八年级幂的运算知识点
- 格式:docx
- 大小:37.22 KB
- 文档页数:4
《幂的乘方》课堂笔记
一、知识点梳理
1.幂的乘方的意义:底数不变,指数相乘。
2.幂的乘方的运算法则:am×an=a(m+n)。
3.幂的乘方的符号规律:奇数个负数相乘为正,偶数个负数相乘
为负。
二、方法总结
1.观察底数和指数的变化,理解幂的乘方的意义。
2.利用运算法则进行计算,注意符号问题。
3.结合实例进行讲解和练习,加深对运算法则的理解和应用。
三、注意事项
1.底数可以是正数、负数或0,但在计算时要注意符号问题。
2.当底数为负数时,要注意幂的奇偶性对结果的影响。
3.要掌握符号规律,避免计算错误。
4.结合实例进行讲解和练习,帮助学生更好地理解和掌握知识。
四、例题解析与课堂练习
1.通过例题的解析,掌握幂的乘方的运算法则及其应用方法。
2.通过课堂练习,加深对幂的乘方的理解,并学会灵活运用运算
法则进行计算。
五、重点与难点解析
1.重点:掌握幂的乘方的运算法则及其应用方法。
2.难点:灵活运用幂的乘方的运算法则进行计算,解决实际问题。
3.解决难点的关键在于理解幂的乘方的意义和符号规律,并多加
练习。
六、课后作业与拓展任务
1.完成课后作业,巩固所学知识。
2.尝试解决一些与幂的乘方相关的实际问题,提高应用能力。
幂运算常用的8个公式初中好的,以下是为您生成的关于“幂运算常用的8 个公式初中”的文章:咱初中生学数学的时候,幂运算可是个重要的板块!今天就来好好聊聊幂运算常用的 8 个公式。
先来说说同底数幂相乘,公式是:$a^m×a^n = a^{m+n}$。
这就好比咱们排队买冰淇淋,原本有 m 个人在前面排着,又来了 n 个人,那现在一共不就是 m + n 个人在排队嘛。
同底数幂相除,公式为:$a^m÷a^n = a^{m-n}$ 。
这就好像你有 m个糖果,分给小伙伴 n 个,剩下的不就是 m - n 个嘛。
幂的乘方,公式是:$(a^m)^n = a^{mn}$ 。
这个啊,就像是你叠纸飞机,一张纸叠了 m 次,然后把这叠好的 m 层纸又一起叠了 n 次,那总共叠的层数不就是 mn 嘛。
积的乘方,$(ab)^n = a^n b^n$ 。
比如说,咱有 n 个盒子,每个盒子里都有 a 个红球和 b 个蓝球,那红球总数就是 a 的 n 次方,蓝球总数就是 b 的 n 次方。
零指数幂,$a^0 = 1$($a≠0$)。
这就好比你参加比赛,啥都没做也有个基础分 1 ,但前提是你得参赛,也就是 a 不能为 0 。
负整数指数幂,$a^{-p} = \frac{1}{a^p}$ ($a≠0$,p 为正整数)。
这就像你欠了 p 元钱,那你的资产就是负的 p 元,而还钱的时候就得用 1 除以欠的钱数。
还有一个很有趣的,就是完全平方公式:$(a ± b)^2 = a^2 ± 2ab + b^2$ 。
比如说咱们要给一个正方形花园围篱笆,边长是 a 米,如果在一边增加 b 米,那新的面积不就是原来的加上增加的部分嘛。
最后是平方差公式:$(a + b)(a - b) = a^2 - b^2$ 。
这就像你有一块大巧克力,长是 a ,宽是 b ,把它从中间切开,大块的面积减去小块的面积,就是这个公式啦。
幂的运算一、数学家的幽默一名统计学家遇到一位数学家,统计学家调侃数学家说道:你们不是说若X=Y且Y=Z,则X=Z吗!那么想必你若是喜欢一个女孩,那么那个女孩喜欢的男生你也会喜欢罗!?"数学家想了一下反问道:那么你把左手放到一锅一百度的开水中,右手放到一锅零度的冰水里想来也没事吧!因为它们平均不过是五十度而已!"二、幂的运算性质知识要点◆要点1 同底数幂的乘法:a m ·a n =a m +n (m ,n 都是正整数) 可扩展为a m ·a n ·a p =a m+n +p ★说明:幂的底数相同时,才可运用此法则。
◆要点2 幂的乘方与积的乘方(1) 幂的乘方:(a m )n =a mn (m ,n 都是正整数),可推广为()[]mnp p n m a a =(2) 积的乘方:(ab )n =a n b n (n 为正整数),可扩展为(abc )n =a n b n c n易错易混点(1) 将幂的意义与乘法的意义相混淆; (2) 不能正确理解幂的运算性质,而导致错误; (3) 忽略零指数幂、负整数指数幂的规定中底数不等为零的条件。
◆要点3 同底数幂的除法a m ÷a n =a m -n (a ≠0,m ,n 都是正整数,并且m >n )◆要点4 零指数与负整数指数的意义(两个规定)(1) 零指数: a 0=1 (a ≠0)(2) 负整数指数:p p aa 1=-(a ≠0,p 是正整数) 即任何一个不等于0的数的-p (p 为正整数)次幂等与这个数的p 次幂的倒数。
也可变形为:pp p a a a ⎪⎭⎫ ⎝⎛==-11 (观察前后幂的底数、指数变化) ★说明:(1)在幂的性质运算中,幂的底数字母a 、b 可以是单项式或多项式,运算法则皆可逆向应用;(2) 零指数幂和负整数指数幂中,底数都不能为0,即a ≠0;(3) 规定了零指数和负整数指数的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂;(4) 在运算当中,要找准底数(即要符合同底数),如果出现底数互为相反数,或其他不同,则应根据有关理论进行变形,变形要注意指数的奇偶性。
专题14.1幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的乘法法则+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.【要点提示】(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).【知识点2】幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.【要点提示】(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数)(2)逆用公式:()()n m mn m n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识点3】积的乘方法则()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.