人教版数学八年级下册《平行四边形的性质(2)》教学设计
- 格式:doc
- 大小:42.00 KB
- 文档页数:3
《18.1.2平行四边形的判定》教学设计申利改教学目标:1.理解并掌握对角线互相平分的四边形是平行四边形这一判定定理。
2.能灵活运用平行四边形的性质和判定解题。
3.在三角形和三角形判定的基础上,进一步培养学生的逻辑思维。
教学重点:掌握对角线互相平分的四边形是平行四边形。
教学难点:综合运用平行四边形的性质和判定。
教学方法:探究引导法教学过程一、复习提问1.回忆我们已学过的平行四边形的判定定理有哪些?2.你能说出“平行四边形的对角线互相平分”这一性质定理的逆命题吗?它成立吗?(设计意图:利用类比思想,同学轻松回答出“平行四边形的对角线互相平分”的逆命题,调动她们的积极性。
)二、探究新知动手做一做:将两根木棒的中点固定,则以木棒的端点为顶点的四边形是平行四边形吗?猜想:对角线互相平分的四边形是平行四边形。
验证猜想:已知:在四边形ABCD中,OA=OC,OB=OD。
求证:四边形ABCD是平行四边形。
证明:(略)结论:对角线互相平分的四边形是平行四边形。
符号语言:∵OA=OC,OB=OD∴四边形ABCD是平行四边形(设计意图:通过同学们的动手实践,激发学习兴趣,大胆猜想,细心求证,培养学生们数学思维的严谨性。
)三、巩固新知例1:如图,□ABCD的对角线AC,BD相交于点O,E,F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形。
证明:(略)练习:如图,□ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC上的中点。
求证:BE=CF.证明:(略)(设计意图:加深对知识点的理解,并能灵活运用。
)四、课堂小结(设计意图:对平行四边形的判定形成一个知识系统。
)五、布置作业教材习题18.1第5题。
人教版八下18.1.2平行四边形判定(第3课时)教学设计教学流程图地位与作用本节内容是在学习平行四边形性质与判定后进行的,是平行四边形性质的应用.在研究平行四边形性质时,我们借助三角形的有关知识进行研究,在学习了平行四边形后,也可以利用平行四边形来研究三角形,体现了辩证与联系的思想.三角形中位线定理是三角形中重要的定理,它揭示了连结三角形任意两边中点所得的线段与第三边的位置关系和倍分关系,与相似等内容有着密切的联系,在图形证明和计算中具有广泛的应用.概念解析三角形的中位线平行于第三边并且等于等三边的一半,在同一个题设下,有两个结论,一个结论表明位置关系,另一个结论表明数量关系,两者在这里得到完美呈现.应用这个定理时,不一定同时用到两个结论,有时用到平行关系,有时用到倍分关系,根据具体情况,灵活使用.思想方法三角形的中位线定理的探索和证明,可以完整地体现“合情推理,提出猜想——演绎推理,证明猜想”的几何探究过程,引导学生经历这样的过程,有利于他们体会两种推理功能不同、相辅相成;三角形中位线定理的发现和证明过程体现了归纳、类比、转化等思想方法,核心是通过构造平行四边形,把三角形的问题转化为平行四边形问题.知识类型三角形中位线定理属于原理与规则类知识,需要学生在经历探索、猜想、证明的过程中理解新知识,在联系与应用中将知识转化为能力.教学重点基于以上分析,本课的教学重点是:探索并证明三角形的中位线定理.教学目标解析教学目标1.通过作图、猜想、验证等得出三角形的中位线定理,并能给出证明.2.会利用三角形的中位线定理解决有关问题.目标解析达成目标1的标志是:理解三角形中位线的概念,明确三角形中位线与中线的区别;能通过作图测量等手段猜想三角形中位线与第三边的数量关系与位置关系;能抓住中点这个关键信息,利用对角线互相平分构造平行四边形进行定理的证明.达成目标2的标志是:明确三角形中位线定理的条件与结论;对于题目中存在两个中点的问题能自动联想中位线定理是否可用;在只有一个中点的情况下,根据题目信息(包括结论信息)添加辅助线;能在复杂图形中能敏捷感知中位线并灵活运用三角形中位线定理解决问题.教学问题诊断分析具备的基础学生已经掌握了三角形全等、平行线、平行四边形的性质和判定等知识,在前面的学习中积累了较丰富的几何猜想与论证的经验,并且具备一定的分析思维能力.与本课目标的差距分析八年级学生知识的迁移能力有限,数学思想方法的运用也不够灵活,三角形的中位线定理既要证明线段的位置关系,又要证明线段的倍分关系,对于几何逻辑思维尚不成熟的八年级学生来讲,难度较大.