等腰三角形的性质精选试题附答案
- 格式:doc
- 大小:452.00 KB
- 文档页数:22
等腰三角形复习题及答案
1. 等腰三角形的定义是什么?
答案:等腰三角形是指有两条边长度相等的三角形。
2. 等腰三角形的两个底角有何特点?
答案:等腰三角形的两个底角相等。
3. 等腰三角形的顶角平分线有哪些性质?
答案:等腰三角形的顶角平分线同时也是底边的中线和高线。
4. 等腰三角形底边上的高与底边的关系是什么?
答案:等腰三角形底边上的高将底边平分。
5. 如果一个三角形的两边相等,那么这个三角形一定是等腰三角形吗?答案:是的,如果一个三角形的两边相等,那么这个三角形一定是等
腰三角形。
6. 在等腰三角形中,如果一个角是60度,那么这个三角形是什么类
型的三角形?
答案:在等腰三角形中,如果一个角是60度,那么这个三角形是等边
三角形。
7. 等腰三角形的内角和是多少?
答案:等腰三角形的内角和是180度。
8. 等腰三角形的外角和有何特点?
答案:等腰三角形的外角和等于360度。
9. 等腰三角形的面积公式是什么?
答案:等腰三角形的面积公式为:面积 = (底边长度× 高) / 2。
10. 如果等腰三角形的底边长度为10厘米,高为6厘米,那么它的面积是多少?
答案:等腰三角形的面积为:面积 = (10厘米× 6厘米) / 2 = 30平方厘米。
1 / 3word.等腰三角形的性质与判定综合练习1、若等腰三角形的顶角为60°,则它底角的度数为( )A 、40°B 、50°C 、60°D 、70°2、如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =80°,则C 的度数为( )A 、30°B 、40°C 、45°D 、60°3、如图,在△ABC 中,D 为BC 的中点,AD ⊥BC ,E 为AD 上一点,∠ABC =60°,∠ECD=40°,则∠ABE =( ) A 、10° B 、15° C 、20° D 、25°4、等腰△ABC 中,AB =AC=6cm ,∠A =150°,则△ABC 的面积为( )A 、9cm ²B 、18cm ²C 、6cm ²D 、36cm ²5、如图,在△ABC 中,AB =AC ,∠A =36°,DM 是AB 的垂直平分线,则图中的等腰三角形有( )A 、5个B 、4个C 、3个D 、2个 6、如图,在△ABC 中,∠A =60°,BE ⊥AC ,垂足为E ,CF ⊥AB , 垂足为F ,BE 、CF 交于点M 。
如果CM =4,FM =5,则BE 等于( ) A 、9 B 、12 C 、13 D 、14 7、如图,已知AB =AC ,∠A =36°,AB 的中垂线MD 交AC 于点D ,交AB 于点M 。
下列结论:①BD 是∠ABC 的平分线;②△BCD 是等腰三角形;③DC+BC=AB 。
正确的有( )A 、3个B 、2个C 、1个D 、0个8、如图,△ABC 中,AB =AC ,△DEF 为等边三角形,则γβα、、之间的关系为( )A 、2γαβ+= B 、2γβα+= C 、2γαβ—= D 、2γβα—=二、填空题9、如图,AB//CD ,CD =BD ,∠ABD =68°,则∠C 的度数为 。
等腰三角形的性质练习(含答案)等腰三角形的性质1.选择题:1) 等腰三角形的底角与相邻外角的关系是()A。
底角大于相邻外角 B。
底角小于相邻外角C。
底角大于或等于相邻外角 D。
底角小于或等于相邻外角2) 等腰三角形的一个内角等于100°,则另两个内角的度数分别为()A。
40°,40° B。
100°,20°C。
50°,50° D。
40°,40°或100°,20°3) 等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A。
50°,50°,80° B。
80°,80°,20°C。
100°,100°,20° D。
50°,50°,80°或80°,80°,20°4) 如果一个等腰三角形的一个底角比顶角大15°,那么顶角为()A。
45° B。
40° C。
55° D。
50°5) 等腰三角形一腰上的高与底边所成的角等于()A。
顶角 B。
顶角的一半C。
顶角的2倍 D。
底角的一半6) 已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为()A。
30° B。
45° C。
36° D。
72°2.填空题:1) 如图2所示,在△ABC中,①因为AB=AC,所以∠A=∠C;②因为AB=AC,∠1=∠2,所以BD=BC,BD⊥AC.2) 若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为70°.3) 已知等腰三角形的一个角是80°,则顶角为20°.4) 在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC的面积为1/2 cm².5) 如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=30°.3.等腰三角形两个内角的度数比为4:1,求其各个角的度数.设两个内角的度数为4x和x,则三角形的第三个角的度数为180°-5x.因为三角形内角和为180°,所以4x+4x+180°-5x=180°,解得x=36°,因此两个内角的度数分别为144°和36°,第三个角的度数为100°.4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC以a和c为两边,这样的三角形能作无数个.5.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.连接AD和AC,因为AD=BD,AB=AC,所以△ABD≌△ACD,故∠ABD=∠ACD.又因为AB=CD,所以△ABC为等腰三角形,所以∠BAC=180°-∠ABC=180°-2∠ABD=80°.6.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.1) AF与CD不垂直.因为∠ABC=∠AED,所以△ABC≌△AED,故AB=AE,又因为BC=ED,所以AC=AD,所以AF垂直于BC的中点,而CD的中点是F,所以AF与CD不垂直.二、拓展延伸训练右下图是人字型层架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D。
一.教学内容:2.1 等腰三角形2.2 等腰三角形的性质二. 重点、难点:重点:理解和掌握等腰三角形以下性质:1. 等腰三角形轴对称性质;2. 等边对等角;3. 三线合一。
难点:1. 推导性质。
通过操作,观察、分析、归纳得出等腰三角形性质的过程。
2. 应用性质。
等腰三角形三线合一性质的运用,在解题思路上需要作一些转换。
三. 知识要点及学习目标1. 等腰三角形的有关概念。
首先要能根据边的长短识别和判断等腰三角形;其次,能够明确指出已知的等腰三角形的顶角、底角、腰和底边。
如图,△ABC中,若AB、BC、AC三边中有其中两边相等,则△ABC称为等腰三角形。
(1)(2)(3)图(1)中AB=AC,图(2)中AC=BC,图(3)中AB=BC。
相等的两边称为等腰三角形的腰,另一边称为等腰三角形的底边;两腰的夹角称为等腰三角形的顶角,另外两个角称为等腰三角形的底角。
你能指出上述三幅图中的腰、底边,顶角和底角吗?2. 等腰三角形的轴对称性。
通过折纸操作认识探索等腰三角形的轴对称性。
明确等腰三角形的对称轴是等腰三角形顶角平分线所在的直线(不是顶角平分线本身)。
根据轴对称图形的概念我们知道:如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫轴对称图形。
如果在△ABC中,AB=AC,我们画出顶角∠BAC的平分线AD,沿着AD对折△ABC会发现什么结论?通过操作显示出等腰△ABC 是一个轴对称图形。
它的对称轴就是角平分线AD所在的直线。
(这里要注意到对称轴的概念——直线,而△ABC的顶角平分线是一条线段即这里的折痕,不能把它们混为一谈,同时也要把一般角的平分线——射线与它们区别开)。
3. 推导等腰三角形的性质。
通过进一步实验、观察、交流等活动推导等腰三角形的性质,从而加深对轴对称变换的认识。
因为等腰三角形是轴对称图形,而图形轴对称变换是全等变换中的一种基本变换,所以如下图,△ABC中,若AB=AC,AD是△ABC的∠BAC的平分线,当我们沿AD折叠时,会发现AD两旁的△ABD与△ACD能够重合即△ABD≌△ACD。
等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为________.2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=________cm.第2题图第3题图3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为() A.35° B.45° C.55° D.60°4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为() A.50° B.80°C.50°或80° D.40°或65°5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数.6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.第2课时等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=________.3.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,使其可以确定△ABC为等腰三角形,则添加的条件是________.第3题图第4题图4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有________个等腰三角形.5.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF.求证:AB=AC.6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G.求证:△EFG是等腰三角形.13.3.2等边三角形第1课时等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为________.第1题图第3题图2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B.能判定△ABC为等边三角形的有________.3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=________.