2017年秋季新版北师大版八年级数学上学期5.2、求解二元一次方程组同步练习31
- 格式:doc
- 大小:125.00 KB
- 文档页数:2
北师大版八年级数学上册第5章《二元一次方程组》同步练习及答案5.5应用二元一次方程组:里程碑上的数专题 行程问题1. 一辆汽车在公路上匀速行驶,司机在路边看到一个里程碑上是一个两位数,行驶一小时后,他看到的里程碑上的数,恰好是第一个里程碑上的数颠倒顺序后的两位数,再过一小时,他看到的里程碑上的数,又恰好是第一次看到的两位数中间添上一个零的三位数,那么他第一次看到的两位数是( ) A .14B .15C .16D .172. 某人在电车路轨旁与路轨平行的路上行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行走的速度都不变(分别为12u u ,表示),请你根据下面的示意图,求电车每隔几分钟(用t 表示)从车站开出一部?3. 甲、乙两人分别从相距30千米的A 、B 两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B 地所剩路程是乙到A 地所剩路程的2倍,求甲、乙两人的速度.参考答案:1.C 【解析】 设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,根据题意得⎩⎨⎧⨯=+-+⨯=+-+,,1)10(1001)10(10v y x x y v x y y x解得x=6y.∵xy 为1-9内的自然数,∴x=6,y=1; 即两位数为16.答:他第一次看到的两位数是16. 2.解:根据题意得1211216()2()u u u tu u u t -=⎧⎨+=⎩,解得122u u =. 3t =∴(分钟).答:电车每隔3分钟从车站开出一部.新版北师大版八年级数学上册第5章《二元一次方程组》同步练习及答案—5.7用二元一次方程组确定一次函数表达式一、选择题(每题5分,共25分)1. 已知y 与21x -成正比例,当1x =-时,6y =,则y x 与之间的函数关系式为( ) A .21y x =-- B .42y x =+ C .21y x =- D .42y x =-+2.已知y 是x 的一次函数,下表中列出了部分对应值,则m 等于 ( )A.-1 B .0 C .12D .-2 3.如果()2213m y m x -=-+是关于x 的一次函数,则m的值是( ) A 、1 B 、-1 C 、±1 D 、4. 如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处5.如图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏(0F )温度y 与摄氏温度(0C )x 之间的函数关系式为 ( ) A .9325y x =+ B.40y x =+ C.5329y x =+ (D.5319y x =+ 二、填空题6. 已知y 与x 成正比例,且当1x =-时,6y =-,则y 与x 之间的函数关系式为________.7.已知摄氏温度(℃)与华氏温度(℉)之间的转换关系是:摄氏温度=59×(华氏温度-32).若华氏温度是68℉,则摄氏温度是℃.60 7080 第4题图第5题图8. 在一次函数3y kx =+中,当3x =时6y =,则k = . 9.已知62=-y x ,01x ≤≤,则y 的最小值是 .10.随着海拔的升高,大气压强下降,空气中的含氧量也随之下降,即含氧3/yg m 与大气压强xkPa 成正比例关系.当36x kPa =时,3108/y g m =,则y 与x 之间的函数关系式为________. 三、解答题11.若y=(m -2)1m x - +m 是关于x 的一次函数. 求m 的值.12.旅客乘车按规定可携带一定重量的行李,如果超过规定则需购行李票,设行李费y (元)是行李重量x (千克)的一次函数,其图象如图所示. (1)求y 与x 之间的函数关系式; (2)旅客最多可免费携带多少千克行李?13. 从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.设计一个调运方案使水的调运量(万吨·千米)最少.14.为了学生的身体健康,学校课桌、凳的高度都是按照一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上对应四档的高度,得到如下数据见下表:⑴小明经过对数据探究,发现桌高y是凳高x的一次函数,请你写出这个一次函数的关系式(不要求写出x的取值范围)⑵小明回家后测量了家里的写字台和凳子,写字台的高度为77厘米,凳子的高度为43.5厘米,请你判断它们是否配套,并说明理由.15.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式.参考答案1. D ;2. B ;3. B ;4. C ;5. A ;6. 6y x =;7.20;8.1;9.-3;10.3y x =;11.0 12. 设解析式为(0)y kx b k =+≠,根据题意,得6059010k b k b +=⎧⎨+=⎩,解得1,56k b ==-,561-=x y ; 30千克 13.设总调运量为y 万吨·千米,A水库调往甲地水x 万吨,则调往乙地(14-x )万吨,B水库调往甲地水(15-x )万吨,调往乙地水(x -1)万吨. 由调运量与各距离的关系,可知反映y 与x 之间的函数为:y=50x+30(14-x )+60(15-x )+45(x -1). 化简得:y=5x+1275 (1≤x≤14). 由解析式可知:当x=1时,y 值最小,为y=5×1+1275=1280.因此从A水库调往甲地1万吨水,调往乙地13万吨水;从B水库调往甲地14•万吨水,调往乙地0万吨水.此时调运量最小,调运量为1280万吨·千米.14.(1)设这个一次函数的解析式为(0)y kx b k =+≠,根据题意,得:37.070.040.074.8k b k b +=⎧⎨+=⎩解得: 1.6,10.8.k b =⎧⎨=⎩所以这个函数关系式为 1.610.8y x =+.(2)当43.5x =㎝时, 1.643.510.880.477y =⨯+=≠,所以写字台的高度为77㎝,凳子高度为43.5㎝不配套.15.