存在的问题三角形的中位线定理的证明的突破口在于添加辅助线,学生在前面的学习中,添加辅助线的练习相对较少,因此,如何适当添加辅助线、是学生的困难所在.应对策略教学中,教师让学生通过观察和动手测量,作出初步猜想,再引导学生去证明猜想,重点分析辅助线是如何想到的.通过问题串的策略让学生意识到所证明的结论既有平行关系,又有数量关系,结合结论与条件的中点信息,联想已学过的知识,在追问与交流中发现构造平行四边形来证明的方法,同时及时回顾与多种证法来深化认识加深体会.教学难点基于以上分析,本课的教学难点是:证明三角形的中位线定理时添加辅助线.教学支持条件分析可印发练习纸以便于学生构造不同的平行四边形添加辅助线,可用实物投影或希沃授课软件展示学生的成果;用ppt展示定理的证明;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学支持条件分析可印发练习纸以便于学生构造不同的平行四边形添加辅助线,可用实物投影或希沃授课软件展示学生的成果;用ppt展示定理的证明;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学过程设计课前检测1.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种答案:B2.A,B,C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A,B,C,D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有() A.1个B.2个C.3个D.4个答案:C3.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于点F,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE答案:D4.四个点A,B,C,D在同一平面内,现有下列四个条件:①AB=CD;②AD=BC;③AB∥CD;④AD∥BC,从这些条件中任选两个能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种答案:B5.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A. 8B. 10C. 12D. 14答案:C设计意图:本组课前检测题主要检查学生对于平行四边形判定掌握的情况.前4题是关于平行四边形的判定,最后一题是关于三角形中位线定理的问题,设计此问题的意图是检查学生对于三角形中位线定理的直观感知.这些知识都是本节课学生所需要的,如果学生这些知识不完整,必将影响本节的学习,需要进行适当的复习.新课学习1.掌握概念,明确区别如图1,△ABC中,D,E分别是边AB,AC的中点,连接DE.像DE这样,连接三角形两边中点的线段叫做三角形的中位线.问题1:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?师生活动设计:教师直接提出问题,让学生通过作图,观察得出中位线与中线的区别:三角形的中位线的两端点都是三角形边的中点,而三角形的中线只有一个端点是边的中点,另一个端点是三角形的一个顶点.设计意图:让学生理解三角形中位线的概念,明确三角形中位线与中线的区别.2.提出问题,观察猜想问题2:观察图1,你能发现△ABC的中位线DE与边BC的位置关系吗?度量一下,DE与BC之间有什么数量关系?师生活动设计:教师直接提出问题,让学生通过观察和动手测量DE,BC的长度,作出初步猜想.设计意图:让学生通过观察测量,提出猜想.3.分析问题,寻找思路问题3:要确定猜想正确,必须进行证明,这首先要对照图形写出已知、求证.请试一试!(已知:在△ABC中,D、E分别是AB、AC的中点.求证:DE∥BC且DE=BC)追问1:怎样分析证明思路?师生活动设计:教师引导学生分析,判断两直线平行,可以用平行线的判定,也可以用平行四边形性质,由于已知条件是线段关系(中点导致出现线段相等),而从线段相等出发证线段平行,应该用平行四边形判定,图中没有平行四边形,因此需要构造一个平行四边形.另外证明线段的倍分可以进行截长或补短.根据以上分析,让学生构造不同的平行四边形如图2(1)---(5).