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD 的度数.5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD.求证:(1)△ABE≌△ACD;(2)△ADE为等边三角形.第2课时含30°角的直角三角形的性质1.如图,在Rt△ABC,∠C=90°,∠A=30°,AB=10,则BC的长度为( ) A.3 B.4 C.5 D.6第1题图第2题图第3题图2.如图,在△ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是( )A.3.5 B.4.2 C.5.8 D.73.如图,△ABC是等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则BE的长为________.4.如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF ⊥AC于点F,求BE+CF的值.5.如图所示是某种帐篷支架屋顶的侧面示意图,它是底角为30°的等腰三角形.已知中柱BD垂直于底边AC,支柱DE垂直于腰AB,测得BE=1米,求AB的长.13.4 课题学习最短路径问题1.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB 的值最小,则下列作法正确的是( )2.如图,已知直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的一个内角第2题图第3题图3.如图,点P是直线l上的一点,线段AB∥l,能使PA+PB取得最小值的点P的位置应满足的条件是( )A.点P为点A到直线l的垂线的垂足B.点P为点B到直线l的垂线的垂足C.PB=PAD.PB=AB4.如图,在直线l的两侧分别有A和B两点,试在直线l上确定一点P,使点P到点A和到点B的距离之和最短,并说明理由.等腰三角形第1课时 等腰三角形的性质1.80° 2.3 3.C 4.C5.解:∵AB =AD ,∴∠B =∠ADB .由∠BAD =40°,得∠B =∠ADB =70°.∵AD =DC ,∴∠DAC =∠C ,∴∠C =12∠ADB =35°.6.证明:如图,连接AD .∵AB =AC ,D 是BC 的中点,∴AD 平分∠BAC ,∴∠EAD =∠F AD .在△AED 和△AFD 中,⎩⎪⎨⎪⎧AE =AF ,∠EAD =∠F AD ,AD =AD ,∴△AED ≌△AFD (SAS),∴DE =DF .第2课时 等腰三角形的判定1.A 2.5cm 3.BD =CD (答案不唯一) 4.35.证明:∵D 是BC 的中点,∴BD =CD .在Rt △BDE 和Rt △CDF 中,∵DE =DF ,BD =CD ,∴Rt △BDE ≌Rt △CDF (HL),∴∠B =∠C ,∴AB =AC .6.证明:∵FG 平分∠EFD ,∴∠GFD =∠EFG .∵AB ∥CD ,∴∠EGF =∠GFD ,∴∠EFG=∠EGF ,∴△EFG 是等腰三角形.13.3.2 等边三角形第1课时 等边三角形的性质与判定1.60° 2.①②③ 3.2 4.解:∵△ABC 是等边三角形,∴AB =BC ,∠ABC =60°.∵BD =BC ,∴AB =BD ,∴∠BAD =∠BDA .∵∠CBD =90°,∴∠ABD =90°+60°=150°,∴∠BAD =12×(180°-150°)=15°.5.证明:(1)∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC .在△ABE 与△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,BE =CD ,∴△ABE ≌△ACD . (2)由(1)知△ABE ≌△ACD ,∴AE =AD ,∠CAD =∠BAE =60°,∴△ADE 是等边三角形.第2课时 含30°角的直角三角形的性质1.C 2.D 3.44.解:∵△ABC 是边长为20的等边三角形,∴∠B =∠C =60°,∴在Rt △BED 中,∠EDB=30°,∴BE =12BD .同理可得,CF =12CD ,∴BE +CF =12BD +12CD =12BC =10.5.解:∵BD ⊥AC ,DE ⊥AB ,∴∠ADB =∠DEB =90°.∵在Rt △ABD 中,∠A =30°,∴∠ABD=60°,AB =2BD .∴在Rt △BDE 中,∠BDE =30°,∴BD =2BE =2米,∴AB =4米.13.4 课题学习 最短路径问题1.D 2.D 3.C4.解:连接AB 与直线l 的交点即为点P ,图略.因为两点之间,线段最短.。
等腰三角形的性质一.判断题 (本大题共 40 分)1. 等腰三角形内一点到底边两端点距离相等, 则这点和这个等腰三角形的顶点及底边 中点在同一直线上. ( )2. 已知如图AB =AC, OB =OC, 则∠ABO =∠ACO( )3. 如图已知△ABC 中AB =AC, AD 平分△ABC 的外角∠EAC, 则AD ∥BC. ( )4. ( )5. 等腰三角形的底角一定是锐角.( )6. 已知如图, △ABC 是等边三角形, D 是BC 中点 DE ⊥AC 于E, 则 EC =AC( )7. 等腰三角形的底角不一定是锐角. ( )8. 如图△ABC 中AB =AC, D 、E 分别为AC 、BC 上的点, 则DB >DE ( )9. 等腰三角形底边上的高上任意一点到两腰的距离相等 ( ) 10. 等腰三角形两腰上中线的交点到底边的两端点距离相等.( ) 11. 如图, D 是等腰三角形底边BC 上一点. 则 ∠ADC >∠C. ( )12. 等腰三角形一腰上中线把它周长分为15cm 和6cm 两部分,则这个三角形三边长为10cm 、10cm 、1cm( )13. 等腰三角形中, 两个角的比为1:4, 则顶角的度数为20°. ( )14. 等边三角形的边长为a, 则高为 a. ( ) 15. 等腰三角形的顶角可以是直角、锐角或钝角. ( )16. 如图, 已知: △ABC 的AB =AC, D 是AB 上一点, DE ⊥BC, E 是垂足, ED 的延长线交CA 的 延长线于F, 则AD =AF. ( )17. 如图B 、D 、E 、C 在同一直线上, 若AB =AC, ∠1=∠2, 则 ∠3=∠4. ( )18. 等边三角形ABC 中, D 是AC 中点, E 为BC 延长线上一点, 且 DB =DE. 则 CE =CD()19. 已知, △ABC 中, AB =AC, ∠B =75°, CD ⊥AB 于D, 则CD =AB( )20. 等腰三角形底边上的中点到两腰的距离相等.( )21. 如图, B 、D 、E 、C 在同一直线上, 若AB =AC, ∠3=∠4, 则∠1=∠2.( )22. 因为等腰三角形的底角一定是锐角, 所以等腰三角形是锐角三角形. ( ) 23. 如图, △ABC 和△CDE 都是等边三角形, 则 AD =BE. ( )24. 如图, 已知: 四边形ABCD 中, ∠ABC =∠ADC, AB =AD, 则 CB =CD. ()25. 如果三角形一边上的中线等于这边的一半, 这个三角形不一定是直角三角形. ( ) 26. 等腰三角形角平分线、高线、中线在同一条直线上 ( ) 27. 已知如图, △ABC 中, ∠B >∠C, 点D 是AC 上的一点, 且AD =AB, 则∠DBC =(∠ABC-∠C)( )28. 如果等腰三角形的顶角为50°, 那么一腰上的高与底边的夹角是40°.( )29. 已知△ABC 中, AB =AC, D 在AB 上且∠DCB =∠A, 则 CD ⊥AB ( )30. 等腰三角形两腰上的中线相等. ( )31. 已知△ABC 中, AB =AC, CD ⊥AB 于D, 则 ∠DCB =∠A( )32. 如图, AB =AE, ∠B =∠E, CB =ED. F 是CD 的中点, 则AF ⊥CD. ( )33. 等腰三角形顶角的顶点到两腰中线的距离相等. ( )34. 已知: 如图在△ABC 中, AB =AC, D 是BC 延长线上一点, E 是AB 上一点, DE 交AC 于点F , 则 AE <AF ( )35. 在△ABC 中, AB ≤AC, 延长CB 到D, 使BD =BA, 连结AD, 则 AD <AC.( )36. 已知: 如图, D 为等腰直角△ABC 的直角边BC 延长线上一点, 且CD =CE, BE 延长线交AD 于F, 则BF ⊥AD( )37. 在△ABC 中, ∠A =2∠B, 则BC <2AC. ()38. 已知, 如图 AD =DC, DE 平分∠ADB, F 是AC 中点, 则DE ⊥DF. ( )39. 已知如图: △ABC 和△ADE 都是等腰三角形且顶角∠BAC =∠DAE, 则BD =CE ( )40. 如图, 已知: △ABC 中, ∠ABC =2∠C, AH ⊥BC, 垂足为H 延长AB 至D, 使 BD =BH,DH 的延长线交AC 于点M, 则MA =MC( )二.单选题 (本大题共 60 分)1.在△ABC中, AB=AC, ∠A=40°, 点O在三角形内且∠OBC=∠OCA, 则∠BOC的度数是[ ]A.110°B.35°C.140°D.55°2.如图在△ABC中, AB=AC, ∠A=40°, P为△ABC内的一点, 且∠PBC=∠PCA,则∠BPC的度数是[ ] A.115° B.110° C.120°D.130°3.等腰三角形一边长5cm, 另一边长是3cm, 它的周长是 [ ]A.11cmB.13cmC.11cm或13cmD.以上都不对4.等腰三角形的一个角等于20°, 则它的另外两个角等于 [ ]A.20°、140°B.20°、140°或80°、80°C.80°、80°D.20°、80°5.已知等腰三角形的一边长为4, 另一边长为9, 则它的周长为[ ]A.17B.17或22C.22D.136.一个等腰三角形的一个内角为70°, 则它一腰上的高与底边所夹的角的度数为[ ] A.55° B.55°或70° C.20°D.20°或35°7.等腰三角形顶角的度数是底角度数的4倍, 那么,它的底角的度数是[ ]A.120°B.30°C.60°D.90°8.有一个角是50°的等腰三角形其顶角的度数为 [ ] A.80° B.50° C.80°或50° D.65.5°9.等腰三角形周长12厘米,其中一边长2厘米,其他两边分别长 [ ]A.2厘米,8厘米 B.5厘米,5厘米C.5厘米,5厘米或2厘米,8厘米 D.无法确定10.等腰三角形两边分别为35厘米和22厘米, 则它的第三边长为 [ ]A.35cmB.22cmC.35cm或22cmD.15cm11.已知等腰三角形的两个角之比为1∶2, 则顶角的度数是[ ]A.90°B.36°C.36°或90°D.120°12.等腰三角形两边长是9cm和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm或39cm13.