⑴设应安排x 天进行精加工,y 天进行粗加工,根据题意得: ⎩⎨⎧x +y =12,5x +15y =140. 解得⎩⎨⎧x =4,y =8.答:应安排4天进行精加工,8天进行粗加工. ⑵精加工m 吨,则粗加工(140-m )吨,根据题意得: W =2000m +1000(140-m )=1000m +140000 .北师大版八年级数学上册第5章《二元一次方程组》同步练习及答案5.8三元一次方程专题三元一次方程的应用1.小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情.小明说:“我来出一道数学题:把剪4个窗花的任务分配给3个人,每人至少剪个,有多少种分配方法”小敏想了想说:“设各人的任务为x、y、z,可以列出方程x+y+z=4.”小新接着说:“那么问题就成了问这个方程有几个正整数解.”现在请你说说看:这个方程正整数解的个数是()A.6个B.5个C.4个D.3个2.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成;乙种盆景由10朵红花、12朵黄花搭配而成;丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.3.把数字1,2,3,…,9分别填入下图的9个圈内,要求三角形ABC和三角形DEF的每条边上三个圈内的数字之和都等于18.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.参考答案:1.D 【解析】(1)当x=1时,y=1,z=2或y=2,z=1;(2)当y=1时,x=1,z=2或x=2,y=1;(3)当z=1时,x=1,y=2或y=1,x=2.故选D.2.4380 【解析】设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有1510102900 25253750x y zx z++=⎧⎨+=⎩①②,由①,得3x+2y+2z=580,③由②,得x+z=150,④把④代入③,得x+2y=280,∴2y=280﹣x,⑤由④得z=150﹣x.⑥∴4x+2y+3z=4x+(280﹣x)+3(150﹣x)=730,∴24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.3.解:(1)如图给出了一个符合要求的填法.(2)共有6种不同填法.证明:把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.显然有x+y+z=1+2+…+9=45,①图中六条边,每条边上三个圈中之数的和为18,所以有z+3y+2x=6×18=108,②②-①,得x+2y=108-45=63,③把AB,BC,CA边上三个圈中的数相加,则可得2x+y=3×18=54,④联立③,④,解得x=15,y=24,继而解得之z=6.在1,2,3,…,9中三个数之和为24的仅为7,8,9,所以在D,E,F三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中的数一旦确定,根据题目要求,其余六个圈内的数也随之确定,从而得结论,共有6种不同的填法.。
5.2 求解二元一次方程组 同步练习一、选择题1.由x +2y =1得到用x 的代数式表示y 的式子为( )A .x =1﹣2yB .x =1+2yC .y =12(1﹣x )D .y =12(1+x ) 2.二元一次方程组524x y x y +=⎧⎨-=⎩的解为( ) A .14x y =⎧⎨=⎩ B .23x y =⎧⎨=⎩ C .32x y =⎧⎨=⎩ D .41x y =⎧⎨=⎩ 3.下列用消元法解二元一次方程组2 1......25 1......x y x y -=-⎧⎨-=⎩①②中,不正确的是( ) A .由①得:21x y =-B .由①2⨯-②得:93y -=-C .由①5⨯-②2⨯得:7x =-D .把①2⨯整体代入②得:21y --=4.方程组632x y x y +=⎧⎨-=-⎩的解是( ). A .51x y =⎧⎨=⎩ B .42x y =-⎧⎨=-⎩ C .51x y =-⎧⎨=-⎩ D .42x y =⎧⎨=⎩ 5.已知x ,y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .5B .7C .9D .11 6.方程组2x y 53x 2y 8-=⎧⎨-=⎩,消去y 后得到的方程是( ) A .3x-4x-10=0B .3x-4x+5=8C .3x-2(5-2x )=8D .3x-4x+10=8 7.下列叙述正确的是( )A .方程31x y -=有无数个解,任何一对x 、y 的值都是这个方程的解B .22x y =⎧⎨=-⎩是二元一次方程38x y -=的一个解 C .二元一次方程38x y -=的解是22x y =⎧⎨=-⎩D.方程x y=不是二元一次方程8.任何一个二元一次方程的解的个数是()A.必有一个B.只有一个C.无数个D.有二个9.已知一个二元一次方程组的解是12xy=-⎧⎨=-⎩则这个方程组可能是( )A.3{2x yx y+=--=-B.3{21x yx y+=--=C.2{3x yy x=-=-D.251{3624x yx y-=+=-10.已知x,y满足方程组36x my m+=⎧⎨-=⎩,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=-9二、填空题11.已知x=6+3y,若用含x的代数式表示y,则y=_____.12.解方程组4312426x yx y+=⎧⎨-=⎩时,可用________________法,消去未知数____________.13.解方程组4339y xx y=+⎧⎨-=⎩,可用_____________法,它的解是_______________.14.已知方程53240x y-+=,x与y互为相反数,则x=___________,y=____________.15.(1)完成框图中解方程组的过程:(2)上面框图所表示的解方程组的方法是:__________.三、解答题16.解方程组:(1)2210y xx y=+⎧⎨-+=⎩(2)321345x yx y-=-⎧⎨-=-⎩17.解方程:(1)2x y 53x 2y 4-=⎧⎨+=⎩, (2)()x y 14x y 5y =+⎧⎨-=+⎩. 18.如果方程组2x y a =⎧⎨=⎩和7x b y =⎧⎨=⎩是方程470x y -+=的解,求a 、b 的值.参考答案1.C2.C3.B4.D5.A6.D7.B8.C9.D10.C11.63x - .12.减 x13.代入消元 1245x y =-⎧⎨=-⎩14.3- 3 15.(1)略;(2)代入消元法16.(1)13x y =⎧⎨=⎩;(2)12x y =⎧⎨=⎩17.(1)21x y =⎧⎨=-⎩;(2)01x y =⎧⎨=-⎩ 18.15a =;0b =。
