中性点直接接地系统的接地保护
- 格式:ppt
- 大小:1.61 MB
- 文档页数:15
TN-S接零保护系统目录[隐藏]定义相关资料定义相关资料[编辑本段]定义具有专用保护零线的中性点直接接地的系统叫TN-S接零保护系统,俗称三相五线制系统。
重复接地的定义:重复接地———在采用保护接零的中性点直接接地系统中,除在中性点作工作接地外,还必须在零线上一处或多处重复接地如图1所示。
图1工作接地、接零、重复接地2重复接地的要求按照JGJ46-88《施工现场临时用电安全技术规范》中第432条规定:保护零线除必须在配电室或总配电箱处作重复接地外,还必须在配电线路的中间和末端处重复接地。
即在施工现场内,重复接地装置不应少于三处,每一处重复接地装置的接地电阻值应不大于10Ω。
3重复接地的作用(1)在有重复接地的低压供电系统中,当发生接地短路时在低压电网已作了工作接地时,应采用保护接零,不应采用保护接地。
因为用电设备发生碰壳故障时,1、采用保护接地时,故障点电流太小,对1.5kW以上的动力设备不能使熔断器快速熔断,设备外壳将长时间有110V的危险电压;而保护接零能获取大的短路电流,保证熔断器快速熔断,避免触电事故。
2、每台用电设备采用保护接地,其阻值达4Ω,需要一定数量的钢材打入地下费工费材料,而采用保护接零敷设的零线可以多次周转使用,从经济上也是比较合理的。
但是在同一个电网内,不允许一部分用电设备采用保护接地,而另外一部分设备采用保护接零,这样是相当危险的,如果采用保护接地的设备发生漏电碰壳时,将会导致采用保护接零的设备外壳同时带电。
[编辑本段]相关资料建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。
国际电工委员会( IEC )对此作了统一规定,称为 TT 系统、TN 系统、 IT 系统。
其中 TN 系统又分为 TN-C 、 TN-S 、 TN-C-S 系统。
下面内容就是对各种供电系统做一个扼要的介绍。
(一)工程供电的基本方式根据 IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。
第三章 中性点直接接地系统的零序电流保护一、零序电流保护及其在系统中的作用不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下:可见零序电流的大小与系统运行方式有关。
但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。
图3-31( b )为其短路计算的零序等效网络。
在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。
零序电压的方向采用线路高于大地的电压为正。
这样,A 母线的零序是电压表示为。
11)(oT o oA Z I U ∙∙-= (3-48)该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。
二、中性点直接接地系统变压器中性点接地原则中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则:(1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。
(2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行;(3)T接于线路上的变压器,以不接地运行为宜。
当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂;(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。
(5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另一台中性点不接地的变压器直接接地。
电力系统中性点接地的三种方式有效接地系统(又称大电流接地系统)小电流接地系统(包含不接地和经消弧线圈接地)经电阻接地系统(含小电阻、中电阻和高电阻)大电流接地系统用于110kV及以上系统及。
该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。
大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。
这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。
主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。
作为220kV枢纽变电站的主变必须并列运行。
其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。
好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV 系统零序保护的方向性和稳定性。