等边三角形ABC中, CD是∠ACB的平分线, 过D作BC的平行线交AC于E, 若△ABC的边长是a, 则△ADE的周长是 [ ]A.2aB. aC. aD. a14.如果等腰三角形的周长为21, 其中一边长为5, 那么此等腰三角形底边长是 [ ]A.11B.5C.5或11D.815.已知等腰三角形中一个角为50°, 则这个三角形腰上的高和底边夹角的度数为 [ ]A.25°B.40°C.25°或40°D.以上答案都不对16.在等腰△ABC中, AB的长是AC的二倍, 三角形的周长是40, 则AB的长等于. [ ]A.20B.16C.20或16D.1017.等腰三角形的底边为a, 顶角是底角的4倍. 则腰上的高为 [ ]A.aB.C. aD.2a18.已知等腰三角形的一边长为5, 另一边长为6, 则它的周长为 [ ]A.16B.16或17C.17D.1119.等腰三角形底边长为5厘米,一腰上的中线把三角形分成两部分,其周长之差为3厘米,则它的腰长为[ ]A .8厘米B .5厘米C .2厘米或8厘米D .2厘米20. 等腰三角形有一个角是45°, 那么这个三角形是 [ ] A.锐角三角形 B.直角三角形 C.钝角三角形 D.不唯一确定21. 如图△ABC 中, AB =AC, 且EB =BD =DC =CF, ∠A =40°, 则∠EDF 的度数为[ ]A.70°B.110°C.55°D.60°22. 已知等腰三角形的一个角为20°, 则它的另外两个角分别为[ ]A.20°,140°B.80°,80°C.20°,140°或80°,80°D.20°,80°23. 如果一个等腰三角形的一腰是顶角平分线的2倍, 那么这个三角形必有一个内角等于[ ]A.45°B.60°C.90°D.120°24. 如图, 在Rt △ABC 中, ∠C=90°, ∠DBC=26°,且AD=DB,则∠A=[ ]A.26°B.32 °C.64°D.52° 25. 一个等腰三角形的角平分线、高线和中线的总数最多有[ ]A .3条B .5条C .7条D .9条26. 至少有两边相等的三角形是 [ ] A .等腰三角形 B .等边三角形 C .等腰直角三角形D .锐角三角形27. 已知:等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ] A.20 B.16 C.20或16 D.无法确定 28. 如图, AB =AC, FD ⊥BC 于D, DE ⊥AB 于E, 若∠AFD =155°, 那么∠EDF 的度数是[ ]A.45°B.55°C.65°D.75°29. 一条等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ]A.小于60°B.等于60°C.等于90°D.大于90°30. 等边三角形的高、中线、角平分线共有________条.[ ]A.9B.7C.6D.3 31. 等腰三角形有一个角是,则它顶角的大小为 [ ] A . B .C .D .32. 等腰三角形的两边长为25cm 和12cm, 那么它的第三条边长为[ ]A.25cmB.12cmC.25cm 或12cmD.37cm 33. 在等腰△ABC 中,AB =AC ,BD 平分∠ABC ,并交AC 于D .如果∠CDB =,那么∠A 等于[ ]A .B .C .D .34. 若一个等腰三角形的两边分别是3cm 和6cm, 则它的周长为 [ ]A.15cmB.12cmC.12cm 或15cmD.18cm35. 如果一个三角形的三条高线的交点恰是这个三角形的一个顶点,那么此三角形 [ ] A .是锐角三角形 B .是钝角三角形 C .是直角三角形D .形状不确定36. 等腰三角形两边是9cm 和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm 或39cm37. 等腰Rt △ABC 中, ∠C =90° D 是BC 上一点, 且AD =2CD 则 ∠ADB 的度数为 [ ] A.30° B.60° C.120° D.150°38. 已知等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ] A.20 B.16 C.20或16 D.无法确定39. 已知:如图, △ABD 和△ACE 均为等边三角形, 那么△ADC ≌△AEB 的根据是 [ ]A.边,边,边B.边,角,边C.角,边,角D.角,角,边40. 一个等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ] A.小于60° B.等于60° C.等于90° D.大于90° 41. 在△ABC 中, AB =AC, ∠A+ ∠B =130°, 则∠A 、∠B 、∠C 的度数是[ ]A.∠A =50°、∠B =80°、∠C =80°B.∠A =50°、∠B =80°、∠C =50°C.∠A =50°、∠B =50°、∠C =80°D.∠A =80°、∠B =50°、∠C =50°42. 等腰三角形顶角是84°,则一腰上的高与底边所成角的度数是 [ ] A.42° B.6° C.36° D.46°43. 如图: AB =AC, ∠BAD =30°AD ⊥BC 且AD =AE, 则∠EDC =[ ]A.10°B.12.5°C.15°D.20° 44. 等腰三角形一腰上的高与底所夹的角等于 [ ] A.顶角 B.顶角的 C.顶角的2倍 D.底角的45. 等腰三角形边长分别是3和6,这个三角形的周长是[ ]A .9B .12C .15D .12或1546. 用一条长为12cm 的铁丝做等腰三角形, 底和腰的长必须是正整数, 若底的长为xcm,则腰的长y 可为 [ ]A.5cmB.5cm 或4cmC.4cmD.-5cm47. 一个等腰三角形底边为8cm, 从底边上一个端点引腰的中线, 分三角形周长为两部 分, 其中一部分比另一部分长2cm, 则腰长为 [ ]A.6cmB.10cmC.6cm 或10cmD.以上都不对48. 一个等腰但非等边三角形, 它的角平分线, 中线和高线的条数共为 [ ] A.6 B.7 C.8 D.949. 已知:如图在△ABC 中, AB=AC, CD 为∠ACB 平分线,DE ∥BC,∠A=40°, 则∠EDC 的度数是[ ]A.30°B.36°C.35°D.54°50. 等腰三角形两个角的比为4∶1, 则顶角为 [ ]A.120°B.20°C.120°或20°D.150°51. 如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[ ]A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°52. 若等腰三角形的两边a 、b 满足,则此等腰三角形的周长为 [ ] A .7 B .5 C .8 D .7或553. 等腰△ABC 中,两腰上的中线BE 、CD 交于O ,则下列判断中错误的是[ ]A .△ADC ≌△AEB B .△DBC ≌△ECB C .△ABE ≌△BCDD . △BOD ≌△COE54. 从等腰三角形底边上任一点,分别作两腰的平行线所成的四边形的周长等于此等腰三角形的[ ]A .周长B .周长一半C .一腰长D .两腰长的和 55. 等腰三角形一腰上的高与底边所成的角等于 [ ]A .顶角B .顶角的一半C .顶角的2倍D .底角的一半56. 如下图,△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 上,且DE=BE ,DF=DC ,若∠A=,则∠EDF=[ ]A .B .C .D .57. 等腰三角形底边长为5厘米, 一腰上的中线把三角形分成两部分, 其周长之差为3厘米, 则它的腰长为 [ ]A.2厘米B.8厘米C.2厘米或8厘米D.9厘米58. 如图△ABC 中, AB =AC, ∠A =50°, P 是△ABC 内的一点, 且∠PBC =∠PCA, 则∠BPC的度数为[ ]A.115°B.100°C.130°D.140°59. 如图, △ABC 中, AB =AC, CD ⊥AB, 则关于∠A 正确的等式是[ ]A.∠A =∠BB.∠A =∠ACBC.∠A =2∠ACBD.∠A =2∠DCB60. 如图在△ABC 中, AB =AC, BC =BD, AD =DE =EB, 则∠A 的度数是[ ]A.30°B.36°C.45°D.54°三.填空题 (本大题共 30 分)1. 周长为20cm 的等腰三角形中, 底边长为acm, 则一腰长为________cm .2. 如图△ABC 中, AB =AC, ∠A =40°, ∠AED =∠F, 则∠F =___________度.3. 已知等腰三角形有两条边的长分别是3cm 和7cm, 那么这个三角形的周长等于__________cm4. 已知如图, A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°, 则∠ABD =______度.5. 等腰三角形的周长为36, 腰比底长3, 则此等腰三角形的腰长为________, 底边长为________.6. 等腰三角形的底边为12cm,且腰是底的, 则三角形的周长是_______cm7. 已知等腰三角形的一个底角等于顶角的4倍, 则这个等腰三角形的顶角为_______度. 8. 等腰三角形底边中线与________和________重合.9. 已知: 如图: △ABC 中, AB =BC, ∠B =90°, AD ∥BC, ∠D =70°, 则∠EFA =____度10. 已知:等腰三角形的一个角为100°, 则另两个角的度数为________.11. △ABC 中,如果AB=AC ,点M 是BC 边中点,那么M 到______两边的距离相等,AM 上的点到_____ _两点的距离相等。