北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)一、单选题1.如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,那么这个方程可以是( ) A .3416x y -= B .1254x y +=C .1382x y +=D .2()6x y y -=2.在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( )A .15x y =-⎧⎨=⎩B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩3.已知方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则()()()()2213313230.951x y x y ⎧-=++⎪⎨-=-+⎪⎩的解是( )A .8.31.2x y =⎧⎨=⎩B .10.32.2x y =⎧⎨=⎩C . 6.32.2x y =⎧⎨=⎩D .10.30.2x y =⎧⎨=⎩4.已知关于x ,y 的二元一次方程组24,2x y kx y -=⎧⎨+=⎩,的解为2,x y =⎧⎨=♥⎩,其中“♥”是不小心被墨水涂的,则k 的值为( ) A .1B .1-C .2D .2-5.如图,直线y =x +5和直线y =ax +b 相交于点P ,观察其图象可知方程x +5=ax +b 的解( )A .x =15B .x =25C .x =10D .x =206.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( ) A .30B .26C .24D .227.如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是( )A .12x =B .1x =C .2x =D .4x =8.某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( ) A .1032019xy= B .1032019yx= C .1019320x y -= D .1910320x y -=9.《九章算术》是我国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组.比如对于方程组323923342326x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a ,b 的值分别是( )A .24,4B .17,4C .24,0D .17,010.如图,在方格纸中,点P ,Q ,M 的坐标分别记为(0,2),(3,0),(1,4).若MN ∥PQ ,则点N 的坐标可能是( )A .(2,3)B .(3,3)C .(4,2)D .(5,1)11.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1212.如图,直线11y k x b =+和直线22y k x b =+相交于点2,23M ⎛⎫- ⎪⎝⎭,则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩,的解为( )A .2,32x y ⎧=⎪⎨⎪=-⎩B .2,23x y =-⎧⎪⎨=⎪⎩C .2,32x y ⎧=⎪⎨⎪=⎩D .2,23x y =-⎧⎪⎨=-⎪⎩二、填空题13.关于x 、y 的二元一次方程组2354343x y mx y m -=-⎧⎨+=+⎩的解满足55x y +=,则m 的值是______.14.若()225240x y x y +-++=,则x y -的值是________.15.某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.16.若方程组()23312y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第________象限.17.如图点D 、E 分别在ABC 的边AC 、AB 上,2,,3AD AE EB BD DC ==与CE 交于点F ,40ABC S =△,则AEFD S =_______.18.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB上的一点,且位于第二象限,当△OBC 的面积为3时,点C 的坐标为______.三、解答题19.已知点(4,0)A 及在第一象限的动点(,)P x y ,且6x y +=,O 为坐标原点,设OPA 面积为S .(1)求S 关于x 的函数解析式; (2)求x 的取值范围; (3)当6S =时,求P 点坐标.20.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)40 90售价(元/件)60 120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式;(2)若获得的利润恰好为2800元,求该商场购进甲、乙两种商品各多少件?21.如图,一次函数y=x+3的图象1l与x轴交于点B,与过点A(3,0)的一次函数的图象2l交于点C(1,m).(1)求m的值;(2)求一次函数图象2l相应的函数表达式;(3)求ABC的面积.22.已知0k ≠,将关于x 的方程0kx b +=记作方程☆. (1)当3k =,2b =-时,方程☆的解为______.