【要点提示】(1)公式的推广:()=⋅⋅n n n n abc a b c(n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识点4】注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【题型目录】【题型1】同底数幂的乘法运算及逆运算...........................................2;【题型2】幂的乘方运算及逆运算.................................................3;【题型3】积的乘方运算及逆运算.................................................3;【题型4】幂的混合运算.........................................................4;【题型5】幂的运算的应用.......................................................4;【题型6】直通中考.............................................................5;【题型7】拓展与延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】同底数幂的乘法运算及逆运算【例1】(23-24七年级上·河南周口·期中)在学习第一章有理数时,类比小学两个正数的运算法则学习了有理数的加减法、有理数的乘除法,在第二章整式的加减时,类比第一章有理数的学习过程学习了整式的加减,那么整式的乘法是否可以类比有理数的乘法进行学习呢?我们从特殊情况入手对两个同底数幂相乘进行探究.(1)探究根据乘方的意义填空,观察计算结果,你能发现什么规律①53( )222⨯=,②42( )a a a ⋅=,③( )555m n ⨯=,(2)规律( )m n a a a ⋅=(,m n 都是正整数).即______.(文字表达)(3)应用①计算31m m a a +⋅;②把(2)x y +看成一个整体,计算23(2)(2)x y x y +⋅+.【变式1】(23-24七年级下·全国·单元测试)计算3()()x y y x -⋅-=()A .4()x y -B .4()x y --C .4)y x -(D .4()x y +【变式2】(23-24七年级下·全国·单元测试)已知1222162x x ⋅⋅=,则x =.【例2】(2024七年级下·全国·专题练习)(1)已知23x =,求32x +的值;(2)若21464a +=,求a 的值.【变式1】(23-24七年级下·江苏淮安·期中)已知23x =,26y =,则2x y +的值是()A .12B .18C .36D .54【变式2】(2024七年级上·上海·专题练习)已知4222112x x +-⋅=,则x 的值为.【题型2】幂的乘方运算及逆运算【例3】(21-22七年级上·上海·期末)计算:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦.【变式1】(2022·江苏镇江·中考真题)下列运算中,结果正确的是()A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =【变式2】.若25 3 0x y +-=,则432⋅=x y .【例4】(2023八年级上·全国·专题练习)(1)若23m n a a ==,,求32m n a +的值;(2)若2639273x x ⨯⨯=,求x 的值.【变式1】已知553a =,444b =,335c =,则a 、b 、c 的大小关系为()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【变式2】(23-24八年级上·重庆九龙坡·阶段练习)已知433,33a b ==,则239a b ⨯=.【题型3】积的乘方运算及逆运算25.【例5】(22-23八年级上·黑龙江哈尔滨·阶段练习)(1)()34222x x x ⋅-;(2)()()23332232x y x y +-【变式1】(2022·广东深圳·中考真题)下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b +=+D .235a b ab+=【变式2】(20-21七年级下·江苏扬州·期末)已知am =10,bm =2,则(ab )m =.【例6】(2023九年级·全国·专题练习)用简便方法计算:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()201720180.1258⨯-.【变式1】(22-23七年级下·河北沧州·期中)若n 为正整数.且24n a =,则()()223224n n a a -的值为()A .4B .16C .64D .192【变式2】已知2232336x x x ++-⋅=,则x =.【题型4】幂的混合运算【例7】(21-22八年级上·全国·课后作业)计算:(1)()()()2243224249()(2)--+-a a b a b ;(2)()()()22112()3------n n n n x x x x x .【变式1】(20-21七年级下·甘肃兰州·阶段练习)下列各式计算正确的是()A .-3xy ·(-2xy )2=12x 3y 3B .4x 2·(-2x 3)2=16x 12C .(-a 2)·a 3=a 6D .2a 2b ·(-ab )2=2a 4b 3【变式2】已知2,3x x a t ==,则24x =.(用含,a t 的代数式表示)【题型5】幂的运算的应用【例8】(23-24八年级上·山西长治·阶段练习)我们知道,一般的数学公式、法则、定义可以正向运用,也可以逆向运用.对于“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为m n m n a a a += ,()()n m mn m n a a a ==,()mm m a b ab =;(m ,n 为正整数).请运用这个思路和幂的运算法则解决下列问题:(1)已知552a =,443b =,334c =,请把a ,b ,c 用“<”连接起来:;(2)若2a x =,3b x =,求32a b x +的值;(3)计算:2001001011284⎛⎫⨯⨯ ⎪⎝⎭.【变式1】(21-22八年级上·河南三门峡·期末)下列运算中,错误的个数是()(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅=A .1个B .2个C .3个D .4个【变式2】(20-21九年级下·湖南永州·期中)将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,12320202021S S S S S +++++= .第三部分【中考链接与拓展延伸】【题型6】直通中考【例9】(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+【例10】(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【题型7】拓展延伸【例11】(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【例12】(19-20七年级下·江苏南京·期中)观察等式(2a ﹣1)a +2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或0。