设计意图:让学生运用化三角形问题为平行四边形问题的思想,构造出不同的联系条件和结论的几何模型——平行四边形,形成不同的解题方案.追问2:请各自试一试,上面的五种方案是否都可行,如可行,说出辅助线的画法,如不可行,请说明原因.师生活动设计:学生在独立思考的基础上分小组讨论,教师进行必要的启发.设计意图:在上述方案中,图2中的(1)(2)(3)无法实施,因为根据现有的知识无法判定平行四边形.而方案(4)(5)可行.让学生经历从失败到成功的过程,让学生体会数学问题的解决过程伴随着挫折,需要持之以恒地理性思考.4.推理论证,形成定理问题4:请用适当的方法证明猜想.师生活动设计1:教师引导学生针对方案4,5进行证明.方案4有以下两种证明方法(方案5证明方法与方案4相类似).方法1:如图3,延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)方法2:如图4,延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形BCFD是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.问题5 :请用自己的语言说出得到的结论.师生活动设计:教师引导学生用文字语言和符号语言描述定理内容:(1)三角形的中位线平行于第三边,并且等于第三边的一半.(2)结合图形给出数学表达形式:在△ABC中,D、E分别是边AB、AC的中点,∴DE∥BC,且DE=BC .设计意图:用演绎推理证明结论,培养学生严谨的科学态度.由学生讨论得到添加辅助线的方法,提升学生分析与解决问题的能力.目标检测1:如图5,△ABC中,∠C=90°,∠A=30°,AB=8,D,E,F,分别是边BC,AC,AB的中点,斜边上的中线是线段_______,直角△ABC的中位线分别是____________,∠CED=______°,四边形AEDF的周长为__________.设计意图:辨别三角形中位线与中线的区别,能直接应用中位线定理.如果学生能够顺利完成,则进行例1的教学,如果存在问题,则引导学生结合图形再次理解三角形中位线定理.5.尝试运用,掌握定理例1 已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.师生活动设计:教师引导学生分析,因为已知点E、F、G、H分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证.证明:如图6,连结AC,△DAC中,∵AH=HD,CG=GD,∴HG∥AC,HG=AC(三角形中位线性质).同理EF∥AC,EF=AC.∴HG∥EF,且HG=EF.∴四边形EFGH是平行四边形.设计意图:例1是三角形中位线性质与平行四边形的判定的综合应用,通过巧妙构造三角形,并运用三角形的中位线定理来解题,体会三角形中位线定理的魅力,巩固新知识.可以借助与多媒体或教具把辅助线的添加方法讲清楚,证明完成后,可得出一般认识:顺次连结四边形四条边的中点,所得的四边形是平行四边形.这个结论今后也会经常会用到.目标检测2:如图7,点D、E、F分别是△ABC的边AB、BC、CA的中点.求证:(1)∠A=∠DEF;(2)四边形AFED的周长等于AB+AC.设计意图:能运用三角形中位线定理以及平行四边形的判定解决有关问题.如果学生能顺利完成,则展开追问1,如果存在困难,则引导学生关注“点D、E、F分别是△ABC的边AB、BC、CA的中点.”这个条件,从而应用三角形中位线定理解决问题.追问1:图中有哪些平行四边形?设计意图:通过找平行四边形让学生进一步巩固新知识.课堂小结问题6:通过本节课的研究,你感悟到什么?还有什么疑惑?师生活动设计:让学生回顾课堂中学到的知识,并畅谈由此受到的启发,教师在倾听学生的回答的同时注意适时的归纳总结.设计意图:学生自主小结,提高学生的数学概括表达能力,增强学生学习过程中的反思意识.有助于学生在归纳过程中把所学的知识条理化、系统化.目标检测设计1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC 和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是____m.2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°3.一个三角形的周长是120cm,过三角形各边的中点作对边的平行线,则这三条平行线所组成的三角形的周长是_______cm.4.如图,AD是△ABC的中线,EF是中位线. 求证:AD与EF互相平分.5.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH 是平行四边形.。