(2)若方程☆的解为5x =-,写出一组满足条件的k ,b 值:k =______,b =______; (3)若方程☆的解为3x =,求关于y 的方程()250k y b --=的解.23.A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ; (2)分别求出,y y 甲乙与x 之间的函数解析式; (3)求出点C 的坐标,并写点C 的实际意义.24.数学乐园:解二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩①②,21b ⨯-⨯①②b 得:()12211221a b a b x c b c b -=-,当12210a b a b -≠时,12211221c b c b x a b a b -=-,同理:12211221a c a c y ab a b -=-;符号a b c d称之为二阶行列式,规定:a b ad bc c d=-,设1122a b D a b =,1122x c b D c b =,1122y a c D a c =,那么方程组的解就是x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩ (1)求二阶行列式3456的值;(2)解不等式:2224x x -≥--;(3)用二阶行列式解方程组3262317x y x y -=⎧⎨+=⎩;(4)若关于x 、y 的二元一次方程组362317x my x y -=⎧⎨+=⎩无解,求m 的值.25.在新年联欢会上,同学们组织了精彩的猜谜活动,为了奖励猜对的同学,老师决定购买笔袋或彩色铅笔作为奖品,已知1个笔袋和2筒彩色铅笔原价共需44元;2个笔袋和3筒彩色铅笔原价共需73元.(1)求每个笔袋、每筒彩色铅笔的原价各多少元?(2)时逢新年期间,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.如果买m 个笔袋需要1y 元,买n 筒彩色铅笔需要2y 元.请用含m ,n 的代数式分别表示1y 和2y ;(3)如果在(2)的条件下一共购买同一种奖品95件,请分析买哪种奖品省钱.26.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点. ①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.27.小华从家里出发到学校去上学,前15路段小华步行,其余路段小华骑自行车. 已知小华步行的平均速度为60m/min ,骑自行车的平均速度为200m/min ,小华从家里到学校一共用了22min .(1)小红同学提出问题:小华家里离学校有多少m ? 前15路段小华步行所用时间是多少min ? 请你就小红同学提出的问题直接设出未知数列方程组进行解答.(2)请你再根据题目的信息,就小华走的“路程”或“时间”,提出一个能用二元一次方程组解答但与第(1)问不完全相同的问题,并设出未知数、列出方程组。
北师大版八年级数学(上)解二元一次方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。
八(上) 第五章二元一次方程组 分节练习第1节 认识二元一次方程组01、【基础题】若方程4233=+nmy x 是二元一次方程,那么n m +的值是______. 02、【基础题】下面4组数值中,哪些是二元一次方程102=+y x 的解?(1)⎩⎨⎧==62y x - (2)⎩⎨⎧==43y x (3)⎩⎨⎧==34y x (4)⎩⎨⎧==26-y x2.1、【基础题】二元一次方程组⎩⎨⎧xy y x 2102==+的解是______.(1)⎩⎨⎧==34y x (2)⎩⎨⎧==63y x (3)⎩⎨⎧==42y x (4)⎩⎨⎧==24y x 2.2、【基础题】若⎩⎨⎧2213-=+=m y m x 是二元一次方程1034=-y x 的一个解,求m 的值.3、根据题意列方程组:(1)小明从邮局买了面值50分和80分的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?(2)周末,8个人去红山公园玩,买门票一共花了34元,已知每张成人票5元,每张儿童票3元,请问8个人中有几个成人、几个儿童?(3)某班共有学生45人,其中男生比女生的2倍少9人,则该班男生、女生各多少人?(4)老牛比小马多驮了2个包裹,如果把小马驮的其中1个包裹放到老牛背上,那么老牛的包裹是小马的2倍,请问老牛和小马开始各驮了多少包裹?(5)将一摞笔记本分给若干同学.每个同学5本,则剩下8本;每个同学8本,又差了7本.共有多少本笔记本、多少个同学?第2节 求解二元一次方程组4、【基础题】 用代入消元法解下列方程组:(1)⎩⎨⎧122=+=y x x y (2)⎪⎩⎪⎨⎧653425=+-=y x y x (3)⎩⎨⎧=711y x y x -=+ (4)⎩⎨⎧=32923y x y x +=- (5)⎩⎨⎧=x y y x 23=- (6)⎩⎨⎧=825y x y x +=+ (7)⎩⎨⎧=42534y x y x -=+ (8)⎪⎩⎪⎨⎧=123222n m n m +=- (9)⎩⎨⎧=31423+=+y x y x (10)⎩⎨⎧=1341632y x y x +=+5、【基础题】 用加减消元法解下列方程组:(1)⎩⎨⎧=1929327-+=-y x y x ; (2)⎩⎨⎧=156356-+=-y x y x ; (3)⎩⎨⎧=52534--=+t s t s ; (4)⎩⎨⎧=547965--=-y x y x ;(5)⎩⎨⎧=17431232y x y x +=+; (6)⎩⎨⎧=)5(3)1(55)1(3+-+=-x y y x ;5.1、【基础题】用加减消元法解下列方程组: (1)⎩⎨⎧=31351434y x y x +=-; (2)⎩⎨⎧=23342152y x y x +=-- ; (3)⎩⎨⎧=17541974y x y x -=-+; (4);(5)⎪⎩⎪⎨⎧=132353y x y x -=-; (6)⎪⎩⎪⎨⎧1)3(3241=--+=+x y x x y ; (7)5.2、【综合Ⅰ】 如果⎩⎨⎧==21y x 是二元一次方程组⎩⎨⎧=+=+21ay bx by ax 的解,那么a ,b 的值是( )(A ).