初中数学专题复习资料-----幂的运算性质【知识梳理】1、知识结构2、知识要点(1)同底数幂相乘,底数不变,指数相加,即 ←→a m+n =a m ·a nnm nma a a +=⋅(2)幂的乘方,底数不变,指数相乘,即←→a mn =(a m )n =(a n )m()mnnm aa=(3)积的乘方,等于每个因式分别乘方,即←→a n b n =(ab)n()nn nb a ab =(4)同底数幂相除,底数不变,指数相减,即 ←→a m-n =a m ÷a n (a ≠0)nm n ma a a -=÷(5)零指数和负指数:规定,(其中a ≠0,p 为正整数)(其中,m 、n 均为整数)10=a ppa a1=-3、中考预测对于幂的运算性质的考查,在中考中多以选择题和填空题出现,以考查对该性质的掌握,题目侧重于基础知识的掌握和运用,以及对该性质的理解,题目不会很难,但是会有一定的综合性,应准确把握和理解幂的运算性质,防止混淆。
(一)同底数幂的乘法【解题讲解-------基础训练】【例1】 1、(-)2×(-)3= 。
2、(-b )2·(-b )4·(-b)= ,(m+n )5·(n+m )8= 1212。
3、a 16可以写成( ) A .a 8+a 8; B .a 8·a 2 ; C .a 8·a 8 ; D .a 4·a 4。
4、下列计算正确的是( ) A .b 4·b 2=b 8 B .x 3+x 2=x 6 C .a 4+a 2=a 6 D .m 3·m =m 4【解题讲解-------能力提升】【例2】1、下面的计算错误的是( )A .x 4·x 3=x 7B .(-c )3·(-c )5=c 8C .2×210=211D .a 5·a 5=2a 102、x 2m+2可写成( ) A .2x m+2 Bx 2m +x 2 C .x 2·x m+1 D .x 2m ·x 23、若x ,y 为正整数,且2x ·2y =25,则x ,y 的值有( )对。
初中幂的运算
初中数学中,幂是一个重要的概念。
幂的运算常常出现在数学中的各个领域,如代数、几何、概率等。
那么,什么是幂的运算,它有哪些性质呢?
定义:
幂运算是指将一个数(称为底数)乘以自身多次(称为指数)的运算。
在数学符号中,幂运算通常表示为:a^n。
性质:
1、相同底数的幂,指数相加。
a^m * a^n = a^(m+n)
2、幂的乘法,底数不变,指数相加。
(a^m)^n = a^(mn)
3、幂的除法,底数不变,指数相减。
a^m / a^n = a^(m-n)
4、两个幂的乘积,底数相同,指数相加。
a^m * b^m = (ab)^m
5、幂的乘积,底数不同,指数相同。
a^m * b^m = (a*b)^m
6、幂的倒数,幂的指数变为相反数。
(a^m)^(-1) = a^(-m)
以上是初中幂的运算的基本定义和性质,掌握这些知识,能够帮助我们更好地理解和应用幂运算。
八年级上册数学幂的乘方知识点稿子一嗨呀,亲爱的小伙伴们!今天咱们来聊聊八年级上册数学里超有趣的幂的乘方知识点哟!啥是幂的乘方呢?简单说就是,一个幂再去做乘方运算。
比如说,(a 的 m 次方)的 n 次方,这就是幂的乘方啦。
那它的运算规则是啥呢?记住咯,底数不变,指数相乘。
就像(a 的 m 次方)的 n 次方等于 a 的(m×n)次方。
来,咱们举个例子。
比如说(2 的 3 次方)的 2 次方,底数 2 不变,指数3×2 = 6,结果就是 2 的 6 次方,也就是 64 哟。
这知识点在做题的时候可有用啦!比如说让你计算(3 的 2 次方)的 3 次方,那就是 3 的 6 次方,等于 729 。
而且哦,幂的乘方还能和同底数幂的乘法、除法结合起来考呢。
这时候可别晕头转向,只要牢记规则,就能轻松应对。
怎么样,是不是觉得幂的乘方也没那么难啦?多做几道题,熟练掌握,数学就能变得超简单哟!稿子二嘿,小伙伴们!咱们又见面啦,今天来唠唠八年级上册数学的幂的乘方。
你想啊,幂的乘方就好像给幂穿上了一层又一层的“魔法外衣”。
比如说(a^m)^n ,这就是幂的乘方。
那这“魔法外衣”怎么穿呢?记住哦,底数 a 可不会变,变的是指数,要把 m 和 n 相乘。
举个好玩的例子,(5^2)^3 ,底数 5 不动,2×3 = 6 ,所以结果就是 5^6 。
幂的乘方用处可大啦!做题的时候,它能帮咱们快速算出复杂的式子。
再比如说,给你个式子(x^3)^4 × x^5 ,先算幂的乘方,得到x^12 × x^5 ,然后同底数幂相乘,底数不变指数相加,就是x^17 。
还有哦,如果遇到像(2^4)^(1/2)这样的,也别害怕。
指数4×(1/2)= 2 ,结果就是 2^2 = 4 。
学会了幂的乘方,数学的世界就像打开了一扇新的大门,是不是很有趣呀?加油多练习,数学会越来越好玩的!。
八年级数学(上)14.1幂的运算知识网络重难突破知识点一整式乘法幂的运算性质(基础):●a m·a n=a m+n(m、n为正整数)同底数幂相乘,底数不变,指数相加.【同底数幂相乘注意事项】1)底数为负数时,先用同底数幂乘法法则计算,根据指数是奇偶数来确定结果的正负,并且化简到底。
2)不能疏忽指数为1的情况。
3)乘数a可以看做有理数、单项式或多项式(整体思想)。
4)如果底数互为相反数时可先变成同底后再运算。
典例1(2019·新蔡县期末)若2x=5,2y=3,则22x+y=_____.典例2(2017·洪泽县期中)已知,则x的值为____________.典例3(2018·台州市期末)已知,则n的值是________________.●(a m)n=a mn (m、n为正整数)幂的乘方,底数不变,指数相乘.【同底数幂相乘注意事项】负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。
典例1(2018·长春市期末)若,,则的值为_____.典例2(2019·中山市期末)已知m+2n+2=0,则2m•4n的值为_____.典例3(2019·襄樊市期末)若,则的值是_______.●(ab)n=a n b n(n为正整数)积的乘方等于各因式分别乘方,再把所得的幂相乘.典例1(2019·富阳市期末)(-2)2018×(-)2019 =____________。