等腰三角形的性质基础练习一.选择题(共10小题)1.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或72.已知一个等腰三角形的两边长a、b 满足方程组,则此等腰三角形的周长为()A.5 B.4 C.3 D.5或43.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50° B.80° C.50°或80°D.40°或65°4.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°5.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18° D.64°6.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°7.在等腰△ABC中,AB=AC,其周长为16cm,则AB边的取值范围是()A.1cm<AB<4cm B.3cm<AB<6cm C.4cm<AB<8cm D.5cm<AB<10cm8.若x,y满足|x﹣3|+=0,则以x,y的值为两边长的等腰三角形的周长为()A.12 B.14 C.15 D.12或159.如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()A.80° B.100°C.140°D.160°二.填空题(共5小题)10.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.11.等腰三角形的一个外角是60°,则它的顶角的度数是.12.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.第4题第5题第6题第9题13.如图,在等腰△ABC 的两腰AB 、BC 上分别取点D 和E ,使DB=DE ,此时恰有∠ADE=∠ACB,则∠B 的度数是.14.如图,在△ABC 中,AB=AC,且D 为BC 上一点,CD=AD ,AB=BD ,则∠B 的度数为 .三.解答题15.如图,已知AB=AC=AD ,且AD∥BC,求证:∠C=2∠D.16.如图,在△ABC 中,AB=AC ,AD 是BC 边上的中线,BE⊥AC 于点E .求证:∠CBE=∠B AD .17.如图,在△ABC 中,AB=AC ,D 、E 在BC 上,且AD=AE ,求证:BD=CE .如有侵权请联系告知删除,感谢你们的配合!第13题第14题。
13.3.1等腰三角形的性质夯实基础篇一、单选题:1.如图,B 在AC 上,D 在CE 上,AD BD BC ,25ACE ,ADE 的度数为()A .50°B .65°C .75°D .80°【答案】C 【知识点】三角形的外角性质;等腰三角形的性质【解析】【解答】解:BD BC ∵,25ACE ,25BDC C ,50ABD ,AD BD ∵,50A ABD ,75ADE A C .故答案为:C.【分析】由等边对等角得25BDC C ,利用三角形外角的性质求出50ABD ,由等边对等角得50A ABD ,根据三角形外角的性质求出75ADE A C .2.若等腰三角形的一个外角是70°,则它的底角的度数是()A .110°B .70°C .35°D .55°【答案】C【知识点】三角形内角和定理;等腰三角形的性质【解析】【解答】解:∵等腰三角形的一个外角是70 ,与这个外角相邻的内角的度数为18070110,这个等腰三角形的顶角的度数为110 ,底角的度数为1(180110)35,2故答案为:C.【分析】利用等腰三角形的一个外角是70°,可求出与这个外角相邻的内角的度数,由于这个角是钝角,只能做顶角,然后根据三角形的内角和定理及等腰三角形的性质求出它的底角的度数即可.3.若(a﹣2)2+|b﹣3|=0,则以a、b为边长的等腰三角形的周长为()A.6B.7C.8D.7或8【答案】D【知识点】三角形三边关系;等腰三角形的性质;偶次幂的非负性;绝对值的非负性【解析】【解答】解:∵(a﹣2)2+|b﹣3|=0,∴a﹣2=0,b﹣3=0,解得a=2,b=3,①当腰是2,底边是3时,三边长是2,2,3,此时符合三角形的三边关系定理,即等腰三角形的周长是2+2+3=7;②当腰是3,底边是2时,三边长是3,3,2,此时符合三角形的三边关系定理,即等腰三角形的周长是3+3+2=8.故答案为:D.【分析】首先根据非负数的性质可以得到a,b的长度,再分类讨论:腰为2,底为3;和腰为3,底为2,分别求出即可4.如图,CD是等腰三角形△ABC底边上的中线,BE平分∠ABC,交CD于点E,AC =8,DE=2,则△BCE的面积是()A.4B.6C.8D.12【答案】C【知识点】三角形的面积;角平分线的性质;等腰三角形的性质【解析】【解答】解:过点E作EF⊥BC于F,∵AC=BC=8,CD是等腰三角形△ABC底边上的中线,∴CD⊥AB,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴△BCE的面积=12×BC×EF=12×8×2=8.故答案为:C.【分析】过点E作EF⊥BC于F,利用等腰三角形的性质可证得CD⊥AB,利用角平分线上的点到角两边的距离相等,可求出EF的长;再利用三角形的面积公式可求出△BCE 的面积.5.一个等腰三角形的底边长为5,一腰上中线把其周长分成的两部分的差为3,则这个等腰三角形的腰长为()A.2B.8C.2或8D.10【答案】B【知识点】等腰三角形的性质【解析】【解答】∵BD为中线,AB=AC,BC=5,∴AD=CD,∵C△ABD=AB+BD+AD,C△CBD=BC+CD+BD,①当C△ABD-C△CBD=3时,∴AB+BD+AD-(BC+CD+BD)=3,即AB-BC=3,∴AB=3+5=8,∴△ABC三边长分别为:8,8,5,符合三角形三边之间的关系,②当C△CBD-C△ABD=3时,∴BC+CD+BD-(AB+BD+AD)=3,即BC-AB=3,∴AB=5-3=2,∴△ABC三边长分别为:2,2,5,2+2 5,不符合三角形三边之间的关系,故答案为:B.【分析】根据等腰三角形的性质和中线的定义分两种情况讨论:①当C△ABD-C△CBD=3,②当C△CBD-C△ABD=3,分别求出AB的长,再结合三角形三边之间的关系来分析即可得出答案.6.在Rt△AB C中,∠ACB=90°,D,E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,则BD的长为()A.5cm B.6cm C.7cm D.8cm 【答案】A【知识点】线段垂直平分线的性质;等腰三角形的性质【解析】【解答】解:∵CE所在直线垂直平分线段AD,∴AC=CD=5cm,∠ACE=∠DCE,∠AEC=90°,∵CD平分∠BCE,∴∠ECD=∠BCD,∴∠ACE=∠DCE=∠BCD,∵∠ACE+∠DCE+∠BCD=∠ACB=90°∴∠ACE=∠DCE=∠BCD=30°,在△AE C中,∠AEC=90°,∠ACE=30°,∴∠A=60°,在△AB C中,∠A=60°,∠ACB=90°,∴∠B=30°,∴∠B=∠BCD=30°,∴BD=CD=5cm.故答案为:A。
等腰三角形的性质5. 等腰三角形的底角一定是锐角.( )6. 已知如图, △ABC 是等边三角形, D 是BC 中点 DE ⊥AC 于E, 则 EC =AC()7. 等腰三角形的底角不一定是锐角. ( )8. 如图△ABC 中AB =AC, D 、E 分别为AC 、BC 上的点, 则DB >DE ()9. 等腰三角形底边上的高上任意一点到两腰的距离相等 ( ) 10. 等腰三角形两腰上中线的交点到底边的两端点距离相等.( ) 11. 如图, D 是等腰三角形底边BC 上一点. 则 ∠ADC >∠C. ( )12. 等腰三角形一腰上中线把它周长分为15cm 和6cm 两部分,则这个三角形三边长为10c13. 等腰三角形中, 两个角的比为1:4, 则顶角的度数为20°. ( )14. 等边三角形的边长为a, 则高为 a. ( ) 15. 等腰三角形的顶角可以是直角、锐角或钝角. ( )16. 如图, 已知: △ABC 的AB =AC, D 是AB 上一点, DE ⊥BC, E 是垂足, ED 的延长于F, 则AD =AF.17. 如图B 、D 、E 、C 在同一直线上, 若AB =AC, ∠1=∠2, 则 ∠3=∠4. (18. 等边三角形ABC 中, D 是AC 中点, E 为BC 延长线上一点, 且 DB =DE. 则 CE =CD()19. 已知, △ABC 中, AB =AC, ∠B =75°, CD ⊥AB 于D, 则CD =AB( )20. 等腰三角形底边上的中点到两腰的距离相等.( )21. 如图, B 、D 、E 、C 在同一直线上, 若AB =AC, ∠3=∠4, 则∠1=∠2.( )22. 因为等腰三角形的底角一定是锐角, 所以等腰三角形是锐角三角形. ( ) 23. 如图, △ABC 和△CDE 都是等边三角形, 则 AD =BE. ()24. 如图, 已知: 四边形ABCD 中, ∠ABC =∠ADC, AB =AD, 则 CB =CD. (25. 如果三角形一边上的中线等于这边的一半, 这个三角形不一定是直角三角形. ( 26. 等腰三角形角平分线、高线、中线在同一条直线上 ( )27. 已知如图, △ABC 中, ∠B >∠C, 点D 是AC 上的一点, 且AD =AB, 则∠DBC =()28. 如果等腰三角形的顶角为50°, 那么一腰上的高与底边的夹角是40°.( )29. 已知△ABC 中, AB =AC, D 在AB 上且∠DCB =∠A, 则 CD ⊥AB ( )30. 等腰三角形两腰上的中线相等. ( )31. 已知△ABC 中, AB =AC, CD ⊥AB 于D, 则 ∠DCB =∠A( )32. 如图, AB =AE, ∠B =∠E, CB =ED. F 是CD 的中点, 则AF ⊥CD. ()33. 等腰三角形顶角的顶点到两腰中线的距离相等. ( ) 34. 已知: 如图在△ABC 中, AB =AC, D 是BC 延长线上一点, E 是AB 上一点, DE 交AC 于点F , 则 AE <AF ( )35. 在△ABC 中, AB ≤AC, 延长CB 到D, 使BD =BA, 连结AD, 则 AD <AC.36. 已知: 如图, D 为等腰直角△ABC 的直角边BC 延长线上一点, 且CD =CE, BE 延BF ⊥AD37. 在△ABC 中, ∠A =2∠B, 则BC <2AC.38.已知, 如图AD=DC, DE平分∠ADB, F是AC中点, 则DE⊥DF. () 39.已知如图: △ABC和△ADE都是等腰三角形且顶角∠BAC=∠DAE, 则BD=CE ()40.如图, 已知: △ABC中, ∠ABC=2∠C, AH⊥BC, 垂足为H延长AB至D, 使BD=BH,DH的延长线交AC于点M, 则MA=MC()二.单选题 (本大题共 60 分)1.在△ABC中, AB=AC, ∠A=40°, 点O在三角形内且∠OBC=∠OCA, 则∠BOC的度数是[ ]A.110°B.35°C.140°D.55°2.如图在△ABC中, AB=AC, ∠A=40°, P为△ABC内的一点, 且∠PBC=∠PCA, 则∠BPC的度数是A.115°B.110°C.120°D.130°3.等腰三角形一边长5cm, 另一边长是3cm, 它的周长是 [ ]A.11cmB.13cmC.11cm或13cmD.以上都不对4.等腰三角形的一个角等于20°, 则它的另外两个角等于 [ ]A.20°、140°B.20°、140°或80°、80°C.80°、80°D.20°、80°5.已知等腰三角形的一边长为4, 另一边长为9, 则它的周长为[ ]A.17B.17或22C.22D.13 6. 一个等腰三角形的一个内角为70°, 则它一腰上的高与底边所夹的角的度数为[ ] A.55° B.55°或70° C.20° D.20°或35°7. 等腰三角形顶角的度数是底角度数的4倍, 那么,它的底角的度数是 [ ]A.120°B.30°C.60°D.90° 8. 有一个角是50°的等腰三角形其顶角的度数为 [ ] A.80° B.50° C.80°或50° D.65.5°9. 