⎩⎨⎧=-=01b a (B ).⎩⎨⎧==01b a (C ).⎩⎨⎧==10b a (D ).⎩⎨⎧-==1b a第3节 应用二元一次方程组——鸡兔同笼6、【综合Ⅰ】 列方程解应用题:(1)小梅家有鸡也有兔,鸡和兔共有头16个,鸡和兔共有脚44只,问:小梅家的鸡与兔各有多少只?(2)今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(3)今有牛五、羊二,直金十两;牛二、羊五,直金八两.请问牛、羊各直金几何? 题目大意是:5头牛和2只羊共价值10两金子,2头牛和5只羊共价值8两金子,每头牛、每只羊各价值多少两金子.(4)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马? (5)《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元. 问有多少人?该物品价值多少元?6.1、【综合Ⅱ】 列方程解应用题:(1)以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.请问,绳长、井深各几何?(2)用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺,那么这根绳子有多长?环绕大树一周需要多少尺?第4节 应用二元一次方程组——增收节支7、【综合Ⅱ】列方程解应用题:(1)某工厂去年的利润(总产值减总支出)为200万元. 今年总产值比去年增加20%,总支出比去年减少10%,今年的利润为780万元. 去年的总产值、总支出是多少万元?(2)一、二班共有100名学生,他们的体育达标率(达到标准的百分率)为81%,如果一班学生的体育达标率是87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?(3)医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质,若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?(4)甲、乙两人从相距36 km的两地相向而行,如果甲比乙先走2 h,那么他们在乙出发2.5 h后相遇;如果乙比甲先走2 h,那么他们在甲出发3 h后相遇,请问甲、乙两人的速度各是多少?7.1、【综合Ⅱ】列方程解应用题:(1)某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元,请问两种客房各租住了多少间?(2)某体育场的环形跑道长400 m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,那么他们每隔30 s相遇一次;如果同向而行,那么每隔80 s乙就追上甲一次. 甲、乙的速度分别是多少?(3)某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共40 kg,到市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:他当天卖完这些黄瓜和茄子可赚多少元?第5节应用二元一次方程组——里程碑上的数8、【综合Ⅱ】列方程解应用题:(1)小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来的两个加数分别是多少?(2)有一个两位数,个位上的数字比十位上的数字的3倍多2,若把个位数字与十位数字对调,所得新的两位数比原来的两位数的3倍少2,求原来的两位数.(3)两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边接着写较小的两位数,也得到一个四位数. 已知前一个四位数比后一个四位数大2178,求这两个两位数.(4)一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1. 这个两位数是多少?8.1、【综合Ⅱ】列方程解应用题:(1)小颖家离学校1880 m,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16 min,已知小颖在上坡路上的平均速度是4.8 km/h,在下坡路上的平均速度是12 km/h. 请问小颖上坡、下坡各用了多长时间?(2)某商店准备用两种价格分别为36 元/ kg 和20元/ kg 的糖果混合成杂拌糖果出售,混合后糖果的价格是28元/ kg 。
2 求解二元一次方程组 第1课时 代入消元法1.用代入法解方程组⎩⎪⎨⎪⎧y =2x -3,①3x -2y =10,②将方程①代入②中,所得的正确方程是( )A .3x -4x -3=10B .3x -4x +3=10C .3x -4x +6=10D .3x -4x -6=102.二元一次方程组⎩⎪⎨⎪⎧x +2y =10,y =2x 的解是( )A.⎩⎪⎨⎪⎧x =4y =3B.⎩⎪⎨⎪⎧x =3y =6 C.⎩⎪⎨⎪⎧x =2y =4D.⎩⎪⎨⎪⎧x =4y =2 3.以方程组⎩⎪⎨⎪⎧y =x +1,y =-x +2的解为坐标的点(x ,y)在第 象限.4.解方程组:(1)⎩⎪⎨⎪⎧y =2x -4,①3x +y =1;② (2)⎩⎪⎨⎪⎧x =2y +4,①2x -6y =12.②5.用含有x 或y 的式子表示y 或x :(1)已知x +y =5,则y = ; (2)已知x -2y =1,则y = ;(3)已知x +2(y -3)=5,则x = .6.用代入法解方程组⎩⎪⎨⎪⎧2x +4y =7,x -3y =8时,最好是先把方程 变形为 ,再代入方程 ,求出 的值,然后再求出 的值,最后写方程组的解.7.用代入消元法解方程组⎩⎪⎨⎪⎧3x +4y =2,①2x -y =5,②使得代入后化简比较容易的变形是( )A .由①,得x =2-4y3B .由①,得y =2-3x4C .由②,得x =y +52D .由②,得y =2x -58.二元一次方程组⎩⎪⎨⎪⎧x +y =2,2x -y =4的解是( )A.⎩⎪⎨⎪⎧x =0y =2 B.⎩⎪⎨⎪⎧x =2y =0C.⎩⎪⎨⎪⎧x =3y =-1D.⎩⎪⎨⎪⎧x =1y =19.