《平行四边形性质》说课稿(通用5篇)《平行四边形性质》说课稿1我的说课内容是《平行四边形的性质》一教学背景分析(一)教材的地位和作用1、平行四边形的性质是学习和掌握了《图形的平移与旋转》、《中心对称和中心对称图形》的基础上编排的。
平行四边形作为中心对称图形的一个典型范例,对它性质的研究有利于加深对中心对称图形的认识。
而用中心对称作为工具,借助图形的旋转变化来研究平行四边形性质,有助于培养学生以动态观点处理静止图形的意识和能力,为以后论证几何的学习打好基础。
且为下节学习四边形的识别提供了良好的认知基础。
2、教学内容的选择和处理本节课所选教学内容是教材中四条性质及例题。
为了遵循学生认知规律的循序渐进性,探究问题的完整性,培养学生的学习能力,发展智力。
我采取把平行四边形所有性质集中在一课时中一起研究。
(二)学情分析学生在小学阶段已对平行四边形有了初步、直观的认识,为平行四边形性质的研究提供了一定的认知基础。
八年级学生正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,从知识结构和知识能力上都有所欠缺。
而利用动手操作来实现探究活动,对学生较适宜,而且有一定吸引力,可进一步调动学生强烈的求知欲。
二教学目标1、知识与技能使学生掌握平行四边形的四条性质,并能运用这些性质进行简单计算。
2、过程与方法让学生体会通过操作,观察,猜想,验证获得数学知识的方法。
注意发展学生的分析,归纳能力,提升数学思维品质。
3、情感态度与价值观注意学生独立探究及合作交流的结合,促进自主学习和合作精神。
三重点,难点1、重点:理解并掌握平行四边形的性质。
2、难点:通过探究得到平行四边形的性质。
四教学方法和教学手段1、教学方法采用引导发现和直观演示相结合的方法,并运用多媒体辅助开展教学。
2、教学手段教学中鼓励学生自主地进行观察、试验、猜测、推理的数学活动,体验平行四边形是中心对称图形,并得出平行四边形性质,使学生在整个过程中形成对数学知识的理解和有效的学习策略。
初中数学《平行四边形》大单元教学设计01引言本课例为人教版八年级下册第十八章平行四边形整个单元的教学设计,基于对新课标的学习和理解,围绕大主题是“如何研究一个四边形”重新设计本单元教学,突出大单元的“整合性”。
平行四边形及特殊的平行四边形(矩形、菱形、正方形)都是常见的四边形,在学习了平行线、全等三角形、轴对称图形等知识的基础上进行的学习,是上述内容的后续和深化。
本单元的基本设计思想是:重视几何图形研究的一般活动经验的总结和应用,通过复习三角形,总结出三角形的研究思路、研究内容、研究方法,把这种经验一般化后,应用到平行四边形的系统研究中,探索平行四边形及其特例——矩形、菱形、正方形的定义、性质和判定,把具体知识的探索发现过程(图形观察、测量、实验与想像、归纳与猜想)与证实过程(演绎推理)融入几何图形研究活动中,让学生明确图形的研究内容(图形的构成要素与相关要素的位置和数量关系),学会几何研究的思路、方法,积累几何图形研究活动经验,发展“四能”以及几何直观、推理能力等数学核心素养。
02大单元教学设计2.1单元内容分析对于教材和学习内容的分析从以下几个方面进行分析:研究对象:平行四边形是特殊的四边形,而矩形、菱形、正方形又属于特殊的平行四边形,正方形还是特殊的矩形或菱形,研究对象从一般到特殊。
研究内容:本章的每一种图形都分别从定义、性质、判定三个方面进行研究。
①定义:都反映了该图形与一般平行四边形相比在某一方面的独特之处;②性质:都包含一般性质与特殊性质两个方面,从组成图形的基本要素(边、角)或相关要素(对角线)之间的数量关系或位置关系、图形整体的对称性这两个维度,由一般到特殊、由静到动、由局部到整体地反映图形的特征;③判定:都反映了能判断一个图形是否属于某图形的最少条件,并且判断的条件都来源于性质,判定与性质互为逆命题。
从定义、性质和判定的逻辑关系看,每一种图形的定义都是它的充要条件,性质都是它的必要条件,判定都是它的充分条件,所以图形的某些特征是图形的充要条件。