等腰三角形周长12厘M ,其中一边长2厘M ,其他两边分别长 [ ] A .2厘M ,8厘M B .5厘M ,5厘M C .5厘M ,5厘M 或2厘M ,8厘M D .无法确定10. 等腰三角形两边分别为35厘M 和22厘M, 则它的第三边长为 [ ]A.35cmB.22cmC.35cm 或22cmD.15cm 11. 已知等腰三角形的两个角之比为1∶2, 则顶角的度数是 [ ]A.90°B.36°C.36°或90°D.120° 12. 等腰三角形两边长是9cm 和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm 或39cm13. 等边三角形ABC 中, CD 是∠ACB 的平分线, 过D 作BC 的平行线交AC 于E, 若△ABC 的边长 是a, 则△ADE 的周长是 [ ]A.2aB. aC. aD. a14. 如果等腰三角形的周长为21, 其中一边长为5, 那么此等腰三角形底边长是 [ A.11 B.5 C.5或11 D.815. 已知等腰三角形中一个角为50°, 则这个三角形腰上的高和底边夹角的度数为 [A.25°B.40°C.25°或40°D.以上答案都不对16. 在等腰△ABC 中, AB 的长是AC 的二倍, 三角形的周长是40, 则AB 的长等于. [A.20B.16C.20或16D.1017. 等腰三角形的底边为a, 顶角是底角的4倍. 则腰上的高为 [ ]A.aB.C. aD.2a 18. 已知等腰三角形的一边长为5, 另一边长为6, 则它的周长为 [ ] A.16 B.16或17 C.17 D.1119. 等腰三角形底边长为5厘M ,一腰上的中线把三角形分成两部分,其周长之差为3厘它的腰长为 A .8厘M B .5厘MC .2厘M 或8厘MD .2厘M20. 等腰三角形有一个角是45°, 那么这个三角形是 [ ] A.锐角三角形 形 C.钝角三角形 D.不唯一确定21. 如图△ABC 中, AB =AC, 且EB =BD =DC =CF, ∠A =40°, 则∠EDF 的度数为[ ]A.70°B.110°C.55°D.60°22. 已知等腰三角形的一个角为20°, 则它的另外两个角分别为[ ]A.20°,140°B.80°,80°C.20°,140°或80°,80°D.20°,80° 23. 如果一个等腰三角形的一腰是顶角平分线的2倍, 那么这个三角形必有一个内角等于[ ]A.45°B.60°C.90°D.120°24. 如图, 在Rt △ABC 中, ∠C=90°, ∠DBC=26°,且AD=DB,则∠A=[ ]A.26°B.32 °C.64°D.52°25. 一个等腰三角形的角平分线、高线和中线的总数最多有A .3条B .5条C .7条D .9条26. 至少有两边相等的三角形是 [ ]A .等腰三角形B .等边三角形C .等腰直角三角形D .锐角三角形 27. 已知:等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [A.20B.16C.20或16D.无28. 如图, AB =AC, FD ⊥BC 于D, DE ⊥AB 于E, 若∠AFD =155°, 那么∠EDF 的度数A.45°B.55°C.65°D.75°29. 一条等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ]A.小于60°B.等于60°C.等于90°D.大于90°30. 等边三角形的高、中线、角平分线共有________条.[ ]A.9B.7C.6D.331. 等腰三角形有一个角是,则它顶角的大小为 [ ] A . B .C .D .32. 等腰三角形的两边长为25cm 和12cm, 那么它的第三条边长为[ ] A.25cm B.12cm C.25cm 或12cm D.37cm 33. 在等腰△ABC 中,AB =AC ,BD 平分∠ABC ,并交AC 于D .如果∠CDB =,那么∠A 等于 [ ] A . B . C .D .34. 若一个等腰三角形的两边分别是3cm 和6cm, 则它的周长为 [ ]A.15cmB.12cmC.12cm 或15cmD.18cm35. 如果一个三角形的三条高线的交点恰是这个三角形的一个顶点,那么此三角形 [ ] A .是锐角三角形B .是钝角三角形C .是直角三角形D .形状不确定36. 等腰三角形两边是9cm 和15cm, 则它的周长是 [ ] A.24cm B.33cm C.39cm D.33cm 或39cm 37. 等腰Rt △ABC 中, ∠C =90° D 是BC 上一点, 且AD =2CD 则 ∠ADB 的度数为 A.30° B.60° C.120° D.150°38. 已知等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [A.20B.16C.20或16D.无法确定 39. 已知:如图, △ABD 和△ACE 均为等边三角形, 那么△ADC ≌△AEB 的根据是 [A.边,边,边B.边,角,边C.角,边,角D.角,角,边 40. 一个等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [A.小于60°B.等于60°C.等于90°D.大于941. 在△ABC 中, AB =AC, ∠A+ ∠B =130°, 则∠A 、∠B 、∠C 的度数是A.∠A =50°、∠B =80°、∠C =80°B.∠A =50°、∠B =80°、∠C =50°C.∠A =50°、∠B =50°、∠C =80°D.∠A =80°、∠B =50°、∠C =50°42. 等腰三角形顶角是84°,则一腰上的高与底边所成角的度数是 [ ] A.42° B.6° C.36° D.46°43. 如图: AB =AC, ∠BAD =30°AD ⊥BC 且AD =AE, 则∠EDC =[ ]A.10°B.12.5°C.15°D.20°44. 等腰三角形一腰上的高与底所夹的角等于 [ ] A.顶角 B.顶角的 C.顶角的2倍 D.底角的45. 等腰三角形边长分别是3和6,这个三角形的周长是[ ]A .9B .12C .15D .12或1546. 用一条长为12cm 的铁丝做等腰三角形, 底和腰的长必须是正整数, 若底的长为xcm, 则腰的长y 可为 [ ]A.5cmB.5cm 或4cmC.4cmD.-5cm47. 一个等腰三角形底边为8cm, 从底边上一个端点引腰的中线, 分三角形周长为两部 分,其中一部分比另一部分长2cm, 则腰长为 [ ]A.6cmB.10cmC.6cm 或10cmD.以上都不对48. 一个等腰但非等边三角形, 它的角平分线, 中线和高线的条数共为 [ ]A.6B.7C.8D.949. 已知:如图在△ABC 中, AB=AC, CD 为∠ACB 平分线,DE ∥BC,∠A=40°, 则∠EDC 的度数是A.30°B.36°C.35°50. 等腰三角形两个角的比为4∶1, 则顶角为 [ ]A.120°B.20°C.120°或20°D.51. 如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°52.若等腰三角形的两边a 、b 满足,则此等腰三角形的周长为[ ]A .7B .5C .8D .7或553.等腰△ABC 中,两腰上的中线BE 、CD 交于O ,则下列判断中错误的是[ ]A .△ADC ≌△AEB B .△DBC ≌△ECBC .△ABE ≌△BCDD . △BOD ≌△COE54.从等腰三角形底边上任一点,分别作两腰的平行线所成的四边形的周长等于此等腰三角形的[ ]A .周长B .周长一半C .一腰长D .两腰长的和55.等腰三角形一腰上的高与底边所成的角等于 [ ]A .顶角B .顶角的一半C .顶角的2倍D .底角的一半56.如下图,△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 上,且DE=BE ,DF=DC ,若∠A=,则∠EDF=A .B .C .D .57. 等腰三角形底边长为5厘M, 一腰上的中线把三角形分成两部分, 其周长之差为3厘它的腰长为 [ ]A.2厘MB.8厘MC.2厘M 或8厘MD.9厘M58. 如图△ABC 中, AB =AC, ∠A =50°, P 是△ABC 内的一点, 且∠PBC =∠PCA, 则的度数为A.115°B.100°C.130°59. 如图, △ABC 中, AB =AC, CD ⊥AB, 则关于∠A 正确的等式是[ ]A.∠A =∠BB.∠A =∠ACBC.∠A =2∠ACBD.∠A =2∠DCB60. 如图在△ABC 中, AB =AC, BC =BD, AD =DE =EB, 则∠A 的度数是[ ]A.30°B.36°C.45°D.54°三.填空题 (本大题共 30 分)1. 周长为20cm 的等腰三角形中, 底边长为acm, 则一腰长为________cm .2. 如图△ABC 中, AB =AC, ∠A =40°, ∠AED =∠F, 则∠F =___________度.3. 已知等腰三角形有两条边的长分别是3cm 和7cm, 那么这个三角形的周长等于_______4. 已知如图, A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°, 则∠ABD =______度.5. 等腰三角形的周长为36, 腰比底长3, 则此等腰三角形的腰长为________, 底边长为___6. 等腰三角形的底边为12cm,且腰是底的, 则三角形的周长是_______cm7. 已知等腰三角形的一个底角等于顶角的4倍, 则这个等腰三角形的顶角为_______度8. 等腰三角形底边中线与________和________重合.9. 已知:如图: △ABC 中, AB =BC, ∠B =90°, AD ∥BC, ∠D =70°, 则∠EFA =10. 已知:等腰三角形的一个角为100°, 则另两个角的度数为________.11.△ABC 中,如果AB=AC ,点M 是BC 边中点,那么M 到______两边的距离相等,A _两点的距离相等。
等腰三角形测试题及答案1. 等腰三角形的两个底角相等。
(判断题)答案:正确。
2. 已知等腰三角形的顶角为60°,求底角的度数。
答案:底角的度数为60°。
3. 若等腰三角形的周长为18cm,且底边长为6cm,求腰长。
答案:腰长为6cm。
4. 等腰三角形的顶角平分线与底边垂直。
(判断题)答案:正确。
5. 一个等腰三角形的顶角为50°,求另外两个内角的度数。
答案:另外两个内角的度数均为65°。
6. 已知等腰三角形的腰长为10cm,底边长为8cm,求三角形的面积。
答案:面积为24cm²。
7. 等腰三角形的底边长为12cm,腰长为15cm,求顶角的度数。
答案:顶角的度数为30°。
8. 一个等腰三角形的底角为45°,求顶角的度数。
答案:顶角的度数为90°。
9. 等腰三角形的底边长为20cm,腰长为25cm,求三角形的高。
答案:高为15cm。
10. 等腰三角形的底边长为8cm,腰长为10cm,求三角形的内切圆半径。