解下列二元一次方程组:(1)⎩⎪⎨⎪⎧3x +4y =19,①x -y =4;② (2)⎩⎪⎨⎪⎧2x +y =3,①5x +y =9.②10.解方程组:⎩⎪⎨⎪⎧x -2y =1,①2x +3y =16.②解:解法一:由①,得x =1+2y.③ 将③代入①,得1+2y -2y =1,即1=1. 所以原方程组无解.解法二:由①,得x =1+2y.③ 将③代入②,得2(1+2y)+3y =16. 解得y =2.将y =2代入③,得x =5.上面的两种解答正确吗?若不正确,请说明理由,并写出正确的解答过程.11.若⎩⎪⎨⎪⎧x =3-m ,y =1+2m ,则用含x 的代数式表示y 为( )A .y =2x +7B .y =7-2xC .y =-2x -5D .y =2x -512.方程组⎩⎪⎨⎪⎧x =y +5,2x -y =5的解满足x +y +a =0,则a 的值是( )A .5B .-5C .3D .-313.用代入消元法解下列方程组:(1)⎩⎪⎨⎪⎧3(y -2)=x -17,2(x -1)=5y -8; (2)⎩⎪⎨⎪⎧3x +2=5y ,①2x -32+y =172.②14.已知⎩⎪⎨⎪⎧x =2,y =-1是方程组⎩⎪⎨⎪⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.15.先阅读材料,然后解方程组.材料:解方程组:⎩⎪⎨⎪⎧x -y -1=0,①4(x -y )-y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0.∴原方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组:⎩⎪⎨⎪⎧2x -3y -2=0,①2x -3y +57+2y =9.②第2课时 加减消元法1.解方程组⎩⎪⎨⎪⎧3x +2y =5,①-2x +2y =-6,②用①-②,得( )A .x =-1B .x =11C .5x =11D .5x =-1 2.解方程组⎩⎪⎨⎪⎧4x -3y =2,4x +3y =1.①②既可用 消去未知数x ,也可用 消去未知数y.3.二元一次方程组⎩⎪⎨⎪⎧x +2y =1,3x -2y =11的解是 .4.用加减消元法解方程组:(1)⎩⎪⎨⎪⎧x +y =3,①3x -y =5;②5.利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×2 6.解方程组:(1)⎩⎪⎨⎪⎧2x +y =2,①3x -2y =10;② (2)⎩⎪⎨⎪⎧x +2y =0,①3x +4y =6;② (3)⎩⎪⎨⎪⎧3x -y =5,①x -3y =-1.②7.解方程组:⎩⎪⎨⎪⎧4x -3y =1,①3x -2y =-1.②8.解下列方程组:(1)⎩⎪⎨⎪⎧4x +3y =14,①3x +2y =22;② (2)⎩⎪⎨⎪⎧3x -5y =3,①x 2-y 3=1;②(3)⎩⎪⎨⎪⎧2u 3+3v 4=12,①4u 5+5v 6=715.②9.已知y =kx +b(k ,b 为常数),当x =1时,y =-2;当x =-1时,y =-4,求当x =2 020时,y 的值.10.对于实数a ,b ,定义关于“”的一种运算:ab =2a +b ,例如:34=2×3+4=10.(1)求4(-3)的值; (2)若x (-y)=2,(2y)x =-1,求x +y 的值.参考答案:2 求解二元一次方程组 第1课时 代入消元法1.C 2.C 3.一. 4.(1)⎩⎪⎨⎪⎧y =2x -4,①3x +y =1;② 解:将①代入②,得3x +2x -4=1. 解得x =1.把x =1代入①,得y =-2.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =-2.(2)⎩⎪⎨⎪⎧x =2y +4,①2x -6y =12.② 解:将①代入②,得2(2y +4)-6y =12.。
第2课时 加减消元法基础题知识点1 直接用加减消元法解二元一次方程组1.解方程组⎩⎪⎨⎪⎧3x +2y =5,①-2x +2y =-6.②用①-②,得( ) A .x =-1 B .x =11C .5x =11D .5x =-12.解方程组⎩⎪⎨⎪⎧4x -3y =2,4x +3y =1.①②既可用________消去未知数________;也可用________来消去未知数________.3.(毕节中考)二元一次方程组⎩⎪⎨⎪⎧x +2y =1,3x -2y =11的解是________. 4.用加减消元法解方程组:(1)(淮安中考)⎩⎪⎨⎪⎧2x +y =5,①x -y =4;②(2)(邵阳中考)⎩⎪⎨⎪⎧x +3y =12,①2x -3y =6;②(3)⎩⎪⎨⎪⎧6x +7y =-19,①6x -5y =17.②知识点2 用加减消元法解较复杂的二元一次方程组5.方程组⎩⎪⎨⎪⎧2x -y =2,2x +3y =11①②的最优解法是( ) A .由①,得y =2x -2,再代入②B .由②,得2x =11-3y ,再代入①C .由②-①,消去xD .由①×2+②,消去y6.解方程组:(1)⎩⎪⎨⎪⎧2x -5y =-21,①4x +3y =23;②(2)(滨州中考)⎩⎪⎨⎪⎧3x -y =7,①x +3y =-1.②中档题7.(抚州中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =6,则3a +b 的值为( )A .8B .4C .-4D .-88.如果方程组⎩⎪⎨⎪⎧x +y =6,3x -y =2的解也是3x +ky =10的解,那么k 的值是( ) A .1 B .2C .4 D.129.(襄阳中考)若方程mx +ny =6的两个解是⎩⎪⎨⎪⎧x =1,y =1,⎩⎪⎨⎪⎧x =2,y =-1,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-410.解下列方程组:(1)⎩⎨⎧x 2+y 3=132,①x 3-y 4=32;②(2)⎩⎨⎧73x +y 2=4,①x +25=y +93.②11.(贺州中考)已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx -12ny =12,mx +ny =5的解为⎩⎪⎨⎪⎧x =2,y =3,求m ,n 的值.