19.1.1 平行四边形的性质(二)一、自学导航:认真阅读课本85页至86页“平行四边形的判定”以上的内容。
通过探索,我们可以发现平行四边形的又一个重要性质:现在我们结合图形来理解这个性质:如图,在EFGH中,对角线是指和,以上性质即在EFGH中,=;=。
能结合以上图形来证明这个性质吗?我可以这样证明:关于85页例2已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.①要求OA的长可以先求的长,它们之间的数量关系是OA=。
②条件AC⊥BC构造了Rt△,运用定理可求出的长。
③要求ABCD的面积可以选择作底,作高。
PS: 请记住...“我.”——平行四边形的面积=底×高,这里的“底”是对应着高说的。
平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.思考:本例如果选择以AB 边作底来求ABCD的面积好吗?★来挑战吧:1、如图,在ABCD中,BC=10cm,AC=8cm,BD=14cm,△AOD的周长是多少?△ABC与△DBC的周长那个长?长多少?2、如图:ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.①求证:OE=OF,AE=CF,BE=DF.②若其他条件都不变,将EF转动到图b的位置,那么①中结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),①中结论是否成立?说明你的理由.二、航标评估:三、交流探索:D和同学交流你在自学中的收获和困惑,集体的智慧会帮你更上一层楼。
四、重点推介:写下你认为本节学习中最重要、最值得回顾、最具应用潜力的知识内容,并和他人分享。
《平行四边形的判定》教学设计学习目标1知识技能:在对平行四边形性质认识的基础上,探索并掌握平行四边形的判定方法,学会一些简单的应用。
2过程方法和能力目标:通过逆命题猜想、操作验证、逻辑推理证明的过程,体验数学研究和发现的过程,学会数学思考的方法。
3情感态度价值观目标:学会观察和发现生活中的平行四边形,并在观察中体会平行四边形给我们的生活带来的美的享受。
重点难点重点: 1平行四边形的判定定理2判定定理与性质定理的综合应用难点: 灵活运用判定定理证明平行四边形引入新课由伸缩门图片和防护链图片引入,引导学生发现生活中的美,让学生在观察中思考,在思考中体会平行四边形给我们的生活带来的美的享受。
门上的四边形是否都是平行四边形呢生答后师指出这就是今天所要研究的问题“平行四边形的判定”(板书课题)。
知识复习平行四边形的定义:两组对边分别平行的四边形是平行四边形。
平行四边形的性质:1、两组对边分别平行2、两组对边分别相等3、两组对角分别相等4、两条对角线互相平分复习测试已知四边形ABCD中,AB∥CD,AD∥BC,AB=4cm,求CD长解:∵AB∥CD,AD∥BC,∴四边形是平行四边形。
∴CD=AB=4(cm)答:AB长为4cm。
(让学生独立完成,教师巡回检查。
对个别差生稍加点拨,最后请学生回答)(如果做对了请在课文的左上方画一颗小五角星,以示奖励。
)提出问题从复习测试题目中可得到平行四边形判定的定义法,即“两组对边分别平行的四边形是平行四边形。
”这也是第一个性质“平行四边形的两组对边分别平行”的逆命题。
提出问题:是否还有其它方法呢由性质定理:平行四边形的两组对边分别相等得到逆命题:两组对边分别相等的四边形是平行四边形。
此命题成立吗请同学们猜想验证:(由原命题成立猜想逆命题是否成立是数学思考的重要方法)操作验证:让学生合作想办法,教师在必要时进行提示。
1可以用学具演示2可以用作图操作 ,方法一:在平面上取两点,任取其中一点,以两种不同长度为半径用圆规画弧,再在另一点,分别用与前面相同的长度为半径画弧,即可得出图形。
《平行四边形的判定》一、教材分析:本节课探究的主要内容是“两组对边分别相等的四边形是平行四边形”这种判定方法。
在教学内容上起着承上启下的作用。
“承上”是在探究此判定定理的证明方法时,深化了全等三角形的判定、平行四边形的定义、性质以及尺规作图等知识;“启下”是平行四边形的判定定理一为研究平行四边形的其它判定方法和特殊平行四边形的判定方法奠定了基础。
同时,本节内容还是学生运用化归思想、数学建模思想的良好素材,能较好的学生的归纳能力和探索精神。