答案:内切圆半径为2cm。
11. 等腰三角形的顶角为80°,求底角的度数。
答案:底角的度数为50°。
12. 已知等腰三角形的周长为30cm,底边长为12cm,求腰长。
答案:腰长为9cm。
13. 等腰三角形的底边长为10cm,腰长为13cm,求顶角的度数。
答案:顶角的度数为30°。
14. 一个等腰三角形的顶角为40°,求另外两个内角的度数。
答案:另外两个内角的度数均为70°。
15. 等腰三角形的底边长为14cm,腰长为10cm,求三角形的面积。
答案:面积为48cm²。
16. 已知等腰三角形的腰长为8cm,底边长为6cm,求三角形的高。
答案:高为5cm。
17. 等腰三角形的底边长为16cm,腰长为20cm,求三角形的内切圆半径。
答案:内切圆半径为4cm。
18. 等腰三角形的顶角为120°,求底角的度数。
等腰三角形的性质精选试题一.选择题(共21小题)1.(2009•呼和浩特)在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11 C.7或11 D.7或102.(2006•仙桃)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°3.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°4.(2003•青海)若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于()A.75°B.15°C.75°或15°D.30°5.(2006•普陀区二模)等腰三角形一腰上的高与底边所成的角等于()A.顶角的一半B.底角的一半C.90°减去顶角的一半D.90°减去底角的一半6.在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A.6B.9C.12 D.157.如图,AB=AC,∠C=70°,AB垂直平分线EF交AC于点D,则∠DBC的度数为()A.10°B.15°C.20°D.30°8.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE,则图中全等三角形共有()A.0对B.1对C.2对D.3对9.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E.若∠AFD=158°,则∠EDF的度数为()A.90°B.80°C.68°D.60°10.已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度数是()A. 110°B. 140°C. 110°或140°D.以上都不对11.如图已知∠BAC=100°,AB=AC,AB、AC的垂直平分线分别交BC于D、E,则∠DAE=()A.40°B.30°C.20°D.10°12.如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4B.5C.6D.713.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,AD=8cm,BC=6cm,点E、F是AD上的两点,则图中阴影部分的面积是()A.48 B.24 C.12 D.614.在△ABC中,AB=AC,∠BAC=80°,P在△ABC中,∠PBC=10°,∠PCB=20°,则∠PAB的度数为()A.50°B.60°C.70°D.65°15.如图,点D是线段AB与线段BC的垂直平分线的交点,∠B=40°,则∠ADC等于()A.50°B.60°C.70°D.80°16.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2 B. 2∠1+∠2=180°C.∠1+3∠2=180°D. 3∠1﹣∠2=180°17.有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有()A.2个B.3个C.4个D.5个18.设等腰三角形的顶角为∠A,则∠A的取值范围是()A.0°≤∠A≤180°B. 0°<∠A<180°C. 0°≤∠A≤90°D.0°<∠A<90°19.如图,已知△ABC中,AB=AC,AB的垂直平分线DE交AC于D,垂足为E,若AB=5cm,△BCD的周长为8cm,那么BC的长是()cm.A.3B.4C.5D.220.已知△ABC中,∠C=32°,∠A、∠B的外角平分线分别交对边的延长线于D、E两点,且AC=AD,则∠E=()A.10°B.16°C.20°D.24°21.如图,△ABC中,AB=BC=AD,D在BC的延长线上,则角α和β的关系是()A.α+β=180°B.3α+2β=180°C.3α+β=180°D.2β=α二.填空题(共5小题)22.(2011•沈河区一模)如图,在△ABC中,∠B=∠C,点D、E分别在BC、AC边上,∠CDE=15°,且∠AED=∠ADE,则∠BAD的度数为_________.23.如图,已知:AB=AC=AD,∠BAC=50°,∠DAC=30°,则∠BDC=_________.24.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管_________根.25.如图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B_________∠1,∠C_________∠2;若∠BAC=126°,则∠EAG=_________度.26.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有_________处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于_________.三.解答题(共4小题)27.已知:如图,AD平分∠BAC,AD=AB,CM⊥AD于M.请你通过观察和测量,猜想线段AB、AC之和与线段AM有怎样的数量关系,并证明你的结论.猜想:_________.证明:28.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)29.如图所示,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为24cm,且BC=10cm,求AB的长.30.如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O(1)连接OA,求∠OAC的度数;(2)求:∠BOC.等腰三角形的性质精选试题参考答案与试题解析一.选择题(共21小题)1.(2009•呼和浩特)在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11 C.7或11 D.7或10考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案.解答:解:设等腰三角形的底边长为x,腰长为y,则根据题意,得①或②解方程组①得:,根据三角形三边关系定理,此时能组成三角形;解方程组②得:,根据三角形三边关系定理此时能组成三角形,即等腰三角形的底边长是11或7;故选C.点评:本题考查等腰三角形的性质及相关计算.学生在解决本题时,有的同学会审题错误,以为15,12中包含着中线BD的长,从而无法解决问题,有的同学会忽略掉等腰三角形的分情况讨论而漏掉其中一种情况;注意:求出的结果要看看是否符合三角形的三边关系定理.故解决本题最好先画出图形再作答.2.(2006•仙桃)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°考点:线段垂直平分线的性质;等腰三角形的性质.专题:计算题.分析:首先由AB=AC可得∠ABC=∠ACB,再由DE垂直平分AC可得DC=AD,推出∠DAC=∠DCA.易求∠DCB.解答:解:AB=AC,∠A=50°⇒∠ABC=∠ACB=65°.∵DE垂直平分AC,∴∠DAC=∠DCA.∴∠DCB=∠ACB﹣∠DCA=65°﹣50°=15°.故选A.点评:本题考查的是线段垂直平分线的性质以及等腰三角形的性质,考生主要了解线段垂直平分线的性质即可求解.3.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.4.(2003•青海)若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于()A.75°B.15°C.75°或15°D.30°考点:等腰三角形的性质;三角形内角和定理.专题:压轴题;分类讨论.分析:等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而应分两种情况进行讨论.解答:解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°,故选C.点评:熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.5.(2006•普陀区二模)等腰三角形一腰上的高与底边所成的角等于()A.顶角的一半B.底角的一半C.90°减去顶角的一半D.90°减去底角的一半考点:等腰三角形的性质.分析:作出图象根据等腰三角形两底角相等、三角形内角和定理和直角三角形两锐角互余列式求解.解答:解:△ABC中,∵AB=AC,BD是高,∴∠ABC=∠C=在Rt△BDC中,∠CBD=90°﹣∠C=90°﹣=.故选A.点评:本题考查了等腰三角形的性质:等边对等角,以及直角三角形两锐角互余的性质.题目本身是规律性的结论,要注意总结掌握,在今后的分析问题时可直接应用.6.在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A.6B.9C.12 D.15考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE是AC的垂直平分线,即可证得AD=CD,即可得△BDC的周长是AB与BC的和,又由AB=AC=9,BC=6,即可求得答案.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△BDC的周长是:BD+CD+BC=BD+AD+BC=AB+BC,∵AB=AC=9,BC=6,∴△BDC的周长是:AB+BC=9+6=15.故选D.点评:此题考查了线段垂直平分线的性质.解题的关键是注意掌握数形结合思想与转化思想的应用.7.如图,AB=AC,∠C=70°,AB垂直平分线EF交AC于点D,则∠DBC的度数为()A.10°B.15°C.20°D.30°考点:线段垂直平分线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质.专题:计算题.