综合题12.先阅读,再解方程组.解方程组⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2时, 设a =x +y ,b =x -y ,则原方程组变为:⎩⎪⎨⎪⎧a 2+b 3=6,4a -5b =2,变形为⎩⎪⎨⎪⎧3a +2b =36,4a -5b =2. 解这个方程组,得⎩⎪⎨⎪⎧a =8,b =6,即⎩⎪⎨⎪⎧x +y =8,x -y =6. 解得⎩⎪⎨⎪⎧x =7,y =1.请用这种方法解下面的方程组:⎩⎪⎨⎪⎧5(x +y )-3(x -y )=16,3(x +y )-5(x -y )=0.参考答案1.C 2.①-② x ①+② y 3.⎩⎪⎨⎪⎧x =3y =-1 4.(1)①+②,得3x =9.解得x =3.把x =3代入②中,得y =-1.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =-1. (2)①+②,得3x =18,解得x =6.把x =6代入方程①,得6+3y =12,解得y =2.所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =2. (3)①-②,得12y =-36.解得y =-3.把y =-3代入①,得x =13.所以原方程组的解为⎩⎪⎨⎪⎧x =13,y =-3.5.C6.6.(1)①×2,得4x -10y =-42,③②-③,得13y =65,解得y =5.将y =5代入②,得4x+3×5=23,解得x =2.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =5. (2)①×3+②,得10x =20,则x =2.把x =2代入①,得6-y =7,则y =-1.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1. 7.A 8.A 9.A 10.(1)⎩⎪⎨⎪⎧x =9,y =6. (2)⎩⎪⎨⎪⎧x =3,y =-6. 11.将⎩⎪⎨⎪⎧x =2,y =3代入⎩⎪⎨⎪⎧mx -12ny =12,mx +ny =5,得⎩⎪⎨⎪⎧2m -32n =12,①2m +3n =5.②②-①,得92n =92,解得n =1.把n =1代入②,得m =1,所以m =1,n =1.12.设m =x +y ,n =x -y ,则原方程组变为⎩⎪⎨⎪⎧5m -3n =16,3m -5n =0,解得⎩⎪⎨⎪⎧m =5,n =3.所以⎩⎪⎨⎪⎧x +y =5,x -y =3,解得⎩⎪⎨⎪⎧x =4,y =1.。
课 时 练第5单元 二元一次方程组认识二元一次方程组一、单选题1.已知二元一次方程组{2x −y =5x −2y =1,则x −y 的值为( ) A .2 B .6 C .−2 D .−62.若满足方程组 {3x +y =m +32x −y =2m −1的 x 与 y 互为相反数,则 m 的值为( ) A .11 B .-1 C .1 D .-113.已知关于x ,y 的方程组 {x +3y =4−a x −y =3a,其中 −3≤a ≤1 ,下列命题正确的个数为( )①当 a =−2 时,x 、y 的值互为相反数;②{x =5y =−1是方程组的解; ③当 a =1 时,方程组的解也是方程 x +y =4−a 的解;④若 x ≤1 ,则 1≤y ≤4 .A .1个B .2个C .3个D .4个 4.已知 |5x +2y −13|+(3x −y −10)2=0 ,则 y x 的立方根为( ) A .1 B .−1 C .2 D .−25.关于x ,y 的方程组 {3x +my =0x −y =4的解是 {x =2y =■ ,其中y 的值被盖住了,但仍能求出m 的值是( )A .2B .3C .-1D .-2 二、填空题 6.若3x ﹣4y ﹣z=0,2x+y ﹣8z=0,则 x 2+y 2+z 2xy−yz+xz的值为 . 7.若关于x 、y 的二元一次方程组{x −y =2m +1x +3y =3的解满足x+y=1,则m 的值为 .8.若(2x +y −5)0无意义,且3x +2y =10,则x = ,y = . 9.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a = ,b= .10.已知一个等腰三角形的两边长a ,b 满足方程组 {2a −b =3,a +b =3,则此等腰三角形的周长为 .11.某班20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x 人,女生有y 人,可列方程组为 .四、解答题12.解下列方程组(1){x −2y =1①4x +3y =26②. (代入消元法) (2){2x +3y =3①5x −3y =18② (加减消元法) 13.解方程组(1){2x −y =−44x −5y =−23(2){m 2+n 3=13m 3−n 4=314.在解方程组 {ax +y =−8bx −cy =5时,小聪正确的解得 {x =3y =1 ,小虎因看错a 而解得 {x =7y =−1 ,若两人的计算过程均没错误,求a ,b ,c 的值. 15.甲、乙两人同时解方程组 {ax +5y =15①4x =by −2②时,甲看错了方程①中的a ,解得 {x =−3y =−1 ,乙看错了②中的b ,解得 {x =5y =4 ,求原方程组的正确解. 五、综合题16.解方程组 {x −2y =2①4x −2y =5②时,两位同学的解法如下: 解法一:由①﹣②,得3x =﹣3解法二:由②得3x+(x ﹣2y )=5③①代入③得3x+2=5(1)反思:上述两种解题过程中你发现解法 的解题过程有错误(填“一”或“二”);解二元一次方程组的基本思想 .(2)请选择一种你喜欢的方法解此方程组.17.已知关于x ,y 的二元一次方程组{3x −y =52ax +3by =−2与{2x +3y =−4ax −by =4有相同的解. (1)求x ,y 的值;(2)求a2+b2−2ab的值.18.对于平面直角坐标系xoy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,k≠0)则称点P′为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(−2,3)的“3属派生点”的坐标为;(2)若点P的“5属派生点”的坐标为(3,−9),求点P的坐标.