二、学情分析:学生已经掌握了平行线、全等三角形等简单几何图形的性质及判定的相关知识;通过前一节的学习,已经掌握了平行四边形的定义及边、角、对角线的性质,对平行四边形有了初步的感知。
因此,在教学中让学生探索平行四边形的判定定理不仅成为可能,而且可以作为初中几何综合运用的一次练习机会,对提升学生的几何综合能力大有益处。
三、教学目标:1、知识与技能目标:(1)、探索平行四边形判定定理一,并会运用此判定定理解决相关问题。
(2)、理解由三角形可构成平行四边形,同样,平行四边形也可分割成三角形来研究的逆向思维数学方法。
2、过程与方法目标:培养学生观察、分析、归纳的能力,养成勇于探索的好习惯,同时也培养学生用数学方法分析、解决实际问题的能力。
3、情感与态度目标:(1)、学生积极参与数学学习活动,增强对数学的好奇心和求知欲,从中获得成功的体验。
(2)、学生在民主、和谐的共同活动中感受学习的乐趣、快乐学习。
四、教学重点与难点:教学重点:探索平行四边形的判定定理一教学难点:对平行四边形的判定定理一的理解和灵活应用突破难点的方法:教师通过问题情境的设置、课堂实验研讨,引导学生发现规律,分析问题,从而解决问题。
五、教学方法及学法指导: 教学方法:引导探究法、课堂研讨法 学习方法:自主探究学习法、小组合作学习法 教学用具:希沃白板课件六、教学过程:(一)创设情境,引入新课老师有一块平行四边形的镜子,不小心碰碎成3块(如图所示 ),你们说用哪一块可以把原来的平行四边形画出来?设问:你怎样说明你画的四边形一定是平行四边形呢?除了定义,我们还有其它的方法吗?板书:平行四边形的判定定理(第一课时)目的:以生活中的实例,创设数学问题情景,产生认知冲突,快速吸引学生注意,立刻置学生于情景问题里,巧妙引出本节课的课题。
平行四边形的性质(2)教学设计
课题平行四边形
的性质(2)
主备
人
单
位
教材分析
本节课是在学习了平行四边形的定义,平行四边形的性质(1)的内容之后,对平行四边形的性质(2)的探究与应用,是对平行四边形性质的深化。
教学目标知识与能力目标:掌握平行四边形的对角线互相平分的性质及其运用。
过程与方法目标:通过探究得出平行四边形的对角线互相平分的性质。
情感、态度、价值观目标:进一步培养和发展学生的逻辑
思维能力和推理论证的表达
能力。
教学重点平行四边形的对角线互相平分的性质及其运用。
教学难点平行四边形的性质及其综合应用。
教学准备
1、两张完全一样的平行四边形纸片;
2、直尺;
3、教学
课件、教案。
活动过程教师活动学生活动设计意图
一、巩
固旧知
导入新
课1、复习平行四边形的性质
(1),板书课题。
2、用老人分地的故事导入新
课。
学生自由表达检查学生
的学习效
果和拓展
能力。
二、自主探究
展示交流活动一:画图形找相等线段
学生独立画出图形,并
让学生全班展示,找出相等
的线段。
活动二:旋转平行四边形纸
片
小组内互相展示,并选
学生代表讲解。
活动三:猜想结论并进行推
理论证
要求学生猜想结论,通
过推理论证得出结论是正确
的。
学生独立画出图
形并完成要求,
介绍找出相等线
段的方法。
小组内讨论,由
小组代表演示旋
转的方法并得出
结论。
板演推理论证的
过程并讲解。
学生通过
实际操作
得出结
论,加深
直观认
识。
体会探究
的过程,
加深对性
质的理解
与认识。
三、性
质应用
补偿提
高1、完成尝试练习1,2,,
学生讲解解题过程。
2、完成自我提升练习1,让
一名学生上台板演,集体讲
评。
3、完成自我提升练习2,让
一名学生板演并讲解证明过
程。
独立完成。
自主完成,集体
讲评。
自主完成,学生
讲解。
评测性质
的简单利
用。
评测完整
表达证明
过程。
培养综合
运用能力
4、选学生代表讲解老人分地的问题。
小组讨论,介绍
解决问题的方
法。
和表达能
力以及解
决问题的
能力。
四、拓
展延伸
回归生
活
让学生通过观看课件自
主完成自我挑战题目,并利
用得到的结论解决问题,完
成“回归生活”的解决方法。
学生观看课件解
决问题。
激发学生
对数学问
题的思
考,引起
学生对数
学探究的
兴趣。
五、梳理总
结感悟收获
让学生自主表达自己在
这节课中的收获,感想。
自主表达自己在
这节课中的收
获,感想。
评价教学
内容掌握
情况。
教师寄语:祝愿同学们:
快乐学习,
学习快乐!
学生倾
听。
激励学
生,自觉
主动的热
爱学习。
备注。