分析:根据等腰三角形的性质求出∠ABC,求出∠A,根据线段的垂直平分线求出AD=BD,得到∠A=∠ABD,求出∠ABD的度数即可.解答:解:∵AC=AB,∠C=70°,∴∠ABC=∠C=70°,∴∠A=180°﹣∠ABC﹣∠C=40°,∵DE是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选D.点评:本题考查了等腰三角形的性质,三角形的内角和定理,线段的垂直平分线性质等知识点的应用,关键是求出∠ABD和∠ABC的度数,题目比较典型,难度适中.8.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE,则图中全等三角形共有()A.0对B.1对C.2对D.3对考点:等腰三角形的性质.分析:利用三角形全等的判定方法可以证得△ABE≌△ACD和△ABD≌△ACE.解答:解:∵AB=AC,∴∠B=∠C,∵AD=AE,∴∠ADE=∠AED,∴∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∴BD+DE=CE+DE即:BE=CD,∴△ABE≌△ACD,∴图中全等的三角形共有2对,选C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E.若∠AFD=158°,则∠EDF的度数为()A.90°B.80°C.68°D.60°考点:等腰三角形的性质;三角形的外角性质.专题:计算题.分析:先根据等腰三角形等边对等角的性质得到∠B=∠C,利用等角的余角相等和已知角可求出∠EDB的数,从而可求得∠EDF的度数.解答:解:∵AB=AC∴∠B=∠C∵FD⊥BC于D,DE⊥AB于E∴∠BED=∠FDC=90°∵∠AFD=158°∴∠EDB=∠CFD=180°﹣158°=22°∴∠EDF=90°﹣∠EDB=90°﹣22°=68°.故选C.点评:本题综合考查等腰三角形与等边三角形的性质及三角形外角性质等知识.一般是利用等腰三角形的性质得出有关角的度数,进而求出所求角的度数.10.已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度数是()A. 110°B. 140°C. 110°或140°D.以上都不对考点:等腰三角形的性质.专题:计算题;分类讨论.分析:利用等腰三角形的性质,得到两底角相等,结合三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和,可直接得到结果.解答:解:∵等腰三角形两底角相等,三角形的任一外角等于和它不相邻的两个内角之和,∴当顶角∠A=40°时,则∠C=∠B=(180﹣40)=70°,∴∠ACB的外角的度数是180﹣70=110°,∴当底角∠A=40°时,∠B=40°,则∠ACB的外角的度数为2∠A=2×40=80°,当底角∠A=40°时,∠ACB=40°,则∠ACB的外角的度数为180﹣40=140°.故选C.点评:此题主要考查了等腰三角形的性质与三角形内角与外角的关系;此题要采用分类讨论的思想,本题比较简单,属于基础题.11.如图已知∠BAC=100°,AB=AC,AB、AC的垂直平分线分别交BC于D、E,则∠DAE=()A.40°B.30°C.20°D.10°考点:线段垂直平分线的性质;等腰三角形的性质.分析:根据三角形的内角和定理和等腰三角形性质求出∠B=∠C=40°,根据线段垂直平分线得出BD=AD,AE=CE,推出∠B=∠BAD=40°,∠C=∠CAE=40°,即可求出∠DAE.解答:解:∵∠BAC=100°,AC=AB,∴∠B=∠C=(180°﹣∠BAC)=40°,∵DM、EN分别是边AB和AC的垂直平分线,∴BD=AD,AE=CE,∴∠B=∠BAD=40°,∠C=∠CAE=40°,∴∠DAE=100°﹣40°﹣40°=20°,故选C.点评:本题考查了三角形的内角和定理,等腰三角形性质,线段垂直平分线等知识点,注意:线段垂直平分线上的点到线段两个端点的距离相等,等边对等角.12.如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4B.5C.6D.7考点:等腰三角形的性质.分析:由于焊上的钢条长度相等,并且A P1=P1P2,所以∠A=∠P1P2A,则可算出∠P2P1P3的度数,并且和∠P1P3P2度数相等,根据平角的度数为180度和三角形内角和为180度,结合等腰三角形底角度数小于90度即可求出最多能焊上的钢条数.解答:解:∵∠A=∠P1P2A=16°∴∠P2P1P3=32°,∠P1P3P2=32°∴∠P1P2P3=116°∴∠P3P2P4=48°∴∠P3P2P4=48°∴∠P2P3P4=96°∴∠P4P3P5=52°∴∠P3P5P4=52°∴∠P3P4P5=52°∴∠P5P4P6=76°∴∠P4P6P5=76°∴∠P4P5P6=28°∴∠P6P5P7=86°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选B.点评:本题主要考点:等腰三角形底角相等,三角形内角和为180度,平角度数为180度等.结合图形依次算出各角的度数,根据等腰三角形底角小于90度判断何时不能在焊接上.13.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,AD=8cm,BC=6cm,点E、F是AD上的两点,则图中阴影部分的面积是()A.48 B.24 C.12 D.6考点:轴对称的性质;等腰三角形的性质.分析:根据等腰三角形性质求出BD=DC,AD⊥BC,推出△CEF和△BEF关于直线AD对称,得出S△BEF=S△CEF,根据图中阴影部分的面积是S△ABC求出即可.解答:解:∵AB=AC,AD是∠BAC的平分线,∴BD=DC=8,AD⊥BC,∴△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,∴S△BEF=S△CEF,∵△ABC的面积是×BC×AD=×8×6=24,∴图中阴影部分的面积是S△ABC=12.故选C.点评:本题主要考查对等腰三角形性质,三角形的面积,轴对称性质等知识点的理解和掌握,能求出图中阴影部分的面积是S△ABC是解此题的关键.14.在△ABC中,AB=AC,∠BAC=80°,P在△ABC中,∠PBC=10°,∠PCB=20°,则∠PAB的度数为()A.50°B.60°C.70°D.65°考点:等腰三角形的性质.分析:要求∠PAB,题中已知没有能直接求出的条件,故可作P关于AC的对称点P′,连接AP′、P'C、PP',得出A、B、C、P'四点共圆,从而求得∠PAB的度数.解答:解:如图,作P关于AC的对称点P′,连接AP′、P′C、PP′,则P′C=PC,ACP′=∠ACP.∵AB=AC,∠BAC=80°,∴∠ABC=∠ACB=50°,又∵∠PBC=10°,∠PCB=20°,∴∠BPC=150°,∠ACP=30°,∠ACP′=30°,∴∠PCP′=60°,∴△PCP′是等边三角形,∴PP′=PC,∠P′AC=∠PAC,∠P′PC=60°,∴∠BPP′=360°﹣150°﹣60°=150°,∴∠BPP′=∠BPC,∴△PBP′≌△PBC,∴∠PBP′=∠PBC=10°,∴∠P′BC=20°,∠ABP′=30°又∠ACP′=30°,∴∠ABP′=∠ACP′,∴A、B、C、P′四点共圆,∴∠PAC=∠P′AC=∠P′BC=20°,∴∠PAB=60°.故选B.点评:本题考查了等腰三角形的性质,等边三角形的性质及全等三角形的判定,难度较大.辅助线的作出是解答本题的关键.15.如图,点D是线段AB与线段BC的垂直平分线的交点,∠B=40°,则∠ADC等于()A.50°B.60°C.70°D.80°考点:等腰三角形的性质;线段垂直平分线的性质.分析:连接BD、AC.设∠1=x.根据线段垂直平分线的性质,得AD=BD,BD=CD.根据等边对等角,得∠1=∠2=x,∠4=∠ABD=40°+x.根据三角形的内角和定理,得∠ADB=180°﹣2∠4=100°﹣2x,∠BDC=180°﹣2x,进而求得∠ADC.解答:解:连接BD,AC.设∠1=x,∵点D是线段AB与线段BC的垂直平分线的交点,∴AD=BD,BD=CD,∴∠1=∠2=x,∠4=∠ABD=40°+x,根据三角形的内角和定理,得∠ADB=180°﹣2∠4=100°﹣2x,∠BDC=180°﹣2x,∴∠ADC=∠BDC﹣∠ADB=80°.故选D.点评:此题综合考查了线段垂直平分线的性质、等边对等角的性质以及三角形的内角和定理;作出辅助线是正确解答本题的关键.16.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D. 3∠1﹣∠2=180°考点:等腰三角形的性质.分析:由已知条件可得到∠2=∠B,∠1=∠BCA,在△ABC中,由∠1+∠ACB+∠B=180°,可推出结论.解答:解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B.点评:本题考查了对等边对等角和三角形内角和定理的应用.17.有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有()A.2个B.3个C.4个D.5个考点:等腰三角形的性质;三角形内角和定理.分析:认真阅读各小题提供的已知条件,依据三角形的分类方法,然后根据三角形内角和为180°进行分析解答.解答:解:①中,必定正确.如果两个角的和不大于90°,则第三个内角将大于或等于90°,该三角形将不是锐角三角形;②中,这两个概念不能混淆,当等腰三角形的顶角是钝角时,该三角形是钝角三角形,故错误;③中,若等腰三角形有一个外角等于120°,则等腰三角形有一个内角等于60°,则这个三角形一定是等边三角形,故正确;④中,此题应分为两种情况,底角可以是40°或70°,故错误;⑤中,显然正确,如果都小于60°,则该三角形的内角和小于180度.所以正确的是①,③,⑤三个.故选B.点评:本题考查了等腰三角形的性质及三角形内角和定理;掌握三角形的分类方法,理解各个概念,同时注意三角形的内角和是180°.18.设等腰三角形的顶角为∠A,则∠A的取值范围是()A.0°≤∠A≤180°B.0°<∠A<180°C.0°≤∠A≤90°D.0°<∠A<90°考点:等腰三角形的性质;三角形内角和定理.专题:计算题.分析:本题考查等腰三角形的性质,根据三角形内角和定理和等腰三角形的性质可以判断出顶角的取值范围.解答:解:因为等腰三角形的底角只能为锐角,但顶角可以是钝角或锐角,所以0°<∠A<180°,故选B.点评:本题考查等腰三角形的性质,根据三角形内角和定理和等腰三角形的性质可以得出结论.19.如图,已知△ABC中,AB=AC,AB的垂直平分线DE交AC于D,垂足为E,若AB=5cm,△BCD的周长为8cm,那么BC的长是()cm.A.3B.4C.5D.2考点:线段垂直平分线的性质;等腰三角形的性质.分析:根据线段垂直平分线定理得出AD=BD,根据BC+CD+BD=8cm求出AC+BC=8cm,把AC的长代入求出即可.