典例2(2019·临潼区期末)若,,则__________.典例3(2017·成都市期末)(﹣2ab2)3=_____.●a m ÷a n=a m-n (a≠0,m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减.【同底数幂相除注意事项】1.因为0不能做除数,所以底数a≠0.2.运用同底数幂法则关键看底数是否相同,而指数相减是指被除式的指数减去除式的指数。
幂的运算(基础)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【答案与解析】解:(1)原式234944++==. (2)原式34526177772222aa a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数). 【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()ppp p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m nm n aa a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【答案与解析】解:(1)2()m a 2ma =.(2)34[()]m -1212()m m =-=.(3)32()m a-2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、(2016春•湘潭期末)已知a x =3,a y =2,求a x +2y 的值.【思路点拨】 直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案. 【答案与解析】 解:∵a x =3,a y =2,∴a x +2y =a x ×a 2y =3×22=12.【总结升华】本题考查同底数幂的乘法,幂的乘方,解题时记准法则是关键. 举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【答案】 解:32323232()()238972a ba b a b x x x x x +===⨯=⨯=g g .【变式2】已知84=m ,85=n ,求328+m n的值.【答案】 解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】(2015春•铜山县校级月考)(﹣8)57×0.12555. 【答案】解:(﹣8)57×0.12555=(﹣8)2×[(﹣8)55×]=﹣64.。
核心知识点一:同底数幂的乘法同底数幂相乘,底数不变,指数相加,即m n m n a a a +⋅=(m ,n 都是正整数).推导过程:一般地,对于任意底数a 与任意正整数m ,n ,核心知识点二:同底数幂的除法同底数幂相除,底数不变,指数相减,即m n m n a a a -÷=(m ,n 都是正整数,并且m n >).推导过程:一般地,对于任意底数a 与任意正整数m ,n ,幂的运算の重点梳理一、基础知识梳理核心知识点三:幂的乘方幂的乘方,底数不变,指数相乘,即()nm mn a a =(m ,n 都是正整数). 法则的推导过程:一般地,对于任意底数a 与任意正整数m ,n ,核心知识点四:积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即()n n n ab a b =(n 为正整数)法则的推导过程:一般地,对于任意底数a 、b 与任意正整数n ,核心知识点五:0次幂 01(0)a a =≠.核心知识点六:负整指数幂一般地,当n 是正整数时,1(0)n na a a -=≠.()m n a n m m nm m m m m m mn a a a a a a +++=⋅⋅⋅==个个()()()()n ab n n a n b n n ab ab ab ab a a a b b ba b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=个个个1、同底数幂的乘法:m n m n a a a +⋅=(m ,n 都是正整数).2、同底数幂的除法:m n m n a a a -÷=(m ,n 都是正整数m >n ).3、幂的乘方:()nm mn a a =(m ,n 都是正整数)4、积的乘方:()nn n ab a b =(m ,n 都是正整数)5、0次幂:01a =(0a ≠)6、负整指数幂:一般地,当n 是正整数时,1(0)n n a a a -=≠.二、知识体系梳理。
名师总结优秀知识点幂的运算(基础)【要点梳理】要点一、同底数幂的乘法性质a m a n a m n(其中m, n都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:( 1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.( 2)三个或三个以上同底数幂相乘时,也具有这一性质,即 a m a n a p a m n p(m, n,p 都是正整数).( 3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即a m n a m a n(m, n都是正整数).要点二、幂的乘方法则( a m )n a mn(其中m, n都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:( 1)公式的推广:((a m )n ) p a mnp(a 0,m, n, p均为正整数)( 2)逆用公式:a mn a mna nm,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题 .要点三、积的乘方法则( ab) n a n b n(其中 n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:( 1)公式的推广:(abc)n a n b n c n(n 为正整数).( 2)逆用公式:a n b n ab n逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计1010算更简便 . 如:121012 1.22要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时, 指数才可以相加 . 指数为 1,计算时不要遗漏 .( 3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式( 特别是系数 ) 都要分别乘方 .