参考答案1.A2.A3.C4.B5.B6.27.﹣18.0;59.2;110.511.{x+y=203x+2y=5212.(1)解:由①得:x=1+2y③,把③代入②得,4(1+2y)+3y=26,解得y=2,把y=2代入③得:x=1+2×2=5,原方程组的解为:{x=5y=2;(2)解:①+②得:7x=21,解得x=3,把x=3代入①得2×3+3y=3,解得y=−1,∴原方程组的解为{x=3y=−1.13.(1)解:{2x−y=−4①4x−5y=−23②①×2−②,得3y=−8+23∴y=5将y=5代入①,得:2x=−4+5∴x=1 2∴{x =12y =5; (2)解: {m 2+n 3=13①m 3−n 4=3② ①×2−②×3 ,得: (23+34)n =26−9 ∴n =12将 n =12 代入到①得: m 2+4=13∴m =18∴{m =18n =12. 14.解:将 {x =3y =1 代入 {ax +y =−8bx −cy =5 ,得 {a =−33b −c =5, 将 {x =7y =−1 代入bx -cy=5中,得7b+c=5,解方程组 {7b +c =53b −c =5 ,解得 {b =1c =−2, ∴a=-3,b=1,c=-2.15.解:把 {x =−3y =−1 代入方程②得: 4×(−3)=−b −2 ,解得: b =10 ,把 {x =5y =4代入方程①得: 5a +5×4=15 , 解得: a =−1 ,∴原方程组为 {−x +5y =15①4x =10y −2②由①得: x =5y −15③, 把③代入②得: y =295, 把 y =295代入③得: x =14 , ∴原方程组的正确解为: {x =14y =295. 16.(1)一;消元(2)解:②−①得: 3x =3 ,解得 x =1 ,将 x =1 代入①得: 1−2y =2 ,解得 y =−12,所以方程组的解为: {x =1y =−12 . 17.(1)解:联立不含a 、b 的两个方程得{3x −y =52x +3y =−4, 解这个方程组得{x =1y =−2,(2)解:把x =1,y =−2代入2ax +3by =−2,ax −by =4得{2a −6b =−2a +2b =4, 解得:{a =2b =1, ∴a 2+b 2−2ab =4+1−4=1. 18.(1)(7,-3)(2)解:设点P 的坐标为(a ,b ),由题意得 {a +5b =35a +b =−9 ,解得 {a =−2b =1, ∴点P 的坐标为(-2,1).。
教学设计反思
1.引入自然.二元一次方程组的解法是学习二元一次方程组的重要内容.教材通过上一小节的实际问题,比较一元一次方程的列法和解法,从而自然引入二元一次方程组的代入消元解法.
2.探究有序.回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有了很好的认知基础,探究显得十分自然流畅.
3.充分体现了转化与化归思想.引导学生充分思考和体验转化与化归思想,以利于总体目标中所提出的“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验”的落实.
4.值得注意的方面.在学生总结解题步骤的环节,一定要留给学生足够的观察、思考、总结、组织语言的时间,训练学生的观察归纳能力,提高学生学习能力.。
解二元一次方程组
※课时达标
⎩⎨⎧=-=33y x 是方程组⎩
⎨⎧=+=-221ny x y mx 的解,则 m =________,n =____________.
关于x 、y 的方程组的解是,
则|m ﹣n|的值是( ).
A.5
B.3
C.2
D.1
⎩⎨⎧==32y x 和⎩
⎨⎧==53x x 是方程ax+by=30的两组解, 则a =__________,b =___________.
若(2x+3y-6)2与|3x-2y+17|互为相反数,
则满足条件的x=________,y=________.
5.已知x 3m+2n-12y 2与xy 5m-3n-7是同类项,则m=________,n=__________. ※课后作业
★基础巩固
1.已知方程mx+(m+1)y=4m -1是关于x,y 的
二元一次方程,则m 的取值范围是( ). A.m ≠0 B.m ≠-1 C.m ≠0且m ≠1 D.m ≠0且m ≠-1
2.下列各对数值中是方程组⎩
⎨⎧-=+=+2222y x y x 的解
的是( )
A.⎩⎨⎧==22
y x B.⎩⎨⎧=-=22
y x C.⎩⎨⎧==20y x D.⎩⎨⎧==02y x
3.解以下两个方程组,较为简便的是( ).
①⎩⎨⎧=+-=8571
2y x x y ②⎩⎨⎧=-=+4861725
68t s t s
A.①②均用代入法
B.①②均用加减法
C.①用代入法②用加减法
D.①用加减法②用代入法
4.解下列方程组:
(1)⎪⎩⎪⎨⎧=-+=+1323
241y x x y (2)⎩⎨⎧==-4:3:23x y y x
☆能力提高
5.已知3a y+4b 3x -1与-3a 2x -2b 1-2y 是同类项,则
x=_________,y=_________.
6.若(5x+2y -12) 2+|3x+2y -6|=0,则
2x+4y=_________.
7.若3x 3m+5n+9+9y 4m -2n+3=5是二元一次方程,则 n
m =_________.
在代数式mx+n 中,当x=3时,它的值是4, 当x=4时,它的值是7,则m=____,n=____.
9.已知⎩⎨⎧=+=+,4235
4y x y x 则x -y 的值是( )
A.1
B.0
C.-1
D.不能确定 方程组⎩⎨⎧=-+=+3)1(1
34y k kx y x 的解x 和y 的值相
等,则k 的值等于( ).
A.9
B.10
C.11
D.12 ●中考在线 已知是二元一次方程组的 解,则2m ﹣n 的算术平方根为( )
A.±2
B.
C.2 D .4
12.解方程组:3421x y x y +=⎧⎨
-=⎩.
13.解方程组31328x y x y +=-⎧⎨
-=⎩.。