解答:解:∵D在AB垂直平分线上,∴AD=BD,∵△BCD的周长为8cm,∴BC+CD+BD=8cm,∴AD+DC+BC=8cm,∴AC+BC=8cm,∵AB=AC=5cm,∴BC=8cm﹣5cm=3cm,故选A.点评:本题考查了等腰三角形性质和线段垂直平分线定理,关键是求出AC+BC的值,注意:线段垂直平分线上的点到线段的两端点的距离相等.20.已知△ABC中,∠C=32°,∠A、∠B的外角平分线分别交对边的延长线于D、E两点,且AC=AD,则∠E=()A.10°B.16°C.20°D.24°考点:等腰三角形的性质;三角形内角和定理.专题:计算题.分析:根据等腰三角形的性质求得∠C=∠D=32°,有外角平分线的性质知∠EAD=∠DAB=64°;然后在△ABD 中求得∠ABD=86°,从而根据外角平分线的性质求出∠ABE=42°;最后在△ABE中,根据三角形内角和求∠E的度数.解答:解:∵AC=AD,∴∠C=∠D;又∵∠EAD=∠C+∠D,∠C=32°,∠EAD=∠DAB,∠EAD=∠DAB=64°,∴∠EAB=128°;在△ABD中,∠DAB=64°,∠D=32°,∴∠ABD=180°﹣∠D AB﹣∠D=84°;又有∠EBA=∠EBD,∴∠EBA=42°;∴在△ABE中,∠E=180°﹣∠EBA﹣∠EAB=10°;故选A.点评:本题考查了等腰三角形的性质、三角形的内角和定理、三角形的外角平分线的性质.解答此题的关键是灵活运用三角形的外角与内角的关系及三角形的内角和定理.21.如图,△ABC中,AB=BC=AD,D在BC的延长线上,则角α和β的关系是()A.α+β=180°B.3α+2β=180°C.3α+β=180°D.2β=α考点:等腰三角形的性质.分析:首先利用等腰三角形的性质得到∴∠B=∠D=α和∠BAC=∠BCA,然后利用三角形内角和求解.解答:解:∵AB=AD,∴∠B=∠D=α,∵AB=BC∴∠BAC=∠BCA,∵∠ACB=α+β∴在等腰三角形ABC中,2(α+β)+α=180°∴3α+2β=180°,故选B.点评:本题考查了等腰三角形的性质,解题的关键是找到图中所有的等腰三角形.二.填空题(共5小题)22.(2011•沈河区一模)如图,在△ABC中,∠B=∠C,点D、E分别在BC、AC边上,∠CDE=15°,且∠AED=∠ADE,则∠BAD的度数为30°.考点:等腰三角形的性质.专题:计算题.分析:根据等腰三角形的性质,利用三角形内角和定理和三角形外角的性质,利用等量代换即可求解.解答:解;∵在△ABD中,∠BAD=180°﹣∠B﹣∠ADB,∠ADB=180°﹣∠ADC,∴∠BAD=∠ADC﹣∠B,∵∠B=∠C,∠CDE=15°,且∠AED=∠ADE,∴∠BAD=∠ADE+15°﹣∠B=∠B+15°+15°﹣∠B=30°.故答案为30°.点评:此题主要考查等腰三角形的性质和三角形内角和定理的理解和掌握,难易程度适中,适合学生的训练,是一道典型的题目.23.如图,已知:AB=AC=AD,∠BAC=50°,∠DAC=30°,则∠BDC=25°.考点:等腰三角形的性质.分析:结合题意,可分析得出点B、C、D在以点A位圆心,以AB长为半径的圆周上,即可得出∠BDC和∠CAB 分别为圆周角和圆心角,且两角对应的弧相等,即可得出∠BAC=2∠BDC=50°,即可得出∠BDC=25°.解答:解:根据题意,可以以点A为圆心,以AB为半径作圆,即可得出点B、C、D均在圆周上,故有∠BAC=2∠BDC=50°,即∠BDC=25°.故答案为:25°.点评:本题主要考查了学生对知识的灵活运用能力和对问题的分析能力,属于常规性试题,是学生练习的很好的题材.24.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管8根.考点:等腰三角形的性质.专题:应用题;压轴题.分析:根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.解答:解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.点评:此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.25.如图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B=∠1,∠C=∠2;若∠BAC=126°,则∠EAG=72度.考点:线段垂直平分线的性质;等腰三角形的性质.分析:先根据线段垂直平分线的性质得出AE=BE,AG=CG,故∠1=∠B,∠2=∠C,由三角形内角和定理可知,∠B+∠C+∠BAC=∠B+∠C+126°=180°,故∠B+∠C=54°,由于∠1+∠2+∠B+∠C+∠EAG=180°,即2(∠B+∠C)+∠EAG=180°,再把∠B+∠C=54°代入即可求解.解答:解:∵DE、FG分别是边AB、AC的垂直平分线,∴AE=BE,AG=CG,∴∠1=∠B,∠2=∠C,∵∠B+∠C+∠BAC=∠B+∠C+126°=180°,∴∠B+∠C=54°,∵∠1+∠2+∠B+∠C+∠EAG=180°,即2(∠B+∠C)+∠EAG=180°,故∠EAG=180°﹣2×54°=72°.故答案为:72°.点评:本题考查的是线段垂直平分线的性质及三角形内角和定理,解答此题的关键是熟知以下知识:①线段的垂直平分线到线段两端的距离相等;②三角形的内角和为180°.26.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有3处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于15.考点:等腰三角形的性质;三角形的面积.专题:计算题.分析:根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB=,然后即可确定C点的位置;计算这三个三角形的面积时,△ABC的面积直接用×4×3得出,其它两个三角形面积可用正方形面积减去多余三角形的面积即可,例如三角形ABC′的面积用正方形面积20减去2个相等的三角形面积,再减去梯形的面积即可.解答:解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC=×4×3=6,S△ABC′=20﹣2×3﹣=6.5,S△ABC″=2.5,∴S△ABC+S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为:3;15.点评:此题主要考查学生对等腰三角形的性质和三角形面积等知识点的理解和掌握,此题关键是根据AB 的长度确定C点的不同位置,然后再计算3个三角形面积即可.此题有一定难度,属于难题.三.解答题(共4小题)27.已知:如图,AD平分∠BAC,AD=AB,CM⊥AD于M.请你通过观察和测量,猜想线段AB、AC之和与线段AM有怎样的数量关系,并证明你的结论.猜想:AB+AC=2AM.证明:考点:等腰三角形的性质.专题:开放型.分析:根据题目提供的条件和图形中线段的关系,做出猜想AB+AC=2AM,过点C作CE∥AB,CE与AM的延长线交于点E,进一步证明AB+AC=AB+CE=AD+ED=AE,从而得到AB+AC=2AM.解答:猜想:AB+AC=2AM.(1分)证明:过点C作CE∥AB,CE与AM的延长线交于点E.(2分)则∠ECD=∠B,∠E=∠BAD.(两直线平行,内错角相等)(3分)∵AD平分∠BAC,∴∠BAD=∠CAD.(角平分线定义)∴∠E=∠CAD.(等量代换)∴AC=EC.(等角对等边)(4分)又CM⊥AD于M,∴AM=ME,即AE=2AM.(等腰三角形底边上的高线与底边上的中线重合)(5分)∵AD=AB,∴∠B=∠ADB.(等边对等角)又∠EDC=∠ADB,(对顶角相等)∴∠ECD=∠EDC.(等量代换)∴ED=EC.(等角对等边)(6分)∴AB+AC=AB+CE=AD+ED=AE.(等量代换)∴AB+AC=2AM.(7分)点评:本题考查了等腰三角形的性质,解题的关键是正确地做出猜想,然后向着这个目标努力即可.28.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.专题:证明题.分析:(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(3)根据(1)(2)的结论猜出即可.解答:(1)解:∵∠BAC=90°,AB=AC,∴∠B=∠C=(180°﹣∠BAC)=45°,∴∠ADC=∠B+∠BAD=45°+30°=75°,∵∠DAC=∠BAC﹣∠BAD=90°﹣30°=60°,∵AD=AE,∴∠ADE=∠AED=(180°﹣∠DAC)=60°,∴∠EDC=∠ADC﹣∠ADE=75°﹣60°=15°,答:∠EDC的度数是15°.(2)解:与(1)类似:∠B=∠C=(180°﹣∠BAC)=90°﹣α,∴∠ADC=∠B+∠BAD=90°﹣α+30°=120°﹣α,∵∠DAC=∠BAC﹣∠BAD=α﹣30°,∴∠ADE=∠AED=(180°﹣∠DAC)=105°﹣α,∴∠EDC=∠ADC﹣∠ADE=(120°﹣α)﹣(105°﹣α)=15°,答:∠EDC的度数是15°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.点评:本题主要考查学生运用等腰三角形性质,三角形的内角和定理,三角形的外角性质进行推理的能力,题目比较典型,是一道很好的题目,关键是进行推理和总结规律.29.如图所示,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为24cm,且BC=10cm,求AB的长.考点:线段垂直平分线的性质;等腰三角形的性质.专题:计算题.分析:关键已知能求出BE+CE的值,关键线段垂直平分线求出AE=BE,求出AC即可.解答:解:由已知得,BC+BE+CE=24,∵BC=10,∴BE+CE=14,∵DE垂直平分AB,∴AE=BE,∴AE+CE=14,即AC=14,∵AB=AC,∴AB=14.点评:本题考查了等腰三角形的性质,线段的垂直平分线性质等知识点的应用,关键是根据题意求出BE=AE和求出AC的长,通过做此题培养了学生运用线段的垂直平分线定理进行推理的能力,题目较好,难度适中.30.如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O(1)连接OA,求∠OAC的度数;(2)求:∠BOC.考点:等腰三角形的性质.分析:(1)连接AO,利用等腰三角形的对称性即可求得∠OAC的度数;(2)利用三角形的内角和定理以及角平分线的定义求∠BOC与∠A的关系,再把∠A代入即可求∠BOC的度数.解答:解:(1)连接AO,∵在等腰△ABC中,∠B和∠C的平分线相交于点O,∴等腰△ABC关于线段AO所在的直线对称,∵∠A=80°,∴∠OAC=40°(2)∵BO、CO分别平分∠ABC和∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)。