(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质1、计算:(1)4243 44;(2) 2a3 a4a5a22a6 a ;(3)( x y)n(x y)n 1(x y)m 1(x y)2 n 1 ( x y)m 1.【答案与解析】解:( 1)原式423449.( 2)原式2a3 4a522a6 12a7a72a7a7.( 3)原式( x y) n n1 m 1( x y)2 n 1 m 1( x y) 2n m( x y)2 n m2( x y) 2n m.【总结升华】( 2)( 3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a的指数是1.在第( 3)小题中把x y 看成一个整体.举一反三:【变式】计算:(1)35( 3)3( 3)2;(2)x p(x) 2 p(x) 2 p1( p 为正整数);(3)32(2) 2n(2) ( n 为正整数).【答案】解:( 1)原式35(3)33235333235 32310.(2)原式x p x2 p(x2 p 1 )x p 2 p 2 p1x5 p 1 .(3)原式2522n(2)252 n 1262n .名师总结优秀知识点2、已知2x 220 ,求2x的值.【思路点拨】同底数幂乘法的逆用:2x 22x 22【答案与解析】解:由 2x 220 得 2x2220 .∴2x 5 .【总结升华】( 1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.( 2)同底数幂的乘法法则的逆运用:a m n a m a n.类型二、幂的乘方法则3、计算:( 1)(a m)2;( 2)[(m) 3 ]4;(3) (a3 m) 2.【思路点拨】此题是幂的乘方运算,( 1)题中的底数是a,( 2)题中的底数是m ,(3)题中的底数 a 的指数是3m ,乘方以后的指数应是 2(3 m) 6 2m .【答案与解析】解:( 1)( a m)2a2 m.(2)[(m)3 ] 4(m)12m12.( 3)(a3 m)2a2(3m)a6 2 m .【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆. 幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知x2 m5,求1 x6m 5 的值.5【答案与解析】解:∵x2m 5 ,∴ 1 x6m51 (x55【总结升华】( 1)逆用幂的乘方法则:a 举一反三:2m)35135 .2055mn( a m) n(a n ) m.(2)本题培养了学生的整体思想和逆向思维能力.【变式 1】已知x a 2 , x b 3 .求 x3a2b 的值.【答案】解:x3a 2b x3a x2b( x a )3( x b )223 3289 72.【变式 2】已知8m 4 , 8n 5 ,求 83m 2 n 的值.【答案】解:因为 83m(8m )34364 ,82n(8n )25225 .所以83m 2 n83 m82 n6425 1600 .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)(ab)2ab2;( 2)(4ab)364a3b3;( 3)( 3x3)29x6.【答案与解析】解:( 1)错,这是积的乘方,应为:(ab)2a2b2.(2)对.(3)错,系数应为9,应为:( 3x3)29 x6.【总结升华】( 1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.( 2)注意系数及系数符号,对系数- 1 不可忽略.【典型例题】类型一、同底数幂的乘法性质1、计算:(1) (b2)3 (b 2)5(b 2) ;名师总结 优秀知识点(2) ( x 2y)2(2 y x)3 .【答案与解析】解:( 1) (b 2)3(b 2) 5 (b 2) (b 2) 3 5 1(b 2)9 .( 2) ( x 2y)2 (2 y x)3 ( x 2 y)2 [ (x 2 y)3 ]( x 2 y) 5 .【总结升华】( 1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:( a) na n (n 为偶数 ),(a b) n(b a )n n(为偶数 )(b .a n (n 为奇数 ),a) n ( n 为奇数 )类型二、幂的乘方法则2、计算:b)2 ]3 ;( 1) [(a( 2) ( y 3 )2 ( y 2 )3 2y y 5 ;( 3) ( x 2 m 2 ) 4 (x m 1 )2 ;( 4) (x 3 ) 2 ( x 3 )4 .【答案与解析】解:( 1) [( a b)2 ] 3( a b)2 3 ( a b)6 .(2) ( y 3 )2 ( y 2 )32 y y 5y 6 y 6 2 y 62 y 6 2 y 60 .(3) ( x 2 m 2 ) 4 (x m 1 )2 x 4(2 m 2) x 2( m 1) x 8m 8 x 2m 2x 10m 6 .(4) ( x 3 )2 ( x 3 )4 x 6 x 12 x 18 .【总结升华】 ( 1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.( 2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式. 3、已知 8m 4 , 8n 5 ,求 83m 2 n 的值.【思路点拨】 由于已知 8m, 8n的值,所以逆用同底数幂的乘法和幂的乘方把入计算 .【答案与解析】 解:因为 83m(8m )3 4364 ,82n(8n )2 52 25 .所以 83m 2 n 83 m 82 n 64 25 1600 . 【总结升华】 运用整体的观念看待数学问题,是一种重要的数学思维方法同时看到灵活地双向应用运算性质,使运算更加方便、简洁.举一反三:【变式】已知 a 3 m2, b2m3,则 a2 m 3b m 6a 2b 3m b m=【答案】 - 5;提示:原式a 3 m 2b 2m 3a 3 m2b 2 m2∵∴ 原式= 2233 22 32 =- 5.类型三、积的乘方法则4、计算:24( 2) [ a 2 ( a 4b 3 ) 3] 3( 1) (2 xy )83m 2 n 变成 83m 82 n (8m ) 3 (8n )2 ,再代. 把 8m , 8n 当成一个整体问题就会迎刃而解..【思路点拨】 利用积的乘方的运算性质进行计算 .