主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。
作为220kV负荷变电站的主变必须分列运行。
此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。
所有主变不能相220kV系统提供零序电流,110kV侧零序阻抗稳定。
主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。
作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。
虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV 侧中性点通过间隙接地。
110kV侧中性点必须全部直接接地。
主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。
目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。
关于船舶中压电力系统中性点接地的探究摘要:本文针对船舶中压电力系统中性点的接地方式展开调研、剖析和探究,详细论述了船舶中压电力系统四种中性点接地类型并对其各自的性质、优势和缺陷进行总结,希冀可以为推进船舶中压电力系统中性点接地的稳定性和安全性的提高提供参考性的建议。
关键词:船舶;压电力系统;中性点接地方式;研究中性点的接地工作是船舶中压电力系统正常运行的前提和保障,预防和控制接地发生短路、系统空开断路等风险的产生,进而确保压电力系统稳定和安全的运行。
一、中性点接地方式(一)中性点直接接地中性点直接接地也叫做大地电流接地,简而言之就是直接把中性点和大地连接起来。
船舶中压电力系统的中性点接地采用直接接地的方式,其突出优点是有效保持压电力系统相关设备的电压在安全范围内浮动,同时中心点的绝缘耐受电压能力尽量保持在最低范围里。
针对船舶中压电力系统,中性点直接接地的方式适用于高电压等级的电力系统。
中性点直接接地类型的缺陷也很明显,比如:当中性点使用单相电压接地模式时,压电力系统设备开关经常会出现的跳闸与掉闸故障,从而不能保证船舶供电的持续性。
另外,采用中性点接地采用直接相连的方式,容易干扰和影响船舶上的信号传输线路和设备,使信号传输路径混乱,出现噪声杂音,削弱信号传输效果。
(二)中性点不接地压电力系统中性点不接地是指中性点没有与大地直接连接,而是通过电容介质进行连接。
在船舶中压电力系统的初始阶段常常使用不接地方式。
中性点不接地方式相对直接接地方式具有更显著的优势和有利条件。
比如船舶中压电力线路遭遇雷电袭击时,其中某相电压故障不会对系统运行造成影响,设备因外电的闪掉故障能够自行清除,不会出掉阐或断闸故障,设备可以在短时间内维持运行,确保维修人员有足够的时间开展抢修工作,很大程度上加强了船舶中压电力系统运行的稳定性。
另一方面,中性点不接地方式简单便于维护,降低投入成本和材料损耗,以上这些优势的体现主要针对中性点线路较短的船舶中压电力系统。
浅谈35kV系统中性点接地方式的应用[摘要]35kV系统中性点接地是一个综合性的技术问题,它与电力系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等关系密切,对电力系统正常运行具有保障作用,是一个非常复杂而又至关重要的问题。
我仅就35kV系统的中性点接地方式进行一下粗劣的分析。
[关键字]35kV系统中性点接地方式应用1 前言电力系统的中性点是指星形接线的变压器或发电机的中性点。
目前电力系统中性点接地方式有两类:1)电力系统中性点直接接地(包括中性点直接接地和经小电阻接地两种方式),优点:安全性好,系统单相接地时保护装置可以立即切除故障;经济性好,中性点在任何情况下电压不会升高,且不会出现系统单相接地时弧光过电压问题,这样电力系统的绝缘水平可以按相电压考虑,经济性能好。
缺点:该系统供电可靠性差。
2)电力系统中性点不直接接地,(包括中性点不接地和中性点经消弧线圈接地两种方式)优点:供电可靠性高,缺点:经济性差,电压高的系统不宜采用,此外还易出现间歇性电弧引起的系统谐振过电压。
目前我国110kV及以上的电力系统采用中性点直接接地方式,35~60kV电力系统一般采用中性点经消弧线圈或经小电阻接地;而3~10kV电力系统一般采用中性点不接地方式。
2 35kV系统的中性点接地方式比较中性点经消弧线圈接地,在系统发生单相接地时,流过接地点的电流较小,其特点是线路发生单相接地时,可不立即跳闸,按规程规定电网可带单相接地故障运行2小时。
有足够的时间去处理故障,减少停电次数.从实际运行经验和资料表明,当接地电流小于10A时,电弧能自灭,因消弧线圈的电感的电流可抵消接地点流过的电容电流,若调节得很好时,电弧能自灭。
1)消弧线圈补偿方式有:欠补偿、全补偿和过补偿。
全补偿会造成系统串联谐振,危及电网的绝缘。
欠补偿在系统运行方式改变时,也容易造成系统串联谐振。
系统中一般不采用全补偿、欠补偿方式。