种活性的变化。
然后再用活性污泥处理焦化废水时,以3种投加高效菌种的方式强化处理焦化废水:①只投加悬浮高效菌种;②投加悬浮菌种和空白陶粒;③投加附着高效菌种的陶粒。
实验结果表明:菌种自固定化后,活性略有下降,但在泥龄短时活性较好。
固定化技术的特点是细胞密度高,反应迅速,微生物流失少,产物分离容易,反应过程控制较容易,污泥产量少,可去除氮和高浓度有机物或某些难降解物质。
资料显示,与厌氧水解酸化、A/ O、A2/ O 技术相比,固定化技术对焦化废水中
的处理效果较好。
3、生物强化技术的应用
3.1 在土壤中的应用
①投菌堆肥法:Alves等研究了在堆肥式处理装置中投加菌种和营养的方法。
席北斗等利用高效复合微生物菌群对生活垃圾和污泥混合堆肥,较系统地研究了高效复合微生物菌群在堆肥中的应用。
②投菌生物泥浆法:利用生物泥浆法处理多环芳烃污染的土壤,降解率比其它方法高。
巩宗强等发现,在生物泥浆反应器中投加镰刀菌和毛著霉等真菌对典型多环芳烃(芘)的降解率可达90%和81.5%。
③投菌土耕法:传统的土耕法处理石油污染的土壤,可在几个月的时间内使石油浓度从70000mg/kg土壤降低到100~200mg/kg,是节省成本的方法,但仍存在着不足,即挥发性有机物会造成空气污染,难降解物质的缓慢积累会增加土壤的毒性。
但结合生物强化技术,投入适量的具有固定、共代谢作用的烃降解菌,同时投加H2O2和营养,则可大大提高土壤法的效率,从而增强此法的优势,筛选和使用高效烃基降解菌可以强化污染场地生物自净作用,去除率达98.8%。
3.2生物强化技术在水污染修复中的应用
①投菌活性污泥法:筛选、驯化出具有特异优势菌种制成菌悬液投入到曝气池,使曝气池混合液内特定细菌处于最佳活性状态,提高处理效果。
②生物脱氮除磷技术:缺氧-厌氧-好氧(A2/O工艺)技术是目前较为流行的且具有代表性的生物脱氮除磷技术。
研究发现在活性污泥中有一种能够反硝化、除菌细菌(DPB),可有效的脱氮除磷。
Hung等用曝气塘生物强化技术处理马铃薯废水,使TOC去除率达到98%。
③膜生物反应器:将驯化、培养的优势菌种制成生物膜,用于反应器处理废水,有很好的治污效果。
Saravanane等用生物膜(如生物流化床、升流式厌氧污泥床)使生物强化附着在载体(砂砾、颗粒污泥)上,减少了菌体的流失,稳定了系统。
④固定化微生物技术:利用固定化技术可有目的筛选一些优势菌种,将其固定在载体上以提高反应器内原微生物浓度,有利于反应后的固液分离,缩短了处理时间,产污泥少。
4、生物强化系统的设计与运行
生物强化系统的成功应用要综合考虑污染场地、投菌量、投菌方式、活性检测、反应器类型、生物安全性检测、效果评价和可行性验证等诸多因素。
为了制
订确实可行的生物强化系统,应对污染场地的理化、生化条件以及污染物在环境中的分布、降解速度等进行调查,并经可行性分析,预测污染物的去除率、修复时间、经费,预测投加菌及其代谢产物的生物安全性,从而确定投菌系统可以使用。
投入的微生物在生物强化系统中的状况对污染处理效果的影响极大,仅仅用降解和动力学参数评价生物强化作用,很难掌握投入菌的数量变化、活性高低、投菌日程以及混合菌种中生物强化菌本身对响应的贡献。
5、生物强化技术展望
生物强化技术在污染治理中应用研究十分广泛,已在生物修复中显示优越性,主要体现在:提高对目标污染物的去除效果;改善污泥性能,减少污泥产生;加快系统启动,增强负荷冲击能力和系统稳定性;与其他生物修复相技术结合,提高了运转效率。
上述生物强化技术的大多数研究局限于生物降解的目标评价,要使这项技术符合可持续发展和ISO14000 的有关规定,还必须对以下几个方面进行深度研究:
①研究一种快速高效的投加菌及其代谢产物的生物安全性检测技术。
②进一步研究共代谢机制,治理难降解污染物。
③建立投菌量、活性检测、菌株或复合菌群等参数的模型,使生物强化技术从中试进入应用。
④进一步开展高效降解超级菌、工程菌的研究。
生物强化技术自20 世纪70 年代中期产生以来,经几十年的研究与应用,已在生物修复中显现出了强大的生命力,该方法可有效提高有毒有害污染物的去除效果,将生物强化技术融入到传统的生物修复,并结合现代分子生物技术提供的新方法、手段进行监测、评价,已成为生物修复发展的一种趋势。