【答案与解析】解:( 1) (2 xy 2 )4(1)24 x 4 ( y 2 )4 16x 4 y 8 .(2) [ a 2 ( a 4b 3 ) 3 ]3 (a 2 )3 ( a 12b 9 )3 a 6 ( a 36 ) b 27 a 42b 27 .【总结升华】 ( 1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. ( 2)注意系数及系数符号,对系数- 1 不可忽略.举一反三:【变式】下列等式正确的个数是( ).① 2x 2y3 36x 6 y9②a 2 m3a6 m③ 3a 633a 9④ 51057 107 35 1035⑤0.51000.5 2 10021012名师总结优秀知识点A.1个B. 2个C. 3个D. 4个【答案】 A;提示:只有⑤正确;2x2 y3 38x6 y9;a2 m 3a6m;3a6 327a18;51057107351012 3.51013同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即a m a n a m n( a ≠0,m、n都是正整数,并且 m n )要点诠释:( 1)同底数幂乘法与同底数幂的除法是互逆运算.( 2)被除式、除式的底数相同,被除式的指数大于除式指数,0 不能作除式 .( 3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.要点二、零指数幂任何不等于 0 的数的 0 次幂都等于 1. 即a0 1 ( a ≠0)要点诠释:底数 a 不能为0, 00无意义.任何一个常数都可以看作与字母0 次方的积 . 因此常数项也叫0 次单项式 .要点三、负整数指数幂任何不等于零的数的n ( n 为正整数)次幂,等于这个数的n 次幂的倒数,即 a n 1( a ≠0, n是正整数) .a n.引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立a m a n a m n( m 、 n 为整数,a0 );ab m a m b m(m为整数, a0 , b 0 )a m na mn( m 、 n 为整数,a0 ).要点诠释: a n a 0是 a n的倒数, a 可以是不等于0的数,也可以是不等于110 的代数式 . 例如2xy2xy( xy 0 ),51 b 0).a b5( aa b要点四、科学记数法的一般形式(1)把一个绝对值大于10 的数表示成a10n的形式,其中 n 是正整数, 1| a |10( 2)利用 10 的负整数次幂表示一些绝对值较小的数,即 a 10 n的形式,其中 n 是正整数, 1 | a | 10.用以上两种形式表示数的方法,叫做科学记数法.【典型例题】类型一、同底数幂的除法1、计算:5( 1)x8x3;( 2)( a)3 a ;(3) (2 xy) 5(2 xy)2;( 4)11333.【思路点拨】利用同底数幂相除的法则计算.( 2) 、 ( 4) 两小题要注意符号.【答案与解析】解:( 1)x8x3x83x5.(2)( a)3a a3 1a2.(3)(2 xy)5(2 xy) 2(2 xy)52(2 xy) 38x3 y3.535321 .(4)111133339【总结升华】( 1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、计算下列各题:( 1)( x y)5( x y)( 2)(5a 2b)12(2b 5a)5名师总结 优秀知识点( 3) (3 106 )4 (3 106 )2 ( 4) [( x 2 y)3 ]3 [(2 y x)2 ]4【思路点拨】( 1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如 (5a 2b)12 (2b 5a)12.( 2)注意指数为 1 的多项式.如 x y 的指数为 1,而不是 0.【答案与解析】解:( 1) ( x y) 5( x y)( x y) 5 1 ( x y) 4 .(2) (5a 2b)12 (2b 5a)5 (2 b 5a)12 (2 b 5a) 5 (2 b 5a)7(3) (3 106) 4 (3 106 )2(3 106) 4 2 (3 106)29 1012 .(4) [( x 2 y) 3 ]3 [(2 y x) 2 ] 4 (x 2 y)9 ( x 2 y)8 ( x 2 y)9 8 x 2 y . 【总结升华】 底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算. 3、已知 3m2 , 3n 4 ,求 9m 1 2n 的值.【答案与解析】解:9m 1 2n 9m 1(32 )m 1 32m 2 32 m3232m32 (3m )2 32 .92n(32 ) 2n 34n34n(3n )4(3n )4当 3m 2 , 3n4 时,原式22 32 9 .44 643m , 3n的式子,再代入求值.本题是把除式写成了分数【总结升华】 逆用同底数除法公式,设法把所求式转化成只含 的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 举一反三: 【变式】已知 2 5m 5 2m ,求 m 的值.【答案】5 m 1解:由 25m 5 2m 得 5m 12m 1 ,即 5m 12m 11,1,2∵底数 5不等于 0和 1,2m 1∴55 ,即 m 1 0 , m 1 .22类型二、负整数次幂的运算24、计算:(1)2 ;( 2) a 2 b3 (a 1b)3( ab) 1 .3【答案与解析】221 1 9 ; 解:( 1)3244239(2) a 2b 3 (a 1b)3 (ab) 1 a 2b 3 a 3b 3 aba 0b b .【总结升华】 要正确理解负整数指数幂的意义.举一反三:4【变式】计算: 2 51 2 1 2 3 2 (3.14)0 .2【答案】1 4解: 252 1 23 2 (3.14)021 24 1 12 1 1 16 1 1 2 1 252 23 32 2 81 116 1 532817321 1 n 5、 已知 3m, 16,则 m n 的值= ________.27 2【答案与解析】解: ∵3m11 3 3,∴ m 3 .27331n∵2 n , 16 24 ,∴ 2 n24 , n 4 .2∴m n ( 3) 4( 1 1 .3)4 81【总结升华】 先将11 n变形为底数为3 的幂,2 n , 16 24 ,然后确定 m 、 n 的值,最后代值求 m n .27 2举一反三:1 b 2c 3 3【变式】计算: ( 1) ( a 1b 2c 3 )2 ;( 2) b 2 c 3;2【答案】解:( 1)原式2 4c 6b 46 . a b2 ca8b8(2)原式b 2 c3 8b 6 c98b 8 c12 .12c类型三、科学记数法6、用科学记数法表示下列各数: ( 1) 0.00001 ;( 2)0.000000203 ;( 3)-0.000135 ;( 4) 0.00067【答案与解析】解:( 1) 0.00001 = 10 5;( 2) 0.000000203 = 2.03 10 7 ; ( 3) -0.000135 = 1.35 10 4 ;( 4) 0.00067 = 6.7 10 4 .【总结升华】 注意在 a10 n中n的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】 一. 选择题351.cc 的值是 ( ) .A.c 8B.15C.c 15D. c 8c2. a na n 2的值是() .A. a n 3B. a n n 2C. a 2 n 2D. a 83.下列计算正确的是( ) .A. x 2x 2 x 4B.x 3 x x 4x 7C. a 4 a 4 a 16D.a a 2a 34.下列各题中,计算结果写成10 的幂的形式,其中正确的是( ).A. 100 × 102 = 103B. 1000 × 1010 = 1030C. 100 × 103 = 105D. 100× 1000= 1045.下列计算正确的是 ( ).A. xy 3xy3B. 5xy225x 2 y 4C.3x22 9x4D. 2 xy2 3 8x 3 y66.若 2a m b n 38a 9b 15 成立,则 ( ).A. m = 6, n = 12B. m = 3, n =12C. m= 3,n= 5D. m= 6,n=5二. 填空题7.若 2m6, 2n 5 ,则2m n=____________.8.若 a3x a a19,则 x =_______.9.已知a3n5,那么a6n ______.10.若a3a m a8,则 m =______;若33x181 ,则 x =______.11.23______;33______ ;3252n= ______ .12. 若 n是正整数,且 a2n10 ,则 (a3n )28(a2 )2n= __________.三. 解答题13.判断下列计算的正误.( 1)x3x3x6()(2)( y3)2y5( )( 3)( 2ab2)22a 2b4()(4)(xy 2 )2xy 4() 14. ( 1)x(x3 )8(x4 )3;(2)( 1 a2b3)3(a3b2 )2;3(3)10 ( 0.3103 ) (0.4 105) ;( 4)b 2a 32a5;b(5)5a6 23a3 3a3;15. ( 1)若x n x3 n 3x35,求 n 的值.( 2)若a n b m b 3a9b15,求 m 、 n 的值.【答案与解析】一. 选择题1.【答案】 D;35c 35c88.【解析】c c c2. 【答案】 C;【解析】 a n a n 2a n n 2a2n 2 .3.【答案】 D;【解析】 x2x22x2; x3 x x4x8; a4 a4a8.4.【答案】 C;【解析】 100×102=104; 1000×1010=1013;100× 1000=105 .5.【答案】 D;【解析】3x3 y3; 5xy2225x2 y4; 3x224 . xy9x6.【答案】 C;【解析】2a m b n38a3 m b3 n8a9b15 ,3 m 9,3 n 15 ,解得 m =3, n =5.二. 填空题7.【答案】30;【解析】 2m n2m2n6530 .8.【答案】6;【解析】 a3x 1a19,3 x119, x 6 .9.【答案】25;【解析】 a6n a3 n 25225 .10.【答案】 5; 1;【解析】 a3 a m a3 m a8,3 m 8, m 5 ; 33x 181 34 ,3 x 1 4, x 1.11.【答案】 64;n9;310;12.【答案】 200;【解析】 ( a3 n ) 28( a2 )2n a2 n 328 a2 n1000 800 200 .名师总结 优秀知识点三 . 解答题 13. 【解析】解:( 1)×;( 2)×;( 3)×;( 4)× 14. 【解析】 解:( 1) x ( x 3) 8( x 4 )3xx 24 x 12x 37 ; (2) ( 1a 2b 3 )3 ( a 3b 2 )21 a 6b 9 a 6b 4 ;327(3) 10 ( 0.3 103 ) (0.4 105) 0.3 0.4 10103 105 1.2 108 ;(4) b2a 352a 32a 52a8;2a bb b b (5)5a 623a 3 3 a 3 25a 12 27a 9 a 32a 12 .15. 【解析】解:( 1)∵ x n x 3 n 3x 35∴x 4n 3x 35∴ 4 n +3= 35 ∴ n = 8( 2) m = 4, n = 3解:∵ a n b m 3a 9b 15b∴ a 3n b 3m b 3a 3nb 3 m 3 a 9b 15∴ 3 n =9 且 3 m + 3=15 ∴ n = 3 且 m = 4。
八年级上册数学幂的知识点幂的概念幂是指以底数为因数的连乘积。
其中,底数为幂的底,指数为幂的指。
幂通常表示为an,表示n个a的乘积。
其中,a为实数,n为自然数。
幂的性质1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
例如:4的2次方乘以4的3次方等于4的5次方,即4的2次方乘以4的3次方=4的5次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(m>n)。
例如:6的5次方除以6的3次方等于6的2次方,即6的5次方除以6的3次方=6的2次方。
3.幂的乘方法则:(a的m次方的n次方)等于a的m×n次方。
例如:3的4次方的2次方等于3的8次方,即(3的4次方的2次方)=3的8次方。
4.幂的0次方等于1,即a的0次方=1。
例如:2的0次方等于1,即2的0次方=1。
5.幂的负次方等于其倒数的幂,即a的-n次方等于1÷a的n次方(a≠0)。
例如:4的-2次方等于1÷4的2次方,即4的-2次方=1÷4的2次方。
幂的应用在实际生活中,幂的应用很广泛。
以下是几个常见的应用场景。
1.计算长方形面积。
长方形的面积可以看作是长和宽的乘积,即s=a×b。
其中a和b都是实数,也可以是整数或分数。
2.计算立方体的体积。
立方体的体积可以看作是长度、宽度和高度的乘积,即V=a×b×h。
其中a、b和h也都是实数,也可以是整数或分数。
3.计算复利。
复利是利滚利的一种形式,也是幂的一种应用场景。
复利的计算公式为A=P×(1+r/n)的nt。
其中,A是最终的本利和,P是本金,r是年利率,n是年复利次数,t是时间(以年为单位)。
总结在学习数学幂的知识点时,需要掌握幂的概念和性质,以及幂的应用场景。
幂是数学中的重要概念,应用非常广泛。
熟练掌握幂的知识,有助于我们更好地理解和应用数学。
幂的运算主要包括以下几种:
1. 同底数幂的加法:对于同底数的幂,可以直接将指数相加。
例如,a^m + a^n = a^(m+n)。
2. 同底数幂的乘法:对于同底数的幂,可以直接将指数相乘。
例如,a^m a^n = a^(mn)。
3. 幂的乘方:对于幂的乘方,可以直接将指数相乘。
例如,(a^m)^n = a^(mn)。
4. 幂的除法:对于幂的除法,被除数的指数要减去除数的指数。
例如,a^m a^n = a^(m-n)。
5. 幂的开方:对于幂的开方,指数要除以开方数。
例如,√(a^m) = a^(m2)。
6. 幂的负数:对于幂的负数,指数要取反。
例如,a^-m = 1(a^m)。
在进行幂的运算时,要注意保持底数、指数的正确关系,同时还要注意运算的顺序和运算性质的使用。
第9讲 幂的运算❖ 基本知识(熟记,会推导,会倒过来写,要提问.) 1、运算顺序,乘方开方,再乘除,最后加减。
nm nma a a +=⋅2、同底数幂相乘【推导】:【推导】n m nmaa a -=÷3、同底数幂相除:【推导】4、0的任何非0次幂等于0)0( 00≠=n n, 5、0的0次幂没有意义6、任何不等于0的数的0次幂都等于1)0( 10≠=a a , n naa 1=-7、负指数:,其实就是取倒数!【物理上用!】 mnn m a a =)(8、幂的乘方:【推导】mm m b a ab =)(9、积的乘方:【推导】n n nb a b a =⎪⎭⎫⎝⎛10、商的乘方:【推导】❖ 基本计算训练 【同底数幂相乘】 1、计算下列各题 52x x ⋅(1)6a a ⋅(2)34)2()2()2(-⨯-⨯-(3)13+⋅m m x x (4)2、计算下列各题 b b ⋅5(1)32212121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(2)62-⋅a a (3)12+⋅n ny y (4)参考答案1、(17x );(27a );(3)256;(414+m x )2、(15b );(2641);(34-a );(413+n y )【同底数幂相除】 1、计算下列各题 28x x ÷(1)25)()(ab ab ÷(2)64xx (3)32-nn (4)2、计算下列各题 57-÷x x (1)88m m ÷(2)710)()(a a -÷-(3)35)()(xy xy ÷(4)3、计算下列各题431010-(1)32--yy (2)64nn (3)641010-(4)参考答案1、(16x );(233b a );(32-x);(35n )2、(112x );(2)1;(33a -);(422y x )3、(1710);(2y );(32-n );(41010-)【幂的乘方】 1、计算下列各题53)10((1)44)(a (2)2)(m a (3)34)(x -(4)2、计算下列各题33)10((1)23)(x (2)5)(m x -(3)532)(a a ⋅(4)参考答案1、(11510);(216a );(3ma2);(412x -) 2、(1910);(26x );(3mx 5-);(411a )【积的乘方】 1、计算下列各题 3)2(a (1)3)5(b -(2)22)(xy (3)43)2(x -(4)2、计算下列各题 4)(ab (1)321⎪⎭⎫ ⎝⎛-xy (2)32)103(⨯-(3)32)2(ab (4)参考答案1、(138a );(23125b -);(342y x );(41216x ) 2、(144b a );(23381y x -);(37107.2⨯-);(4)638b a【幂的运算综合】1、判断下面计算的对错,并把错误的改正过来。
八年级幂的运算知识点
在八年级数学中,幂的运算是一个非常重要的知识点。
掌握了
幂的运算,可以更好地理解和解决数学题目,为高中数学打下坚
实的基础。
那么,幂数学在八年级具体有哪些内容呢?下面就来
一一讲解。
一、幂的定义和简单运算
幂是指一个数的几次方,比如$a^2$就是a的平方,表示为a×a。
幂具有以下运算法则:
1.同底数幂相乘规则:两个数的底数相同,指数相加,即
$a^m×a^n=a^{m+n}$。
2.同底数幂相除规则:两个数的底数相同,指数相减,即
$\frac{a^m}{a^n}=a^{m-n}$。
3.幂的乘方规则:一个数的幂的幂,底数不变,指数相乘,即$(a^m)^n=a^{m×n}$。
4.负指数的意义:$a^{-n}=\frac{1}{a^n}$,即分母是$a^n$,分
子为1的分数。
二、零数幂和整数幂
1.零数幂的概念:$0^n=0$(n≠0),因为任意数乘以0都等于0,所以0的n次方都等于0。
2.整数幂的概念:正整数幂是指将正整数作为底数所得到的幂;负整数幂是指将负整数作为底数所得到的幂。
正整数的n次方表
示为$a^n$,负整数的n次方表示为$(-a)^n$。
对于负整数,以下四条规律需要注意:
(1)奇数次方的负数结果为负数,如$(-5)^3=-125$。
(2)偶数次方的负数结果为正数,如$(-6)^4=1296$。
(3)负数的奇次方与其相反数的奇次方相反,如$(-3)^3=-27$,$3^3=27$,$-3^3=-27$。
(4)负数的偶次方与其相反数的偶次方相等,如$(-2)^4=16$,$2^4=16$。
三、小数幂
小数幂是指将小数作为底数的幂,如$0.5^3=0.125$。
小数幂的
计算方法与整数幂的计算规律相同。
四、分数幂
分数幂是指将分数作为底数的幂,如
$(\frac{1}{2})^3=\frac{1}{8}$。
分数幂的计算方法需要使用根式,将分数幂转化为根的形式,如
$(\frac{1}{2})^3=\sqrt[3]{\frac{1}{8}}=\frac{1}{\sqrt[3]{8}}=\frac{1 }{2}$。
分数幂的计算方法需要注意底数和指数的正负关系。
五、幂的性质
幂具有以下性质:
1.幂的指数为0时,结果为1,即$a^0=1$;
2.任意数的0次方都等于1,例如$0^0=1$;
3.任意数的1次方都等于自身,例如$a^1=a$;
4.幂的指数为自然数n时,结果为正数;
5.幂的指数为分数时,结果为正数或无理数。
总之,幂的运算是八年级数学中非常重要的知识点,我们需要掌握幂的基本概念、计算方法和运算规则。
只有在日常的练习中多加思考和实践,才能更好地解决数学问题,为今后的学习和工作奠定夯实的基础。